В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.
Видео:Решение уравнений, 6 классСкачать
Определение
Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:
a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.
Ниже приведены несколько примеров:
Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.
Видео:Линейное уравнение с двумя переменными. 6 класс.Скачать
Решение задач
Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.
Для наглядности объяснений подберем корни для выражения: y-x = 6.
При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).
Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.
У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9
Приведем исходное равенство к следующему виду:
В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.
При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.
Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.
Оба равенства равносильны.
Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.
Оба уравнения также равносильны.
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Система уравнений с двумя неизвестными
Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.
Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.
Решить подобные системы уравнений можно, применяя следующие методы.
Метод подстановки
- Выражаем неизвестное из любого равенства через вторую переменную.
- Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
- Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.
Метод сложения
- Приводим к равенству модули чисел при каком-либо неизвестном.
- Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
- Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.
Графический метод
- Выражаем в каждом равенстве одну переменную через другую.
- Строим графики двух имеющихся уравнений в одной координатной плоскости.
- Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
- Делаем проверку, подставив полученные значения в исходную систему равенств.
При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.
В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.
Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!
Видео:Решение уравнений. Видеоурок 28. Математика 6 классСкачать
Видео
Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.
Видео:Решить уравнение - Математика - 6 классСкачать
Уравнение с двумя переменными. 6-й класс
Разделы: Математика
Класс: 6
Цели:
- углубление и расширение знаний по предмету;
- развитие математического кругозора, логического мышления;
- стимулирование устойчивого интереса к математике.
Задачи:
- развитие математических способностей и логического мышления;
- развитие познавательного интереса, умение применять полученные знания в нестандартных задачах.
Каждый год в школе проводится олимпиада по математике. Задачи, которые предлагают на олимпиадах разного уровня, чаще всего являются нестандартными. Для их решения нужно уметь использовать материал школьной программы в нестандартных, непривычных для ребенка ситуациях. Внеурочная деятельность по предмету позволяет учителю решать этот вопрос. Чем раньше удается сформировать у учащихся интерес к предмету, тем глубже будут знания. А радость от полученного решения трудной нестандартной задачи будет велика.
Среди тем, предлагаемых для внеклассной работы с учащимися 5-6 классов, есть задачи, которые можно свести к уравнению с несколькими переменными. В них число переменных меньше, чем число уравнений. Это вызывает определенную трудность. С другой стороны, учащиеся в 5-6 классе не владеют в нужной мере методами решения уравнений и систем. Обычно решению помогают некоторые дополнительные условия, сформулированные в задаче. Речь идет о заданиях, в которых надо решить уравнение в целых или натуральных числах.
В этой работе мы рассмотрим задачи для внеклассной работы с учащимися 5-6 классов, которые сводятся к уравнению с двумя переменными (неопределенные уравнения) и методы их решения.
1. Использование понятия НОД (наибольший общий делитель)
Задача. Ребята получили на новогодней елке одинаковые подарки. Во всех подарках вместе 123 апельсина и 82 яблока. Сколько ребят присутствовало на елке? Сколько яблок и апельсинов было в каждом подарке?
Решение. Все подарки одинаковые, т.е. в каждом одинаковое число апельсинов и яблок. Надо найти наибольшее целое число, на которое делятся числа 123 и 82. 123 = 3 . 41, 82 = 2 . 41. Получаем, что ребят на елке было 41 человек. В каждом подарке было: 123 : 41 = 3 апельсина и 82 : 41 = 2 яблока.
Ответ: 41 ребенок, 2 яблока и 3 апельсина
2. Признаки делимости при решении задач
Задача. Можно ли разменять 100 р., имея рублевые, трехрублевые и пятирублевые купюры, так, чтобы всего было 29 купюр?
Решение. Пусть в размене участвуют х рублевых, у трехрублевых и z пятирублевых купюр, х + у + z =29, х + 3у + 5z = 100. Записав это равенство в виде (х + у + z) + (2у + 4z) = 100, заключаем, что х + у + z = 29 – четное число, т.к. числа 100 и 2у + 4z – четные числа. Следовательно, нельзя разменять 100 р с помощью 29 купюр достоинством в 1р, 3 р, 5р.
Задача. Решите в натуральных числах х и у уравнение 22х + 13у = 1000.
Решение. Из уравнения видно, что число у должно быть четным. Кроме того, так как 22х + 13у > 13у, то 1000 > 13у, > у, 76 > у. Следовательно, 2 . 16 + 1 = 33, а 33 делится на 11. Очередное значение у больше 16 не на 11, а на 22. Значит, у = 38; далее у = 38 + 22 = 60. Для каждого из значений у = 16, 38, 60 вычислим соответствующее значение х.
3. Свойства уравнений
Учащиеся 5 класса и большую часть 6 класса не владеют правилом переноса слагаемых из одной части уравнения в другую. Это осложняет решения задачи, сводящейся к уравнению вида ах + ву = с. Поэтому разумно на примере чашечных весов познакомить детей с некоторыми свойствами уравнений.
Свойство: Если к обеим частям уравнения прибавить или вычесть одно и то же число, то полученное в результате этого новое уравнение имеет те же и только те же решения, что и исходное уравнение.
Задача. В клетке находятся фазаны и кролики. Известно, что у них 35 голов и 94 ноги. Сколько в клетке фазанов и сколько кроликов?
Решение. Пусть в клетке х фазанов и у кроликов. Тогда общее число зверей х + у= 35. У фазанов по 2 ноги, т.е. 2х ног у всех фазанов. У кроликов по 4 лапы, т.е. 4у лап у всех кроликов. Найдем общее число лап 2х + 4у = 94.
Попробуем решить это уравнение, используя знание материала 5 класса.
Запишем уравнение 2х + 4у = 94 в виде: 2х + 2у + 2у = 94, 2(х + у) + 2у = 94. Воспользуемся заменой выражения х + у на тождественно равное х + у = 35. Получим: 2 . 35 + 2у = 94, 70 + 2у = 94, 2у = 24, у = 12, тогда х = 23.
Ответ: было 23 фазана и 12 кроликов.
4. Метод перебора
Этот метод применяется в задачах, при решении которых, приходится перебирать различные варианты. Применяется он в основном тогда, когда искомые величины могут быть только целыми числами, а множество всех таких значений конечно.
Нередко в задачах используется свойство делимости целых чисел, а метод перебора выступает в виде составной части решения.
Задача. Дети собирали макулатуру. Каждый мальчик собрал по 21 кг, а каждая девочка по 15 кг. Всего дети собрали 174 кг. Сколько мальчиков и девочек собирали макулатуру?
Решение. Пусть девочек было х человек, а мальчиков у. Составим уравнение 15х + 21у = 174.
Видео:Решить уравнение с дробями - Математика - 6 классСкачать
Уравнение с двумя переменными
Уравнение с двумя переменными и его решение
Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y.
Например: 2x+5y = 6; -x+1,5y = 0; $frac$ x-8y = 7
Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y.
Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$
Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.
О тождествах – см. §3 данного справочника
Например: для уравнения 2x+5y=6 решениями являются пары
x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.
Уравнение имеет бесконечное множество решений.
Свойства уравнения с двумя переменными
Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.
Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной:
- если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному;
- если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному.
Например: $2x+5y = 6 ⟺5y = -2x+6 iff y = -0,4x+1,2$
Примеры
Пример 1. Из данного линейного уравнения выразите y через x и x через y:
Алгоритм: рассмотрим 3x+4y=10
1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10
2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).
Аналогично для x(y): $3x+4y = 10 iff 3x = -4y+10 iff x = -1 frac y+3 frac$
📹 Видео
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать
6 класс, 42 урок, Решение уравненийСкачать
Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.Скачать
Решение уравнений - математика 6 классСкачать
Математика 6 класс (Урок№50 - Уравнения. Часть 2.)Скачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать
Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать
дробное уравнение как решать для 6 классаСкачать
Как решать уравнения с дробью? #shortsСкачать
Сложные уравнения. Как решить сложное уравнение?Скачать
Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать
Решение уравнений. Часть 2. 6 класс.Скачать