Как решать систему из трех уравнений с четырьмя неизвестными

Математика

68. Уравнения с четырьмя и более неизвестными . Теперь ясны следующие соображения: одно уравнение с четырьмя неизвестными имеет бесконечно много решений, причем можно давать произвольные значения трем неизвестным, два уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать двум неизвестным, три уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать одному неизвестному, четыре уравнения с 4 неизвестными имеют лишь одно решение (конечно, если ни одно из этих уравнений не есть следствие остальных и не противоречит остальным).

Такие соображения можно продолжить и дальше. Например, 5 уравнений с 8-ю неизвестными имеют бесконечно много решений, причем произвольные значения можно давать трем неизвестным и т. п.

Решать системы уравнений с большим числом неизвестных приходится редко. Следует при этом решении пользоваться по возможности всеми особенностями уравнений, чтобы упростить решение.

Рассмотрим 2 примера. Пример 1:

x + y + 2z – t = 9
x + y – 2z + t = 7
x – y + z + 2t = –9
x – y – z – 2t = 5

Сложив 1-е и 2-е уравнения по частям, мы получим очень простое уравнение только с двумя неизвестными, а именно

2x + 2y = 16 или x + y = 8.

Сложив по частям 3-е и 4-е уравнения, получим:

2x – 2y = –4 или x – y = –2.

Теперь легко решить 2 полученных уравнения (x + y = 8 и x – y = –2), и тогда найдем x = 3 и y = 5.

Подставляя эти значения в 1-е и в 3-е уравнения, получим:

3 + 5 + 2z – t = 9 или 2z – t = 1
3 – 5 + z + 2t = –9 или z + 2t = –7

Подстановка этих значений во 2-е и 4-е уравнения приведет к таким же точно уравнениям.

Теперь остается решить 2 уравнения с 2 неизвестными:

Видео:Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений

Решение СЛАУ 4-го порядка методом Гаусса

В данной статье мы продолжим знакомиться с решениями СЛАУ методом Гаусса.

Теперь мы рассмотрим пример решения матрицы четвёртого порядка, то есть системы уравнений, состоящей из четырёх неизвестных.

Если вы ещё не знаете, как решать этим методом матрицы третьего порядка, то вам необходимо обязательно прочитать эту статью. В ней мы изложили суть данного метода и подробным образом расписали решение подобного задания.

Для того чтобы решить матрицу четвёртого порядка, мы должны воспользоваться тем же алгоритмом решения, что и для матриц третьего порядка.

Необходимо постепенно трансформировать начальную матрицу путём элементарных преобразований с целью получения единичной матрицы из первых четырёх столбцов, в то время как в пятом столбце свободных членов мы получим значения x, y, z, c соответственно. Приступим к практике.

Дана система уравнений:

Как решать систему из трех уравнений с четырьмя неизвестными

1. Составим матрицу:

Как решать систему из трех уравнений с четырьмя неизвестными

2. Преобразуем матрицу:

2.1. Из второй строки вычитаем первую строку:

Как решать систему из трех уравнений с четырьмя неизвестными

2.2. Из третьей строки вычитаем первую строку, умноженную на 3:

Как решать систему из трех уравнений с четырьмя неизвестными

2.3. Из четвертой строки вычитаем первую строку, умноженную на 2:

Как решать систему из трех уравнений с четырьмя неизвестными

2.4. Из четвертой строки вычитаем вторую строку:

Как решать систему из трех уравнений с четырьмя неизвестными

2.5. Прибавляем к третьей строке вторую строку, умноженную на 4:

Как решать систему из трех уравнений с четырьмя неизвестными

2.6. Делим третью строку на -3:

Как решать систему из трех уравнений с четырьмя неизвестными

2.7. Прибавляем к четвертой строке третью строку, умноженную на 6:

Как решать систему из трех уравнений с четырьмя неизвестными

2.8. Делим четвертую строку на 51:

Как решать систему из трех уравнений с четырьмя неизвестными

2.9. Вычитаем из первой строки вторую строку:

Как решать систему из трех уравнений с четырьмя неизвестными

2.10. Вычитаем из первой строки третью строку:

Как решать систему из трех уравнений с четырьмя неизвестными

2.11. Вычитаем из второй строки третью строку:

Как решать систему из трех уравнений с четырьмя неизвестными

2.12. Вычитаем из третьей строки четвертую строку, умноженную на 9:

Как решать систему из трех уравнений с четырьмя неизвестными

2.13. Прибавляем ко второй строке четвертую строку, умноженную на 13:

Как решать систему из трех уравнений с четырьмя неизвестными

2.14. Прибавляем к первой строке четвертую строку, умноженную на 2:

Как решать систему из трех уравнений с четырьмя неизвестными

Можете заметить, решение матриц четвёртого порядка является достаточно простым и понятным, если расписывать каждое действие по отдельности. Промежуточные действия можете делать на черновике.

Однако есть вероятность допущения арифметических ошибок. В этих случаях советуем пользоваться калькулятором.

Видео:Решение системы трех уравнений по формулам КрамераСкачать

Решение системы трех уравнений по формулам Крамера

Решить систему из 4-х уравнений с 4-мя неизвестными онлайн

Воспользовавшись этим онлайн калькулятором, вы легко найдёте решение системы линейных уравнений. Вы можете вводите не только 4 уравнения, но и меньше. Калькулятор всё равно посчитает быстро и правильно.

Видео:Система с тремя переменнымиСкачать

Система с тремя переменными

Калькулятор

Видео:Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математикаСкачать

Решение системы уравнений с тремя неизвестными с помощью формул Крамера | Высшая математика

Инструкция

Примечание: π записывается как pi ; корень квадратный как sqrt() .

Шаг 1. Заполните все необходимые поля коэффициентами при неизвестных.

Шаг 2. Нажмите кнопку “Решить систему”.

Шаг 3. Получите развёрнутый результат.

Числа можно вводить в виде целых чисел, десятичных или дробей (1/2).

Видео:Решение системы уравнений с тремя переменнымиСкачать

Решение системы уравнений с тремя переменными

Что такое линейная система уравнений

Как правило, если в линейной системе 4 уравнения, её решают методом Гаусса. Это классический метод решения систем линейных уравнений. В основе системы лежат элементарные преобразования – сложение, вычитание, умножение на коэффициенты. Суть данного метода – последовательное исключение неизвестных.

📹 Видео

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Решение систем с тремя переменными. Практическая часть. 9 класс.Скачать

Решение систем с тремя переменными. Практическая часть. 9 класс.

Решение системы уравнений методом Крамера 4x4Скачать

Решение системы уравнений методом Крамера 4x4

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Универсальный способ решения симметрических систем с тремя неизвестнымиСкачать

Универсальный способ решения симметрических систем с тремя неизвестными

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Решение систем линейных алгебраических уравнений методом Крамера.Скачать

Решение систем линейных алгебраических уравнений  методом Крамера.

Решение системы уравнений методом Крамера.Скачать

Решение системы уравнений методом Крамера.

Решение системы линейных уравнений методом ГауссаСкачать

Решение системы линейных уравнений методом Гаусса

Решение системы уравнений методом Крамера 2x2Скачать

Решение системы уравнений методом Крамера 2x2

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Как решить систему линейных уравнений с тремя неизвестными!?!Скачать

Как решить систему линейных уравнений с тремя неизвестными!?!
Поделиться или сохранить к себе: