Как решить уравнение с дробями и корнями

Решение иррациональных уравнений. Задание В6 (2014)

Иррациональные уравнения, которые встречаются в задании В6 из Открытого банка заданий для подготовки к ЕГЭ по математике имеют такой вид:

Как решить уравнение с дробями и корнями

Чтобы решить уравнение такого вида, нужно возвести обе части уравнения в квадрат.

Внимание! Возведение в квадрат левой и правой частей уравнения может привести к появлению посторонних корней. Поэтому, после того, как корни уравнения будут найдены, нужно сделать проверку: подставить найденные решения в исходное уравнение и проверить, получим ли мы верное равенство.

Давайте рассмотрим примеры решения иррациональных уравнений из Задания В7.

1. Задание В6 (№ 26656)

Найдите корень уравнения Как решить уравнение с дробями и корнями

Возведем в квадрат правую и левую части уравнения:

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Сделаем проверку. Для этого подставим число 3 в исходное уравнение:

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями— верно.

2. Задание В6(№ 26656)

Найдите корень уравнения Как решить уравнение с дробями и корнями

Возведем в квадрат правую и левую части уравнения:

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Перенесем дробь в левую часть уравнения и приведем к общему заменателю:

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю. Приравняем к нулю числитель:

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями— верно

3. Задание В6 (№ 26668)

Найдите корень уравнения Как решить уравнение с дробями и корнями.

Если уравнение имеет более одного корня, укажите меньший из них.

Возведем в квадрат правую и левую части уравнения:

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Получили квадратное уравнение. Решим его:

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями, Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями— верно.

Как решить уравнение с дробями и корнями

Как решить уравнение с дробями и корнями— верно.

Оба корня нас устраивают. В ответе требуется указать меньший корень.

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Решение уравнений с дробями

Как решить уравнение с дробями и корнями

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:Решить уравнение с дробями - Математика - 6 классСкачать

Решить уравнение с дробями - Математика - 6 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая часть. 8 класс.Скачать

Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая  часть. 8 класс.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Как решить уравнение с дробями и корнями Как решить уравнение с дробями и корнями

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Как решить уравнение с дробями и корнями Как решить уравнение с дробями и корнями

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Как решить уравнение с дробями и корнями

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как решить уравнение с дробями и корнями

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Как решить уравнение с дробями и корнями

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Как решить уравнение с дробями и корнями

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Как решить уравнение с дробями и корнями

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияКак решить уравнение с дробями и корнями

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Как решить уравнение с дробями и корнями

Переведем новый множитель в числитель..

Как решить уравнение с дробями и корнями

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Как решить уравнение с дробями и корнями

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Видео:Дробно-рациональные уравнения. 8 класс.Скачать

    Дробно-рациональные уравнения. 8 класс.

    Алгебра

    План урока:

    Видео:Уравнение. 5 класс.Скачать

    Уравнение. 5 класс.

    Иррациональные уравнения

    Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

    Приведем примеры иррациональных ур-ний:

    Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

    Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

    Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

    Алгебра 8. Урок 11 - Дробно-рациональные уравнения

    Простейшие иррациональные уравнения

    Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

    где а – некоторое число (константа), f(x) – рациональное выражение.

    Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

    Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

    n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

    Пример. Решите ур-ние

    Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

    Ответ: корней нет.

    Пример. Решите ур-ние

    Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

    Пример. Решите ур-ние

    Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

    Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

    Пример. Найдите решение ур-ния

    Решение. Возведем обе части в пятую степень:

    х 2 – 14х – 32 = 0

    Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

    D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

    Итак, нашли два корня: (– 2) и 16.

    Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

    Пример. Решите ур-ние

    Решение. Возводим обе части во вторую степень:

    х – 2 = х 2 – 8х + 16

    D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

    Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

    при х = 3 х – 4 = 3 – 4 = – 1

    при х = 6 6 – 4 = 6 – 4 = 2

    Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

    Пример. Решите ур-ние

    Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

    3х 2 + 6х – 25 = (1 – х) 3

    3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

    Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

    Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

    Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

    при х = 2 1 – х = 1 – 2 = – 1

    Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

    Видео:ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэСкачать

    ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ ЧАСТЬ I #shorts #егэ #огэ #математика #профильныйегэ

    Уравнения с двумя квадратными корнями

    Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

    Пример. Решите ур-ние

    Решение. Перенесем вправо один из корней:

    Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

    Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

    Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

    (2х – 4) 2 = 13 – 3х

    4х 2 – 16х + 16 = 13 – 3х

    4х 2 – 13х + 3 = 0

    D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

    Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

    Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

    На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

    Видео:Уравнения с дробями 5 класс (задания, примеры) - как решать?Скачать

    Уравнения с дробями 5 класс (задания, примеры) - как решать?

    Введение новых переменных

    Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

    Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

    Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

    х 1/2 – 10х 1/4 + 9 = 0

    Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

    Это квадратное ур-ние. Найдем его корни:

    D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

    Получили два значения t. Произведем обратную замену:

    х 1/4 = 1 или х 1/4 = 9

    Возведем оба ур-ния в четвертую степень:

    (х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

    х = 1 или х = 6561

    Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

    В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

    Пример. Решите ур-ние

    х 1/3 + 5х 1/6 – 24 = 0

    Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

    Его корни вычислим через дискриминант:

    D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

    Далее проводим обратную заменуx 1/6 = t:

    х 1/6 = – 8 или х 1/6 = 3

    Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

    Видео:ЕГЭ по математике // Задание 5, 7 // Иррациональное уравнениеСкачать

    ЕГЭ по математике // Задание 5, 7 // Иррациональное уравнение

    Замена иррационального уравнения системой

    Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

    Пример. Решите ур-ние

    Решение. Заменим первый корень буквой u, а второй – буквой v:

    Исходное ур-ние примет вид

    Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

    Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

    Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

    (х + 6) + (11 – х) = u 3 + v 2

    из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

    17 = u 3 + (5 – u) 2

    17 = u 3 + u 2 – 10u + 25

    u 3 + u 2 – 10u + 8 = 0

    Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

    подставим полученные значения в (4):

    x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

    x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

    х = – 5 или х = 2 или х = – 70

    Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

    Корень подошел. Проверяем следующее число, х = 2:

    Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

    Итак, все три числа прошли проверку.

    Видео:Алгебра 8 класс. Уравнения с корнямиСкачать

    Алгебра 8 класс. Уравнения с корнями

    Уравнения с «вложенными» радикалами

    Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

    При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

    Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

    Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

    Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

    Возводим в квадрат и получаем:

    х 2 + 40 = (х + 4) 2

    х 2 + 40 = х 2 + 8х + 16

    И снова нелишней будет проверка полученного корня:

    Видео:Как решать Уравнения с дробями ( Математика 5 класс )Скачать

    Как решать Уравнения с дробями ( Математика 5 класс )

    Иррациональные неравенства

    По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

    Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

    Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

    Может быть справедливым только тогда, когда

    То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

    при четном n можно заменить системой нер-в

    Пример. При каких значениях x справедливо нер-во

    Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

    х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

    Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

    чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

    Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

    Пример. Найдите решение нер-ва

    Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

    x 2 – 7x– 8 2 – 7x– 8 = 0

    D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

    Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

    Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

    Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

    Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

    Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

    Пример. Решите нер-во

    Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

    И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

    D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

    Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

    стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

    f(x) > 0 (подкоренное выражение не может быть отрицательным);

    g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

    Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

    Пример. Решите нер-во

    Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

    х 2 – 10х + 21 > 0(1)

    Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

    Во-вторых, выражение 4 – х не может быть отрицательным:

    Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

    Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

    Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

    Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

    Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

    Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

    Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

    🔥 Видео

    Сложные уравнения. Как решить сложное уравнение?Скачать

    Сложные уравнения. Как решить сложное уравнение?

    СЛОЖИТЕ ДВА КОРНЯСкачать

    СЛОЖИТЕ ДВА КОРНЯ

    Решение уравнений, 6 классСкачать

    Решение уравнений, 6 класс

    Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

    Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

    Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

    Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!
    Поделиться или сохранить к себе: