Как решить тригонометрическое уравнение с умножением

Как решить тригонометрическое уравнение с умножением

Как решить тригонометрическое уравнение с умножением

Как решить тригонометрическое уравнение с умножением

Как решить тригонометрическое уравнение с умножением

Видео:Решение уравнений на умножение и деление.Скачать

Решение уравнений на умножение и деление.

Методы решения тригонометрических уравнений.

Видео:Найдите значение тригонометрического выраженияСкачать

Найдите значение тригонометрического выражения

1. Алгебраический метод.

( метод замены переменной и подстановки ).

Как решить тригонометрическое уравнение с умножением

Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

Как решить тригонометрическое уравнение с умножением

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

Как решить тригонометрическое уравнение с умножением

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

Как решить тригонометрическое уравнение с умножением

Видео:Математика 3 класс (Урок№45 - Уравнения на основе связи между результатами и компонентами "." и ":")Скачать

Математика 3 класс (Урок№45 - Уравнения на основе связи между результатами и компонентами "." и ":")

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

Как решить тригонометрическое уравнение с умножением

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

Видео:10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать

10 класс, 23 урок, Методы решения тригонометрических уравнений

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Как решить тригонометрическое уравнение с умножением

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos Как решить тригонометрическое уравнение с умножениеми sin Как решить тригонометрическое уравнение с умножением( здесь Как решить тригонометрическое уравнение с умножением— так называемый вспомогательный угол ), и наше уравнение прини мает вид:

Как решить тригонометрическое уравнение с умножением

Как решить тригонометрическое уравнение с умножением

Видео:КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Основные методы решения тригонометрических уравнений

п.1. Разложение на множители

Алгоритм простого разложения на множители

Шаг 1. Представить уравнение в виде произведения (f_1(x)cdot f_2(x)cdot . cdot f_n(x)=0) где (f_i(x)) — некоторые функции (тригонометрические и не только) от (x).
Шаг 2. Решить совокупность уравнений: ( left[ begin f_1(x)=0\ f_2(x)=0\ . \ f_n(x)=0\ end right. )
Шаг 3. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение (2cosx cos2x=cosx) begin 2cosx cos2x-cosx=0\ cosx(2cos2x-1)=0\ left[ begin cosx=0\ 2cos2x-1=0 end right. Rightarrow left[ begin x=fracpi2+pi k\ cos2x=frac12 end right. Rightarrow left[ begin x=fracpi2+pi k\ 2x=pmfracpi3+2pi k end right. Rightarrow left[ begin x=fracpi2+pi k\ x=pmfracpi6+pi k end right. end

Как решить тригонометрическое уравнение с умножениемМы видим, что полученные семейства образуют множество из 6 базовых точек на числовой окружности через каждые (60^=fracpi3)
Поэтому: begin left[ begin x=fracpi2+pi k\ x=pmfracpi6+pi k end right. Leftrightarrow x=fracpi6+frac end

Возможно, у вас не сразу получится объединять решения, которые частично пересекаются или дополняют друг друга.
Тогда записывайте ответ в виде полученных семейств.
В рассмотренном примере, это пара (fracpi2+pi k, pmfracpi6+pi k), равнозначная c (fracpi6+frac).
Вот только научиться работать с числовой окружностью нужно обязательно, т.к. чем сложнее пример или задача, тем больше вероятность, что этот навык пригодится.

Алгоритм разложения на множители со знаменателем

Шаг 1. Представить уравнение в виде произведения $$ frac=0 $$ где (f_i(x), g_i(x)) — некоторые функции (тригонометрические и не только) от (x).
Шаг 2. Решить смешанную систему уравнений: ( begin left[ begin f_1(x)=0\ f_2(x)=0\ . \ f_n(x)=0\ end right.\ g_1(x)ne 0\ g_2(x)ne 0\ . \ g_m(x)ne 0\ end )
Шаг 3. Найти объединение полученных решений для числителя. Исключить все решения, полученные для знаменателя. Записать ответ.

Например:
Решим уравнение (ctgx-tgx=frac)
Левая часть уравнения: $$ ctgx-tgx=frac-frac=frac=frac $$ Подставляем, переносим правую часть влево: $$ frac-frac=0 $$ Выносим общий множитель, умножаем на (1/2) слева и справа, получаем: $$ frac=0 $$ В этом уравнении учтено ОДЗ для (ctgx) и (tgx). Поэтому отдельно его не записываем.
Полученное уравнение равносильно системе: begin begin left[ begin cosx-sinx=0\ cosx+sinx=1 end right.\ sin2xne 0 end end Решаем первое уравнение как однородное 1-й степени (см. этот параграф ниже): begin cosx-sinx=0 |: cosx\ 1-tgx=0Rightarrow tgx=1Rightarrow x=fracpi4+pi k end Решаем второе уравнение введением вспомогательного угла (см. этот параграф ниже): begin cosx-sinx=1 | times frac<sqrt>\ frac<sqrt>cosx+frac<sqrt>sinx=frac<sqrt>\ cosleft(fracpi4right)cosx+sinleft(fracpi4right)sinx=frac<sqrt>\ cosleft(fracpi4-xright)=cosleft(x-fracpi4right)=cosleft(x-fracpi4right)=frac<sqrt> Rightarrow x-fracpi4=pmfracpi4+2pi kRightarrow left[ begin x=2pi k\ x=fracpi2+2pi k end right. end Решаем исключающее уравнение для знаменателя: $$ sin2xne 0Rightarrow 2xne pi kRightarrow xnefrac $$

Как решить тригонометрическое уравнение с умножениемЗаписываем полученную систему, отмечаем базовые решения на числовой окружности, исключаем нули знаменателя. Получаем: begin begin left[ begin x=fracpi4+pi k\ x=2pi k\ x=fracpi2+2pi kLeftrightarrow x=fracpi4+pi k end right.\ xnefrac end end

За счет требования (xnefrac) исключаются семейства (x=fracpi2+2pi k) и (x=2pi k).
Остается только (x=fracpi4+pi k).
Ответ: (fracpi4+pi k)

п.2. Приведение к квадратному уравнению

Шаг 1. С помощью базовых тригонометрических отношений и других преобразований представить уравнение в виде $$ af^2(x)+bf(x)+c=0 $$ где (f(x)) — тригонометрическая функция.
Шаг 2. Сделать замену переменных: (t=f(x)). Решить полученное квадратное уравнение: begin at^2+bt+c=0\ D=b^2-4ac, t_=frac<-bpmsqrt> end Шаг 3. Если (f(x)) — синус или косинус, проверить условие (-1leq t_leq 1). Отбросить лишние корни.
Шаг 4. Вернуться к исходной переменной и решить совокупность простейших тригонометрических уравнений ( left[ begin f(x)=t_1\ f(x)=t_2 end right. ) или одно оставшееся уравнение.
Шаг 5. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение (3sin^2x+10cosx-6=0)
Заменим (sin^2x=1-cos^2x). Получаем: begin 3(1-cos^2x)+10cosx-6=0\ -3cos^2x+10cosx-3=0\ 3cos^2x-10cosx+3=0\ text t=cosx, -1leq tleq 1\ 3t^2-10t+3=0\ D=(-10)^2-4cdot 3cdot 3=64\ t=frac= left[ begin frac13\ 3gt 1 — text end right. end Решаем (cosx=frac13Rightarrow x=pm arccosfrac13+2pi k)
Ответ: (pm arccosfrac13+2pi k)

п.3. Приведению к однородному уравнению

Алгоритм решения однородного тригонометрического уравнения 1-й степени

Например:
Решим уравнение (sinx+cosx=0)
Делим на (cosx). Получаем: (tgx+1=0Rightarrow tgx=-1Rightarrow x=-fracpi4+pi k)
Ответ: (-fracpi4+pi k)

Алгоритм решения однородного тригонометрического уравнения 2-й степени

Шаг 1. Разделить левую и правую части уравнения на (cos^2x) begin frac=frac\ Atg^2x+Btgx+C=0 end Шаг 2. Сделать замену переменных: (t=tgx). Решить полученное квадратное уравнение: begin at^2+bt+c=0\ D=b^2-4ac, t_=frac<-bpmsqrt> end Шаг 3. Решить совокупность простейших тригонометрических уравнений ( left[ begin tgx=t_1\ tgx=t_2 end right. )
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение (6sin^2x-sinxcosx-cos^2x=3)
Приведем уравнение к однородному (чтобы избавиться от тройки справа, умножим её на тригонометрическую единицу): begin 6sin^2x-sinxcosx-cos^2x=3(sin^2x+cos^2x)\ 3sin^2x-sinxcosx-4cos^2x=0 |: cos^2x\ 3tg^2x-tgx-4=0\ text t=tgx\ 3t^2-t-4=0\ D=(-1)^2-4cdot 3cdot(-4)=49\ t=frac= left[ begin -1\ frac43 end right. end Решаем совокупность: ( left[ begin tgx=-1\ tgx=frac43 end right. Rightarrow left[ begin x=-fracpi4+pi k\ x=arctgfrac43+pi k end right. )
Ответ: (-fracpi4+pi k, arctgfrac43+pi k)

Обобщим понятие однородного тригонометрического уравнения на любую натуральную степень:

Алгоритм решения однородного тригонометрического уравнения n-й степени

Шаг 1. Разделить левую и правую части уравнения на (cos^n x)
Шаг 2. Сделать замену переменных: (t=tgx). Решить полученное алгебраическое уравнение: begin a_0t^n+a_1t^+. +a_n=0 end Найти корни (t_1, t_2. t_k, kleq n)
Шаг 3. Решить совокупность простейших тригонометрических уравнений ( left[ begin tgx=t_1\ tgx=t_2\ . \ tgx=t_k end right. )
Шаг 4. Найти объединение полученных решений. Записать ответ.

Например:
Решим уравнение (2sin^3x=cosx)
Умножим правую часть на тригонометрическую единицу и получим однородное уравнение 3-й степени: begin 2sin^3x=cosx(sin^2x+cos^2x)\ 2sin^3x-sin^2xcosx-cos^3x=0 |: cos^3x\ 2tg^x-tg^2x-1=0\ end Замена (t=tgx) дает кубическое уравнение: (2t^3-t^2-1=0)
Раскладываем на множители: begin 2t^3-t^2-1=t^3-t^2+t^3-1=t^2(t-1)+(t-1)(t^2+t+1)=\ =(t-1)(2t^2+t+1) end Вторая скобка на множители не раскладывается, т.к. (D=1-4cdot 2=-7 lt 0).
Получаем: (2t^3-t^2-1=0Leftrightarrow t-1=0)
Возвращаемся к исходной переменной:
(tgx=1Rightarrow x=fracpi4+pi k)
Ответ: (fracpi4+pi k)

п.4. Введение вспомогательного угла

Например:
Решим уравнение (sqrtsin3x-cos3x=1)
Делим уравнение на ( p=sqrt=2: ) begin sqrtsin3x-cos3x=1 |: 2\ frac<sqrt>sin3x-frac12cos3x=frac12\ sinleft(fracpi3right)sin3x-cosleft(fracpi3right)cos3x=frac12\ cosleft(fracpi3right)cos3x-sinleft(fracpi3right)sin3x=-frac12\ cosleft(3x+fracpi3right)=-frac12Rightarrow 3x+fracpi3=pmfrac+2pi kRightarrow 3x= left[ begin -pi+2pi k\ fracpi3+2pi k end right. Rightarrow x= left[ begin -fracpi3+frac\ fracpi9+frac end right. end
Ответ: (-fracpi3+frac, fracpi9+frac)

п.5. Преобразование суммы тригонометрических функций в произведение

При решении уравнений вида begin Asinax+Bsinbx+. +Ccoscx+Dcosdx+. =0 end используются формулы, выведенные в §17 данного справочника.
Затем проводится разложение на множители, и находится решение (см. начало этого параграфа).

Например:
Решим уравнение (cos3x+sin2x-sin4x=0)
Заметим, что: $$ sin2x-sin4x=2sinfraccosfrac=2sin(-x)cos3x=-2sinxcos3x $$ Подставляем: begin cos3x-2sinxcos3x=0\ cos3x(1-2sinx)=0\ left[ begin cos3x=0\ 1-2sinx=0 end right. Rightarrow left[ begin 3x=fracpi2+pi k\ sinx=frac12 end right. Rightarrow left[ begin x=fracpi6+frac\ x=(-1)^kfracpi6+pi k= left[ begin x=fracpi6+2pi k\ frac+2pi k end right. end right. end Чтобы было понятней, распишем полученные множества в градусах: begin left[ begin x=fracpi6+frac=30^+60^k\ x=fracpi6+2pi k=30^+360^kLeftrightarrow x=30^+60^k=fracpi6+frac\ x=frac+2pi k=150^+360^k end right. end

Как решить тригонометрическое уравнение с умножениемПолучаем, что семейства решений (fracpi6+2pi k) и (frac+2pi k) уже содержатся во множестве (fracpi6+frac).

п.6. Преобразование произведения тригонометрических функций в сумму

При решении уравнений вида begin sinaxcdot cosbx=sincxcdot cosdx, sinaxcdot sinbx=sincxcdot cosdx text end используются формулы, выведенные в §18 данного справочника.

Например:
Решим уравнение (sin5xcos3x=sin6xcos2x)
Заметим, что: begin sin5xcos3x=frac=frac\ sin6xcos2x=frac=frac end Подставляем: begin frac=frac |times 2\ sin8x-sin2x=sin8x-sin4x\ sin4x-sin2x=0\ 2sin2xcos2x-sin2x=0\ sin2x(2cos2x-1)=0\ left[ begin sin2x=0\ 2cos2x-1=0 end right. Rightarrow left[ begin 2x=pi k\ cos2x=frac12 end right. Rightarrow left[ begin x=frac\ 2x=pmfracpi3+2pi k end right. Rightarrow left[ begin x=frac\ x=pmfracpi6+pi k end right. end

Как решить тригонометрическое уравнение с умножениемСемейства решений не пересекаются.

Примечание: учитывая ответ предыдущего примера, это же множество решений можно записать в виде: ( left[ begin x=frac\ x=pmfracpi6+pi k end right. Leftrightarrow left[ begin x=fracpi6+frac\ x=pi k end right. )

п.7. Понижение степени

При решении уравнений вида begin sin^2ax+sin^2bx+. +cos^2cx+cos^2dx+. =A end используются формулы понижения степени: begin sin^2x=frac, cos^2x=frac end (см. формулы половинного аргумента, §15 данного справочника).

Например:
Решим уравнение (sin^2x+sin^22x=1)
Расписываем квадраты синусов через формулу понижения степени: begin frac+frac=1\ cos2x+cos4x=0\ 2cosfraccosfrac=0\ cos3xcosx=0\ left[ begin cos3x=0\ cosx=0 end right. Rightarrow left[ begin 3x=fracpi2+pi k\ x=fracpi2+pi k end right. Rightarrow left[ begin x=fracpi6+frac\ x=fracpi2+pi k end right. end

Как решить тригонометрическое уравнение с умножением(x=fracpi2+pi k) является подмножеством (x=fracpi6+frac)
Поэтому begin left[ begin x=fracpi6+frac\ x=fracpi2+pi k end right. Leftrightarrow x=fracpi6+frac end

п.8. Замена переменных

При решении уравнений вида (f(sinxpm cosx, sinxcosx)=0) используется замена begin t=cosxpm sinx end

Например:
Решим уравнение (sinx+cosx=1+sinxcosx)
Замена: (t=sinx+cosx)
Тогда (t^2=sin^2x+2sinxcosx+cos^2x=1+2sinxcosxRightarrow sinxcosx=frac)
Подставляем: begin t=1+fracRightarrow 2(t-1)=t^2-1Rightarrow t^2-2t+1=0Rightarrow (t-1)^2=0Rightarrow t=1\ sinx+cosx=1 | times frac<sqrt>\ frac<sqrt>sinx+frac<sqrt>cosx=frac<sqrt>\ sinfracpi4 sinx+cosfracpi4 cosx=frac<sqrt>\ cosleft(x-fracpi4right)=frac<sqrt>Rightarrow x-fracpi4=pmfracpi4 + 2pi kRightarrow Rightarrow left[ begin x=2pi k\ x=fracpi2+2pi k end right. end Ответ: (2pi k, fracpi2+2pi k)

п.9. Использование ограничений области значений функций

Уравнения вида begin underbrace_<m text> end может иметь решение только, если каждое из слагаемых равно 1.
Поэтому решаем систему: ( begin sinax=1\ sinbx=1\ . \ cosdx=1\ . end )
Находим пересечение (!) полученных семейств решений и записываем ответ.

Аналогично, уравнение вида begin underbrace_<m text> end может иметь решение только, если каждое из слагаемых равно -1.

Например:
Решим уравнение (sinx+cos4x=2)
Для этого нужно решить систему: begin begin sinx=1\ cos4x=1 end Rightarrow begin x=fracpi2+2pi k\ 4x=2pi k end Rightarrow begin x=fracpi2+2pi k\ x=frac end end

Как решить тригонометрическое уравнение с умножениемПересечением двух семейств решений будет только (fracpi2+2pi k).
Поэтому begin begin x=fracpi2+2pi k\ x=frac end Leftrightarrow x=fracpi2+2pi k end

п.10. Примеры

Пример 1. Используя различные методы, решите уравнения:
a) (4sinleft(fracpi2right)+5sin^2x=4)
Приводим уравнение к квадратному:
(5sin^x+4cosx-4=0)
(5(1-cos^2x)+4cosx-4=0)
(-5cos^2x+4cosx+1=0)
(5cos^2x-4cosx-1=0)
Замена: (t=cosx, -1leq tleq 1) begin 5t^2-4t-1=0Rightarrow (5t+1)(t-1)=0Rightarrow left[ begin t_1=-frac15\ t_2=1 end right. end Оба корня подходят. Возвращаемся к исходной переменной: begin left[ begin cosx=-frac15\ cosx=1 end right. Rightarrow left[ begin x=pm arccosleft(-frac15right)+2pi k\ x=2pi k end right. end Ответ: (pm arccosleft(-frac15right)+2pi k, 2pi k)

б) (6sinxcosx=5cos2x)
(6sinxcosx=3cdot 2sinxcosx=3sin2x)
Приводим уравнение к однородному 1-й степени:
(3sin2x=5cos2x | : cos2x)
(3tg2x=5Rightarrow tg2x=frac53Rightarrow 2x=arctgfrac53+pi kRightarrow x=frac12 arctgfrac53+frac)
Ответ: (frac12 arctgfrac53+frac)

в) (9cos^2x-5sin2x=-sin^2x)
(5sin2x=5cdot 2sinxcosx=10sinxcosx)
Приводим уравнение к однородному 2-й степени:
(sin^2x-10sinxcosx+9cos^2x=0 |: cos^2x)
(tg^2x-10tgx+9=0)
Замена: (t=tgx) begin t^2-10+9=0Rightarrow (t-1)(t-9)=0Rightarrow left[ begin t_1=1\ t_2=9 end right. end Оба корня подходят. Возвращаемся к исходной переменной: begin left[ begin tgx=1\ tgx=9 end right. Rightarrow left[ begin x=fracpi4+pi k\ x=arctg9+pi k end right. end Ответ: (fracpi4+pi k, arctg9+pi k)

г) (cos3x-1=cos6x)
Косинус двойного угла: (cos6x=2cos^2 3x-1)
Подставляем и раскладываем на множители:
(cos3x-1=2cos^2 3x-1)
(cos3x-2cos^2 3x=0)
(cos3x(1-2cos3x)=0) begin left[ begin cos3x=0\ 1-2cos3x=0 end right. Rightarrow left[ begin 3x=fracpi2+pi k\ cos3x=frac12 end right. Rightarrow left[ begin x=fracpi6+frac\ 3x=pmfracpi3+2pi k end right. Rightarrow left[ begin x=fracpi6+frac\ x=pmfracpi9+frac end right. end Чтобы проверить пересечения, распишем семейства решений через градусы: begin left[ begin x=fracpi6+frac=30^+60^k=<. -90^,-30^,30^,90^,150^. >\ x=pmfracpi9+frac= left[ begin -20^+120^k=<. -140^,-20^,100^. >\ 20^+120^k=<. -100^,20^,140^. > end right. end right. end Семейства не пересекаются.
Ответ: (fracpi6+frac, pmfracpi9+frac)

д) (sqrtsin2x-cos2x=-sqrt)
Разделим на (p=sqrt) и введем дополнительный угол:
(frac<sqrt>sin2x-frac12 cos2x=-frac<sqrt>)
(frac12cos2x-frac<sqrt>sin2x=frac<sqrt>)
(cosleft(2x-fracpi3right)=frac<sqrt>)
(2x-fracpi3=pmfracpi6+2pi k)
(2x=fracpi3pmfracpi6+2pi k= left[ begin -frac+2pi k\ fracpi2+2pi k end right. )
( left[ begin x=-frac+pi k\ x=fracpi4+pi k end right. ) Семейства решений не пересекаются.
Ответ: (-frac+pi k, fracpi4+pi k)

е) (cos^2x+cos^2 2x=cos^2 3x+cos^2 4x)
Формула понижения степени: (cos^2x=frac)
Подставляем: begin frac+frac=frac+frac\ cos2x+cos4x=cos6x+cos8x\ 2cosfraccosfrac=2cosfraccosfrac |: 2\ cos3xcosx=cos7xcosx=0\ cos3xcosx-cos7xcosx=0\ cosx(cos3x-cos7x)=0\ cosxleft(-2sinfracsinfracright)=0\ -2cosxsin5xsin(-2x)=0\ 2cosxsin5xsin2x=0\ cosxsin5xsin2x=0\ left[ begin cosx=0\ sin5x=0\ sin2x=0 end right. Rightarrow left[ begin x=fracpi2+pi k\ 5x=pi k\ 2x=pi k end right. Rightarrow left[ begin x=fracpi2+pi k\ x=frac\ x=frac end right. end Семейство решений (x=fracpi2+pi k) (базовые точки 90°, 270° на числовой окружности) является подмножеством для (x=frac) (базовые точки 0°, 90°, 180°, 270°). Поэтому: begin left[ begin x=fracpi2+pi k\ x=frac\ x=frac end right. Rightarrow left[ begin x=frac\ x=frac end right. end Ответ: (frac, frac)

Пример 2*. Решите уравнения:
a) begin frac-frac+frac=0 end ОДЗ: (tgxne pm 3)
1) Если (cosxne 0), то последнее слагаемое (frac=frac<frac><frac>=frac)
Получаем: begin frac-frac+frac=0\ frac=0\ frac=0\ end Замена: (t=tgx) begin fracRightarrow begin t^2+7t-30=0\ tnepm3 end Rightarrow begin (t+10)(t-3)=0\ tnepm3 end Rightarrow begin left[ begin t=-10\ t=3 end right.\ tnepm3 end Rightarrow\ t=-10 end Получаем: begin tgx=-10\ x=arctg(-10)+pi k=-arctg10+pi k end
2) Проверим, является ли (cosx=0) решением.
При (cosx=0, x=fracpi2+pi k, tgxrightarrowinfty). Первое слагаемое (fracrightarrowfracrightarrow 0)
Второе слагаемое (fracrightarrowfracrightarrow 0)
Третье слагаемое (fracrightarrowfrac=1ne 0)
Сумма слагаемых в пределе (tgxrightarrowinfty) равна (0+0+1=1ne 0)
(cosx=0) решением не является.
Ответ: (-arctg10+pi k)

б) (frac+1=7frac)
ОДЗ: (cosxne 0, xnefracpi2+pi k) begin |cosx|= begin cosx, -fracpi2+2pi kleq xlt fracpi2+2pi k\ -cosx, fracpi2+2pi kleq xlt frac+2pi k end end 1) Решаем для положительного косинуса (1-я и 4-я четверти) begin frac+1=7frac\ 3(1+tg^2x)+1-7tgx=0\ 3tg^2-7tgx+4=0\ (3tgx-4)(tgx-1)=0\ left[ begin tgx=frac43\ tgx=1 end right. Rightarrow left[ begin x=arctgfrac43+pi k\ x=fracpi4+pi k end right. end

Как решить тригонометрическое уравнение с умножениемПолученное решение даёт 4 базовых точки на числовой окружности: (fracpi4, arctgfrac43, frac) и (pi+arctgfrac43), которые находятся в 1-й и 3-й четвертях.
Выбираем только точки в 1-й четверти:
(fracpi4) и (arctgfrac43).
Это означает, что в записи решения период будет не (pi k), а (2pi k). begin left[ begin x=arctgfrac43+2pi k\ x=fracpi4+2pi k end right. end

2) Решаем для отрицательного косинуса (2-я и 3-я четверти) begin frac+1=-7frac\ 3(1+tg^2x)+1+7tgx=0\ 3tg^2x+7tgx+4=0\ (3tgx+4)(tgx+1)=0\ left[ begin tgx=-frac43\ tgx=-1 end right. Rightarrow left[ begin x=-arctgfrac43+pi k\ x=-fracpi4+pi k end right. end

Как решить тригонометрическое уравнение с умножениемПолученное решение даёт 4 базовых точки на числовой окружности: (-fracpi4, -arctgfrac43, frac) и (pi-arctgfrac43), которые находятся в 2-й и 4-й четвертях.
Выбираем только точки вo 2-й четверти:
(frac) и (pi-arctgfrac43).
Это означает, что в записи решения будут выбранные точки с периодом (2pi k). begin left[ begin x=pi-arctgfrac43+2pi k\ x=frac+2pi k end right. end

3) Объединяем полученные решения: begin left[ begin x=arctgfrac43+2pi k\ x=fracpi4+2pi k\ x=pi-arctgfrac43+2pi k\ x=frac+2pi k end right. end

Как решить тригонометрическое уравнение с умножениемПо аналогии с записью арксинуса можно объединить симметричные относительно оси синусов точки: begin left[ begin x=arctgfrac43+2pi k\ x=pi-arctgfrac43+2pi k end right. Leftrightarrow x=(-1)^k arctgfrac43+pi k\ left[ begin x=fracpi4+2pi k\ x=frac+2pi k end right. Leftrightarrow x=(-1)^k fracpi4+pi k\ end

Окончательно получаем: ( left[ begin x=(-1)^k arctgfrac43+pi k\ x=(-1)^k fracpi4+pi k end right. ).
Ответ: ((-1)^k arctgfrac43+pi k, (-1)^k fracpi4+pi k)

г) (3sinx-4cosx=5)
Способ 1. Вводим дополнительный угол:
(p=sqrt=5)
(frac35sinx-frac45 cosx=1)
(sinalpha=frac35, cosalpha=frac45)
(sinalpha sinx-cosalpha cosx=1)
(cosalpha cosx-sinalpha sinx=-1)
(cos(x+alpha)=-1)
(x+alpha=pi+2pi k)
(x=-alpha+pi+2pi k=-arcsinfrac35+pi+2pi k)

Способ 2. Делаем универсальную подстановку: begin sinalpha=frac<2tgfrac>, cosalpha=frac\ 3cdot frac<2tgfrac><1+tg^2frac>-4cdotfrac<1-tg^2frac><1+tg^2frac>=5\ frac<6tgfrac-4left(1-tg^2fracright)-5left(1+tg^2fracright)><1+tg^2frac>=0 end (1=tg^2fracgeq 1), знаменатель никогда не превращается в 0, отбрасываем его и работаем с числителем: begin -tg^2frac+6tgfrac-9=0Rightarrow tg^2frac-6tgfrac+9=0Rightarrowleft(tgfrac-3right)^2=0Rightarrow tgfrac=3\ frac=arctg3+pi kRightarrow x= 2arctg3+2pi k end

Докажем, что полученные ответы: $$ x=-arcsinfrac35+pi+2pi k text x=2arctg3+2pi k $$ равнозначны, т.е. (-arcsinfrac35+pi=2arctg3), и равны углы: $$ arcsinfrac35=pi-2arctg3 (*) $$ Пусть в правой части равенства (*) (2arctg3=varphi). Тогда (arctg3=fracvarphi2) и (tgfracvarphi2=3).
А в левой части равенства (*) (arcsinfrac35=alpha) и (sinalpha=frac35)
Угол (0lt arcsinfrac35lt fracpi2) расположен в 1-й четверти.
Угол (varphi=2arctg3) расположен во 2-й четверти ((cosvarphilt 0, sinvarphigt 0)). $$ cosvarphi=frac=frac=-frac45, sinvarphi=frac=frac=frac35 $$ Получаем, что для угла (alpha: sinalpha=frac35, cosalpha=frac45)
Для угла (varphi: sinvarphi=frac35, cosvarphi=-frac45)
Откуда следует, что (alpha=pi-varphi). Что и требовалось доказать.
Ответ: (-arcsinfrac35+pi+2pi k) или (2arctg3+2pi k) (т.к. (-arcsinfrac35+pi=2arctg3))

Видео:#2. Как решать тригонометрические уравнения? 3 способа!Скачать

#2. Как решать тригонометрические уравнения? 3 способа!

Тригонометрические уравнения и преобразования

Тригонометрическими уравнениями называют уравнения, в которых переменная содержится под знаком тригонометрических функций. К их числу прежде всего относятся простейшие тригонометрические уравнения, т.е. уравнения вида $sin x=a, cos x=a, tg x=a$, где $а$ – действительное число.

Перед решением уравнений разберем некоторые тригонометрические выражения и формулы.

Значения тригонометрических функций некоторых углов

$α$$ 0$$/$$/$$/$$/$$π$
$sinα$$ 0$$ /$$ /$$ /$$ 1$$ 0$
$cosα$$ 1$$ /$$ /$$ /$$ 0$$ -1$
$tgα$$ 0$$ /$$ 1$$ √3$$ -$$ 0$
$ctgα$$ -$$ √3$$ 1$$ /$$ 0$$ -$

Периоды повтора значений тригонометрических функций

Период повторения у синуса и косинуса $2π$, у тангенса и котангенса $π$

Знаки тригонометрических функций по четвертям

Эта информация нам пригодится для использования формул приведения. Формулы приведения необходимы для понижения углов до значения от $0$ до $90$ градусов.

Чтобы правильно раскрыть формулы приведения необходимо помнить, что:

  1. если в формуле содержатся углы $180°$ и $360°$ ($π$ и $2π$), то наименование функции не изменяется; (если же в формуле содержатся углы $90°$ и $270°$ ($/$ и $/$), то наименование функции меняется на противоположную (синус на косинус, тангенс на котангенс и т. д.);
  2. чтобы определить знак в правой части формулы ($+$ или $-$), достаточно, считая угол $α$ острым, определить знак преобразуемого выражения.

Преобразовать $сos(90° + α)$. Прежде всего, мы замечаем, что в формуле содержится угол $90$, поэтому $cos$ измениться на $sin$.

Чтобы определить знак перед $sinα$, предположим, что угол $α$ острый, тогда угол $90° + α$ должен оканчиваться во 2-й четверти, а косинус угла, лежащего во 2-й четверти, отрицателен. Поэтому, перед $sinα$ нужен знак $-$.

$сos(90° + α)= — sinα$ — это конечный результат преобразования

Видео:Решение уравнений вида tg x = a и ctg x = aСкачать

Решение уравнений вида tg x = a и ctg x = a

Четность тригонометрических функций

Косинус четная функция: $cos(-t)=cos t$

Синус, тангенс и котангенс нечетные функции: $sin(-t)= — sin t; tg(-t)= — tg t; ctg(-t)= — ctg t$

Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

Тригонометрические тождества

  1. $tgα=/$
  2. $ctgα=/$
  3. $sin^2α+cos^2α=1$ (Основное тригонометрическое тождество)

Из основного тригонометрического тождества можно выразить формулы для нахождения синуса и косинуса

Вычислить $sin t$, если $cos t = / ; t ∈(/;2π)$

Найдем $sin t$ через основное тригонометрическое тождество. И определим знак, так как $t ∈(/;2π)$ -это четвертая четверть, то синус в ней имеет знак минус

💡 Видео

Решение тригонометрических уравненийСкачать

Решение тригонометрических уравнений

Уравнение на умножение и деление 2 классСкачать

Уравнение на умножение и деление 2 класс

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по Математике

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

#6. Как решать тригонометрические уравнения? 3 способа! (часть 2)Скачать

#6. Как решать тригонометрические уравнения? 3 способа! (часть 2)

Как решать тригонометрические уравнения? 3 способа решения для ЕНТ по математике 2023Скачать

Как решать тригонометрические уравнения? 3 способа решения для ЕНТ по математике 2023

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ
Поделиться или сохранить к себе: