Как преобразовать уравнение в приведенное уравнение

Равносильные уравнения

Два или более уравнений называются равносильными, если они имеют одни и те же корни. Например, уравнения:

равносильные, потому что имеют одни и те же корни (2 и 1 — это можно проверить подстановкой).

Уравнения, не имеющие корней, также считаются равносильными.

Содержание
  1. Преобразование уравнений
  2. Как решать квадратные уравнения
  3. Понятие квадратного уравнения
  4. Приведенные и неприведенные квадратные уравнения
  5. Полные и неполные квадратные уравнения
  6. Решение неполных квадратных уравнений
  7. Как решить уравнение ax 2 = 0
  8. Как решить уравнение ax 2 + с = 0
  9. Как решить уравнение ax 2 + bx = 0
  10. Как разложить квадратное уравнение
  11. Дискриминант: формула корней квадратного уравнения
  12. Алгоритм решения квадратных уравнений по формулам корней
  13. Примеры решения квадратных уравнений
  14. Формула корней для четных вторых коэффициентов
  15. Формула Виета
  16. Упрощаем вид квадратных уравнений
  17. Связь между корнями и коэффициентами
  18. Преобразование уравнений, равносильные преобразования
  19. Что понимают под преобразованием уравнения?
  20. Список основных преобразований, использующихся при решении уравнений
  21. Другие преобразования
  22. Что получается в результате преобразования уравнения?
  23. Равносильные преобразования уравнений
  24. Преобразования, приводящие к уравнениям-следствиям
  25. Преобразования, проведение которых может привести к потере корней
  26. Как избежать потери корней?
  27. Преобразования уравнений, к которым не следует прибегать
  28. 📸 Видео

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Преобразование уравнений

Если одно уравнение заменяется другим уравнением, равносильным данному, то такая замена называется преобразованием уравнения. Например, уравнение

можно преобразовать в такое:

Если одно уравнение заменяется другим, равносильным данному и при этом более простым, то такое преобразование называется упрощением уравнения. Например, упростим следующее уравнение:

заменив его равносильным уравнением

Все преобразования уравнений основаны на двух свойствах равенств, и следствиях, которые вытекают из данных свойств.

Если к обеим частям уравнения прибавить или отнять одно и то же число или алгебраическое выражение, то получится уравнение, равносильное данному.

Рассмотрим уравнение x — 5 = 7. Прибавив к обеим частям уравнения число 5

получим уравнение x = 12. Если в уравнение x — 5 = 7 вместо x подставить число 12, то можно удостовериться, что, прибавив к обеим частям уравнения число 5, мы не только получили равносильное уравнение, но и нашли его корень.

Из данного свойства можно вывести три следствия:

    Если в обеих частях уравнения есть одинаковые члены с одинаковыми знаками, то эти члены можно опустить (сократить).

Возьмём уравнение x + 13 = 10 + 13. Отняв от обеих частей по 13, получим

Любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Рассмотрим уравнение 5x — 4 = 12 + x. Прибавим к обеим частям уравнения по 4:

5x — 4 + 4 = 12 + x + 4.

то есть член 4 перешёл в другую часть с обратным знаком. Теперь вычтем из обеих частей уравнения 5x — 4 = 12 + x по x:

то есть член x перешёл в другую часть с обратным знаком.

Знаки всех членов уравнения можно заменить на противоположные.

Перенесём все члены левой части уравнения 5x — 4 = 12 + x в правую, а все члены правой в левую:

И, учитывая, что части любого равенства ( в том числе и любого уравнения) можно менять местами, то, поменяв левую часть с правой, получим:

то есть получилось, что мы просто заменили знаки всех членов уравнения на противоположные.

Данное преобразование можно также рассматривать как умножение обеих частей уравнения на -1.

Если обе части уравнения умножить или разделить на одно и то же число или алгебраическое выражение, то получится уравнение, равносильное данному.

Рассмотрим уравнение 3x = 12. Разделив обе части уравнения на число 3:

получим уравнение x = 4. Если в уравнение 3x = 12 вместо x подставить число 4, то можно удостовериться, что, разделив обе части уравнения на 3, мы не только получили равносильное уравнение, но и нашли его корень.

Из данного свойства можно вывести два следствия:

    Если все члены уравнения имеют общий множитель, то можно разделить на него все члены уравнения, таким образом, упростив его.

Возьмём уравнение 16x + 8 = 40. Разделив все члены на общий множитель 8, получим:

Если в уравнении есть дробные члены, то от них можно освободить уравнение, приведя все члены к одному знаменателю и затем отбросить его.

x +12 — x=26 — x.
42

После приведения всех членов к общему знаменателю получим:

4x+12 — x=2(26 — x).
444

Теперь, умножив все члены уравнения на 4, или, что то же самое, просто отбросив знаменатель, получим:

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Как решать квадратные уравнения

Как преобразовать уравнение в приведенное уравнение

О чем эта статья:

Видео:Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)Скачать

Алгебра 8 класс (Урок№30 - Решение приведённых квадратных уравнений. Теорема Виета.)

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Как преобразовать уравнение в приведенное уравнение

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Видео:Теорема Виета. 8 класс.Скачать

Теорема Виета. 8 класс.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Видео:ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 классСкачать

    ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 класс

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    Как преобразовать уравнение в приведенное уравнение

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней Как преобразовать уравнение в приведенное уравнение

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

    Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения Как преобразовать уравнение в приведенное уравнение, где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    Как преобразовать уравнение в приведенное уравнение

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Как преобразовать уравнение в приведенное уравнение

    Видео:Квадратные уравнения.Скачать

    Квадратные уравнения.

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:
    Как преобразовать уравнение в приведенное уравнение

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Как преобразовать уравнение в приведенное уравнение

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>Как преобразовать уравнение в приведенное уравнение

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    Как преобразовать уравнение в приведенное уравнение

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Как преобразовать уравнение в приведенное уравнение

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Видео:Быстрый способ решения квадратного уравненияСкачать

    Быстрый способ решения квадратного уравнения

    Преобразование уравнений, равносильные преобразования

    Решение уравнений часто предполагает переход от исходного уравнения к уравнению, для которого известен метод нахождения корней и по корням которого можно определить корни исходного уравнения. В этой статье мы рассмотрим все основные преобразования уравнений, позволяющие осуществлять такие переходы. Здесь мы остановимся, во-первых, на преобразованиях, приводящих к уравнениям, имеющим те же корни, что и исходное уравнение. Во-вторых, поговорим о преобразованиях, приводящих к уравнениям, которые вместе со всеми корнями исходного уравнения могут иметь и другие корни. В-третьих, рассмотрим преобразования, которые сопряжены с вероятностью потери корней. Здесь же, естественно, разберемся, как избежать потери корней при проведении преобразований. Наконец, поразмышляем, какие преобразования вообще не стоит использовать для решения уравнений. Как всегда, весь материал снабдим поясняющими примерами.

    Видео:Квадратное уравнение. 8 класс.Скачать

    Квадратное уравнение. 8 класс.

    Что понимают под преобразованием уравнения?

    В школьных учебниках [1, 2] нет конкретных формулировок по вопросам, что такое преобразование уравнения и что значит преобразовать уравнение. Но имеющейся там информации вполне достаточно для самостоятельного ответа на них. Постараемся это сделать в доступной форме.

    Преобразовать уравнение — это значит выполнить некоторые действия с уравнением, его частями и/или входящими в его состав выражениями.

    Приведем пример. Возьмем конкретное уравнение 6·x=15 и выполним с ним конкретное действие – разделим обе части этого уравнения на 3 . В результате имеем (6·x):3=15:3 . Так, выполнив деление обеих частей уравнения 6·x=15 на 3 , мы преобразовали это уравнение, в результате проведенного преобразования мы получили новое уравнение (6·x):3=15:3 .

    Действия, которые проводят с уравнениями, называют преобразованиями уравнения.

    В приведенном выше примере мы проводили такое преобразование уравнения, как деление обеих частей уравнения на 3 .

    Таким образом, преобразование уравнения – это с одной стороны процесс, заключающийся в выполнении какого-то действия с уравнением, а с другой стороны – само это действие.

    Для чего нужны преобразования уравнений? С их помощью можно решать уравнения. Каким образом? Определенные преобразования, о которых речь пойдет в следующем пункте, позволяют переходить от уравнения к равносильному ему уравнению или уравнению-следствию. Умелое использование таких преобразований дает возможность выстроить цепочку равносильных уравнений и уравнений-следствий с довольно простым в плане решения конечным уравнением, что позволяет по корням последнего уравнения найти все корни исходного уравнения.

    Давайте разберем все основные преобразования, которые используются при решении уравнений.

    Видео:Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

    Решение квадратных уравнений. Метод разложения на множители. 8 класс.

    Список основных преобразований, использующихся при решении уравнений

    Наиболее часто при решении уравнений используются следующие преобразования:

    • Замена выражений, находящихся в левой и правой частях уравнения, тождественно равными им выражениями.
    • Прибавление к обеим частям уравнения одного и того же числа или вычитание из обеих частей уравнения одного и того же числа.
    • Прибавление к обеим частям уравнения одного и того же выражения или вычитание из обеих частей уравнения одного и того же выражения.
    • Перенос слагаемого из одной части уравнения в другую со знаком, измененным на противоположный.
    • Умножение или деление обеих частей уравнения на одно и то же число, отличное от нуля.
    • Умножение или деление обеих частей уравнения на одно и то же выражение.

    Видео:Квадратное уравнение. Практическая часть. 1ч. 8 класс.Скачать

    Квадратное уравнение. Практическая часть. 1ч. 8 класс.

    Другие преобразования

    В представленный в предыдущем пункте список мы намеренно не включили такие преобразования, как возведение обеих частей уравнения в одну и ту же натуральную степень, логарифмирование, потенцирование обеих частей уравнения, извлечение корня одной степени из обеих частей уравнения, освобождение от внешней функции и другие. Дело в том, что эти преобразования не столь общи: преобразования из приведенного выше списка используются при решении уравнений всех видов, а только что упомянутые преобразования — по большей части для решения определенных видов уравнений (иррациональных, показательных, логарифмических и т.д.). Они подробно рассмотрены в рамках соответствующих методов решения уравнений. Вот ссылки, по которым можно выйти на их детальное описание:

    • Возведение обеих частей уравнения в одну и ту же натуральную степень.
    • Логарифмирование обеих частей уравнения.
    • Потенцирование обеих частей уравнения.
    • Извлечение корня одной и той же степени из обеих частей уравнения.
    • Освобождение от одинаковой внешней функции.
    • Замена выражения, отвечающего одной из частей исходного уравнения, выражением из другой части исходного уравнения.

    Приведенные ссылки содержат исчерпывающую информацию по перечисленным преобразованиям. Поэтому, на них в этой статье мы больше не будем останавливаться. Вся последующая информация относится к преобразованиям из списка основных преобразований.

    Видео:Приведенные квадратные уравненияСкачать

    Приведенные квадратные уравнения

    Что получается в результате преобразования уравнения?

    Проведение всех перечисленных выше преобразований может дать или уравнение, имеющее те же корни, что и исходное уравнение, или уравнение, среди корней которого содержатся все корни исходного уравнения, но которое может иметь еще и другие корни, или уравнение, среди корней которого будут не все корни преобразованного уравнения. В следующих пунктах мы разберем, какие из этих преобразований при выполнении каких условий к каким уравнениям приводят. Это крайне важно знать для успешного решения уравнений.

    Видео:Приведённое квадратное уравнение. Теорема Виета.Скачать

    Приведённое квадратное уравнение. Теорема Виета.

    Равносильные преобразования уравнений

    Особый интерес представляют преобразования уравнений, дающие в результате их проведения равносильные уравнения, то есть, уравнения, имеющие то же множество корней, что и исходное уравнение. Такие преобразования называют равносильными преобразованиями. В школьных учебниках соответствующее определение не приводится в явном виде, но оно легко читается из контекста:

    Равносильные преобразования уравнений – это преобразования, дающие равносильные уравнения.

    Так чем же интересны равносильные преобразования? Тем, что если с их помощью удастся прийти от решаемого уравнения к довольно простому равносильному уравнению, то решение этого уравнения даст искомое решение исходного уравнения.

    Из перечисленных в предыдущем пункте преобразований не все являются всегда равносильными. Некоторые преобразования являются равносильными лишь при определенных условиях. Составим список утверждений, которые определяют, какие преобразования и при каких условиях являются равносильными преобразованиями уравнения. Для этого за основу возьмем приведенный выше список, и к преобразованиям, которые не всегда равносильны, добавим условия, придающие им равносильность. Вот этот список:

    • Замена выражения в левой или правой части уравнения тождественно равным ему выражением, при которой не изменяется ОДЗ переменных для уравнения, является равносильным преобразованием уравнения.

    Поясним, почему это так. Для этого возьмем уравнение с одной переменной (аналогичные рассуждения можно провести и для уравнений с несколькими переменными) вида A(x)=B(x) , выражения в его левой и правой части мы обозначили как A(x) и B(x) соответственно. Пусть выражение C(x) тождественно равно выражению A(x) , причем ОДЗ переменной x уравнения C(x)=B(x) совпадает с ОДЗ переменной x для исходного уравнения. Докажем, что преобразование уравнения A(x)=B(x) в уравнение C(x)=B(x) есть равносильное преобразование, то есть, докажем, что уравнения A(x)=B(x) и C(x)=B(x) равносильные.

    Для этого достаточно показать, что любой корень исходного уравнения является корнем уравнения C(x)=B(x) , а любой корень уравнения C(x)=B(x) является корнем исходного уравнения.

    Начнем с первой части. Пусть q – корень уравнения A(x)=B(x) , тогда при подстановке его вместо x мы получим верное числовое равенство A(q)=B(q) . Так как выражения A(x) и C(x) тождественно равны и выражение C(q) имеет смысл (это следует из условия о том, что ОДЗ для уравнения C(x)=B(x) совпадает с ОДЗ для исходного уравнения), то справедливо числовое равенство A(q)=C(q) . Дальше используем свойства числовых равенств. В силу свойства симметричности равенство A(q)=C(q) можно переписать как C(q)=A(q) . Тогда в силу свойства транзитивности из равенств C(q)=A(q) и A(q)=B(q) следует равенство C(q)=B(q) . Этим доказано, что q – корень уравнения C(x)=B(x) .

    Абсолютно аналогично доказывается и вторая часть, а вместе с этим и все утверждение в целом.

    Суть разобранного равносильного преобразования состоит в следующем: оно позволяет отдельно работать с выражениями в левой и правой части уравнений, заменяя их тождественно равными выражениями на исходной ОДЗ переменных.

    Самый банальный пример: мы можем заменить сумму чисел в правой части уравнения x=2+1 ее значением, при этом получится равносильное уравнение вида x=3 . Действительно, мы заменили выражение 2+1 тождественно равным ему выражением 3 , и при этом не изменилась ОДЗ уравнения. Еще пример: в левой части уравнения 3·(x+2)=7·x−2·x+4−1 мы можем раскрыть скобки, а в правой – привести подобные слагаемые, что приведет нас к равносильному уравнению 3·x+6=5·x+3 . Полученное уравнение действительно является равносильным, так как мы заменяли выражения тождественно равными им выражениями и при этом получили уравнение, имеющее ОДЗ, совпадающее с ОДЗ для исходного уравнения.

    • Прибавление к обеим частям уравнения одного и того же числа или вычитание из обеих частей уравнения одного и того же числа есть равносильное преобразование уравнения.

    Докажем, что прибавление к обеим частям уравнения A(x)=B(x) одного и того же числа c дает равносильное уравнение A(x)+c=B(x)+c и что вычитание из обеих частей уравнения A(x)=B(x) одного и того же числа c дает равносильное уравнение A(x)−c=B(x)−c .

    Пусть q – корень уравнения A(x)=B(x) , тогда справедливо равенство A(q)=B(q) . Свойства числовых равенств нам позволяют прибавлять к обеим частям верного числового равенства или вычитать из его частей одно и то же число. Обозначим это число как c , тогда справедливы равенства A(q)+c=B(q)+c и A(q)−c=B(q)−c . Из этих равенств следует, что q – корень уравнения A(x)+c=B(x)+c и уравнения A(x)−c=B(x)−c .

    Теперь обратно. Пусть q – корень уравнения A(x)+c=B(x)+c и уравнения A(x)−c=B(x)−c , тогда A(q)+c=B(q)+c и A(q)−c=B(q)−c . Мы знаем, что вычитание одного и того же числа из обеих частей верного числового равенства дает верное числовое равенство. Также мы знаем, что прибавление к обеим частям верного числового равенства дает верное числовое равенство. Вычтем из обеих частей верного числового равенства A(q)+c=B(q)+c число с , а к обеим частям равенства A(x)−c=B(x)−c прибавим число c . Это нам даст верные числовые равенства A(q)+c−c=B(q)+c−c и A(q)−c+c=B(q)+c−c , откуда заключаем, что A(q)=B(q) . Из последнего равенства следует, что q – корень уравнения A(x)=B(x) .

    Так доказано исходное утверждение в целом.

    Приведем пример такого преобразования уравнений. Возьмем уравнение x−3=1 , и преобразуем его, прибавив к его обеим частям число 3 , после этого мы получим уравнение x−3+3=1+3 , которое равносильно исходному. Понятно, что в полученном уравнении можно выполнить действия с числами, о чем мы говорили в предыдущем пункте списка, в результате имеем уравнение x=4 . Так, выполняя равносильные преобразования, мы невзначай решили уравнение x−3=1 , его корень – это число 4 . Рассмотренное равносильное преобразование очень часто используется для избавления от одинаковых числовых слагаемых, находящихся в разных частях уравнения. Например, и в левой и в правой частях уравнения x 2 +1=x+1 присутствует одинаковое слагаемое 1 , вычитание из обеих частей уравнения числа 1 позволяет перейти к равносильному уравнению x 2 +1−1=x+1−1 и дальше к равносильному уравнению x 2 =x , и тем самым избавиться от этих одинаковых слагаемых.

    • Прибавление к обеим частям уравнения или вычитание из обеих частей уравнения выражения, ОДЗ для которого не уже, чем ОДЗ для исходного уравнения, является равносильным преобразованием.

    Докажем это утверждение. То есть, докажем, что уравнения A(x)=B(x) и A(x)+C(x)=B(x)+C(x) равносильные при условии, что ОДЗ для выражения C(x) не уже, чем ОДЗ для уравнения A(x)=B(x) .

    Сначала докажем один вспомогательный момент. Докажем, что при указанных условиях ОДЗ уравнений до и после преобразования одинаковые. Действительно, ОДЗ для уравнения A(x)+C(x)=B(x)+C(x) можно рассматривать как пересечение ОДЗ для уравнения A(x)=B(x) и ОДЗ для выражения C(x) . Из этого и из того, что ОДЗ для выражения С(x) по условию не уже, чем ОДЗ для уравнения A(x)=B(x) , следует, что ОДЗ для уравнений A(x)=B(x) и A(x)+C(x)=B(x)+C(x) одинаковые.

    Теперь докажем равносильность уравнений A(x)=B(x) и A(x)+C(x)=B(x)+C(x) при условии, что области допустимых значений для этих уравнений одинаковые. Доказательство равносильности уравнений A(x)=B(x) и A(x)−C(x)=B(x)−C(x) при указанном условии приводить не будем, так как оно аналогично.

    Пусть q – корень уравнения A(x)=B(x) , тогда справедливо числовое равенство A(q)=B(q) . Так как ОДЗ уравнений A(x)=B(x) и A(x)+C(x)=B(x)+C(x) одинаковые, то выражение C(x) имеет смысл при x=q , значит, C(q) – это некоторое число. Если прибавить C(q) к обеим частям верного числового равенства A(q)=B(q) , то это даст верное числовое неравенство A(q)+C(q)=B(q)+C(q) , из которого следует, что q – корень уравнения A(x)+C(x)=B(x)+C(x) .

    Обратно. Пусть q – корень уравнения A(x)+C(x)=B(x)+C(x) , тогда A(q)+C(q)=B(q)+C(q) – верное числовое равенство. Мы знаем, что вычитание одного и того же числа из обеих частей верного числового равенства дает верное числовое равенство. Вычтем C(q) из обеих частей равенства A(q)+C(q)=B(q)+C(q) , это дает A(q)+C(q)−C(q)=B(q)+C(q)−C(q) и дальше A(q)=B(q) . Следовательно, q – корень уравнения A(x)=B(x) .

    Так рассматриваемое утверждение полностью доказано.

    Приведем пример проведения этого преобразования. Возьмем уравнение 2·x+1=5·x+2 . Мы можем прибавить к его обеим частям, например, выражение −x−1 . Прибавление этого выражения не изменит ОДЗ, значит, такое преобразование является равносильным. В результате его проведения получим равносильное уравнение 2·x+1+(−x−1)=5·x+2+(−x−1) . Это уравнение можно преобразовать дальше: раскрыть скобки и выполнить приведение подобных слагаемых в его левой и правой части (см. первый пункт списка). После выполнения этих действий мы получим равносильное уравнение x=4·x+1 . Часто рассматриваемое преобразование уравнений применяется для избавления от одинаковых слагаемых, находящихся одновременно в левой и правой части уравнения.

    • Если в уравнении перенести слагаемое из одной части в другую, изменив знак этого слагаемого на противоположный, то получится уравнение, равносильное данному.

    Это утверждение является следствием предыдущих.

    Покажем, как проводится это равносильное преобразование уравнения. Возьмем уравнение 3·x−1=2·x+3 . Перенесем слагаемое, например, 2·x из правой части в левую, изменив его знак. При этом получим равносильное уравнение 3·x−1−2·x=3 . Еще можно перенести минус единицу из левой части уравнения в правую, изменив знак на плюс: 3·x−2·x=3+1 . Наконец, приведение подобных слагаемых приводит нас к равносильному уравнению x=4 .

    • Умножение или деление обеих частей уравнения на одно и то же отличное от нуля число является равносильным преобразованием.

    Пусть A(x)=B(x) – некоторое уравнение и c – некоторое число, отличное от нуля. Докажем, что умножение или деление обеих частей уравнения A(x)=B(x) на число c является равносильным преобразованием уравнения. Для этого докажем, что уравнения A(x)=B(x) и A(x)·c=B(x)·c , а также уравнения A(x)=B(x) и A(x):c=B(x):c — равносильные. Это можно сделать так: доказать, что любой корень уравнения A(x)=B(x) является корнем уравнения A(x)·c=B(x)·c и корнем уравнения A(x):c=B(x):c , после чего доказать, что любой корень уравнения A(x)·c=B(x)·c , как и любой корень уравнения A(x):c=B(x):c является корнем уравнения A(x)=B(x) . Сделаем это.

    Пусть q – корень уравнения A(x)=B(x) . Тогда справедливо числовое равенство A(q)=B(q) . Изучив свойства числовых равенств, мы узнали, что умножение или деление обеих частей верного числового равенства на одно и то же число, отличное от нуля, приводит к верному числовому равенству. Умножив обе части равенства A(q)=B(q) на c , получим верное числовое равенство A(q)·c=B(q)·c , из которого следует, что q – корень уравнения A(x)·c=B(x)·c . А разделив обе части равенства A(q)=B(q) на c , получим верное числовое равенство A(q):c=B(q):c , из которого следует, что q – корень уравнения A(x):c=B(x):c .

    Теперь в другую сторону. Пусть q – корень уравнения A(x)·c=B(x)·c . Тогда A(q)·c=B(q)·c – верное числовое равенство. Разделив его обе части на отличное от нуля число c , получим верное числовое равенство A(q)·c:c=B(q)·c:c и дальше A(q)=B(q) . Отсюда следует, что q – корень уравнения A(x)=B(x) . Если q – корень уравнения A(x):c=B(x):c . Тогда A(q):c=B(q):c – верное числовое равенство. Умножив его обе части на отличное от нуля число c , получим верное числовое равенство A(q):c·c=B(q):c·c и дальше A(q)=B(q) . Отсюда следует, что q – корень уравнения A(x)=B(x) .

    Приведем пример проведения этого преобразования. С его помощью можно, например, избавиться от дробей в уравнении Как преобразовать уравнение в приведенное уравнение. Для этого можно умножить обе части уравнения на 12 . В результате получится равносильное уравнение вида Как преобразовать уравнение в приведенное уравнение, которое дальше можно преобразовать в равносильное уравнение 7·x−3=10 , не содержащее в своей записи дробей.

    • Умножение или деление обеих частей уравнения на одно и то же выражение, ОДЗ для которого не уже, чем ОДЗ для исходного уравнения и не обращающееся в нуль на ОДЗ для исходного уравнения, является равносильным преобразованием.

    Докажем это утверждение. Для этого докажем, что если ОДЗ для выражения C(x) не уже, чем ОДЗ для уравнения A(x)=B(x) , и C(x) не обращается в нуль на ОДЗ для уравнения A(x)=B(x) , то уравнения A(x)=B(x) и A(x)·C(x)=B(x)·C(x) , как и уравнения A(x)=B(x) и A(x):C(x)=B(x):C(x) — равносильные.

    Пусть q – корень уравнения A(x)=B(x) . Тогда A(q)=B(q) – верное числовое равенство. Из того, что ОДЗ для выражения C(x) не уже ОДЗ для уравнения A(x)=B(x) следует, что выражение C(x) имеет смысл при x=q . Значит, C(q) – это некоторое число. Причем C(q) отлично от нуля, что следует из условия не обращения выражения C(x) в нуль. Если умножить обе части равенства A(q)=B(q) на отличное от нуля число C(q) , то это даст верное числовое равенство A(q)·C(q)=B(q)·C(q) , из которого следует, что q – корень уравнения A(x)·C(x)=B(x)·C(x) . Если разделить обе части равенства A(q)=B(q) на отличное от нуля число C(q) , то это даст верное числовое равенство A(q):C(q)=B(q):C(q) , из которого следует, что q – корень уравнения A(x):C(x)=B(x):C(x) .

    Обратно. Пусть q — корень уравнения A(x)·C(x)=B(x)·C(x) . Тогда A(q)·C(q)=B(q)·C(q) – верное числовое равенство. Заметим, что ОДЗ для уравнения A(x)·C(x)=B(x)·C(x) такая же, как ОДЗ для уравнения A(x)=B(x) (это мы обосновали в одном из предыдущих пунктов текущего списка). Так как C(x) по условию не обращается на ОДЗ для уравнения A(x)=B(x) в нуль, то C(q) – отличное от нуля число. Разделив обе части равенства A(q)·C(q)=B(q)·C(q) на отличное от нуля число C(q) , получим верное числовое равенство A(q)·C(q):C(q)=B(q)·C(q):C(q) и дальше A(q)=B(q) . Отсюда следует, что q – корень уравнения A(x)=B(x) . Если q — корень уравнения A(x):C(x)=B(x):C(x) . Тогда A(q):C(q)=B(q):C(q) – верное числовое равенство. Умножив обе части равенства A(q):C(q)=B(q):C(q) на отличное от нуля число C(q) , получим верное числовое равенство A(q):C(q)·C(q)=B(q):C(q)·C(q) и дальше A(q)=B(q) . Отсюда следует, что q – корень уравнения A(x)=B(x) .

    Для наглядности приведем пример проведения разобранного преобразования. Осуществим деление обеих частей уравнения x 3 ·(x 2 +1)=8·(x 2 +1) на выражение x 2 +1 . Это преобразование равносильное, так как выражение x 2 +1 не обращается в нуль на ОДЗ для исходного уравнения и ОДЗ этого выражения не уже, чем ОДЗ для исходного уравнения. В результате проведения этого преобразования получим равносильное уравнение x 3 ·(x 2 +1):(x 2 +1)=8·(x 2 +1):(x 2 +1) , которое можно дальше преобразовать к равносильному уравнению x 3 =8 .

    Видео:Метод выделения полного квадрата. 8 класс.Скачать

    Метод выделения полного квадрата. 8 класс.

    Преобразования, приводящие к уравнениям-следствиям

    В предыдущем пункте мы разобрали, какие преобразования из списка основных преобразований и при каких условиях являются равносильными. Теперь посмотрим, какие из этих преобразований и при каких условиях приводят к уравнениям-следствиям, то есть, к уравнениям, которые содержат все корни преобразовываемого уравнения, но помимо них могут иметь и другие корни – посторонние корни для исходного уравнения.

    Преобразования, приводящие к уравнениям-следствиям, востребованы не меньше равносильных преобразований. Если с их помощью удастся получить довольно простое в плане решения уравнение, то его решение и последующее отсеивание посторонних корней даст решение исходного уравнения.

    Заметим, что все равносильные преобразования можно считать частными случаями преобразований, которые приводят к уравнениям-следствиям. Оно и понятно, ведь равносильное уравнение есть частный случай уравнения-следствия. Но с практической точки зрения более полезным является знание о том, что рассматриваемое преобразование именно равносильное, а не приводящее к уравнению-следствию. Разъясним, почему это так. Если мы знаем, что преобразование является равносильным, то полученное в результате его проведения уравнение точно не будет иметь корней, посторонних для исходного уравнения. А преобразование, приводящее к уравнению-следствию, может быть причиной появления посторонних корней, что обязывает нас в дальнейшем проводить дополнительное действие – отсеивание посторонних корней. Поэтому, в этом пункте статьи мы основное внимание сосредоточим на преобразованиях, в результате проведения которых могут появиться посторонние корни для исходного уравнения. И действительно важно уметь отличать такие преобразования от равносильных преобразований, чтобы четко понимать, когда необходимо проводить отсеивание посторонних корней, а когда это делать не обязательно.

    Проанализируем весь список основных преобразований уравнений, приведенный во втором пункте данной статьи, с целью поиска преобразований, в результате проведения которых могут появиться посторонние корни.

    • Замена выражений, находящихся в левой и правой частях уравнения, тождественно равными им выражениями.

    Мы доказали, что это преобразование является равносильным, если при его проведении не изменяется ОДЗ. А если ОДЗ изменится, что при этом произойдет? Сужение ОДЗ может повлечь потерю корней, подробнее об этом речь пойдет в следующем пункте. А при расширении ОДЗ могут появиться посторонние корни. Обосновать это не сложно. Приведем соответствующие рассуждения.

    Пусть выражение C(x) такое, что оно тождественно равно выражению A(x) и ОДЗ для уравнения C(x)=B(x) шире, чем ОДЗ для уравнения A(x)=B(x) . Докажем, что уравнение C(x)=B(x) – это следствие уравнения A(x)=B(x) , и что среди корней уравнения C(x)=B(x) могут быть корни, посторонние для уравнения A(x)=B(x) .

    Пусть q – корень уравнения A(x)=B(x) . Тогда A(q)=B(q) – верное числовое равенство. Так как ОДЗ для уравнения C(x)=B(x) шире, чем ОДЗ для уравнения A(x)=B(x) , то выражение C(x) определено при x=q . Тогда, учитывая тождественное равенство выражений C(x) и A(x) , заключаем, что C(q)=A(q) . Из равенств C(q)=A(q) и A(q)=B(q) в силу свойства транзитивности вытекает равенство C(q)=B(q) . Из этого равенства следует, что q – это корень уравнения C(x)=B(x) . Это доказывает, что при указанных условиях уравнение C(x)=B(x) является следствием уравнения A(x)=B(x) .

    Остается обосновать, что уравнение C(x)=B(x) может иметь корни, отличные от корней уравнения A(x)=B(x) . Докажем, что любой корень уравнения C(x)=B(x) из ОДЗ для уравнения A(x)=B(x) является корнем уравнения A(x)=B(x) . Путь p – корень уравнения C(x)=B(x) , принадлежащий ОДЗ для уравнения A(x)=B(x) . Тогда C(p)=B(p) – верное числовое равенство. Так как p принадлежит ОДЗ для уравнения A(x)=B(x) , то выражение A(x) определено при x=p . Из этого и из тождественного равенства выражений A(x) и C(x) следует, что A(p)=C(p) . Из равенств A(p)=C(p) и C(p)=B(p) в силу свойства транзитивности следует, что A(p)=B(p) , значит, p – это корень уравнения A(x)=B(x) . Этим доказано, что любой корень уравнения C(x)=B(x) из ОДЗ для уравнения A(x)=B(x) является корнем уравнения A(x)=B(x) . Другими словами, на ОДЗ для уравнения A(x)=B(x) не может быть корней уравнения C(x)=B(x) , которые являются посторонними корнями для уравнения A(x)=B(x) . Но по условию ОДЗ для уравнения C(x)=B(x) шире, чем ОДЗ для уравнения A(x)=B(x) . А это допускает существование числа r , принадлежащего ОДЗ для уравнения C(x)=B(x) и не принадлежащего ОДЗ для уравнения A(x)=B(x) , являющегося корнем уравнения C(x)=B(x) . То есть, уравнение C(x)=B(x) может иметь корни, посторонние для уравнения A(x)=B(x) , причем все они будут принадлежать тому множеству, на которое расширяется ОДЗ для уравнения A(x)=B(x) при замене в нем выражения A(x) тождественно равным ему выражением C(x) .

    Итак, замена выражений, находящихся в левой и правой частях уравнения, тождественно равными им выражениями, в результате которой расширяется ОДЗ, в общем случае приводит к уравнению-следствию (то есть, может привести к возникновению посторонних корней) и лишь в частном случае приводит к равносильному уравнению (в том случае, если полученное уравнение не будет иметь корней, посторонних для исходного уравнения).

    Приведем пример проведения разобранного преобразования. Замена выражения в левой части уравнения Как преобразовать уравнение в приведенное уравнениетождественно равным ему выражением x·(x−1) приводит к уравнению x·(x−1)=0 , при этом происходит расширение ОДЗ – в нее добавляется число 0 . Полученное уравнение имеет два корня 0 и 1 , причем подстановка этих корней в исходное уравнение показывает, что 0 – это посторонний корень для исходного уравнения, а 1 – корень исходного уравнения. Действительно, подстановка нуля в исходное уравнение дает не имеющее смысла выражение Как преобразовать уравнение в приведенное уравнение, так как в нем присутствует деление на нуль, а подстановка единицы дает верное числовое равенство Как преобразовать уравнение в приведенное уравнение, что то же самое 0=0 .

    Обратите внимание, что подобное преобразование похожего уравнения Как преобразовать уравнение в приведенное уравнениев уравнение (x−1)·(x−2)=0 , в результате проведения которого тоже расширяется ОДЗ, не приводит к появлению посторонних корней. Действительно, оба корня полученного уравнения (x−1)·(x−2)=0 — числа 1 и 2 , являются корнями исходного уравнения, в чем легко убедиться путем проверки подстановкой. Этими примерами мы еще раз хотели подчеркнуть, что замена выражения в левой или правой части уравнения тождественно равным ему выражением, при которой расширяется ОДЗ, не обязательно приводит к появлению посторонних корней. Но может и приводить к их появлению. Так что, если в процессе решения уравнения такое преобразование имело место быть, то обязательно нужно проводить проверку с целью выявления и отсеивания посторонних корней.

    Наиболее часто ОДЗ уравнения может расшириться и могут появиться посторонние корни из-за замены нулем разности одинаковых выражений или суммы выражений с противоположными знаками, из-за замены нулем произведений с одним или несколькими нулевыми множителями, из-за сокращения дробей и из-за использования свойств корней, степеней, логарифмов и т.д.

    • Прибавление к обеим частям уравнения одного и того же числа или вычитание из обеих частей уравнения одного и того же числа.

    Выше мы показали, что это преобразование всегда равносильное, то есть, приводящее к равносильному уравнению. Идем дальше.

    • Прибавление к обеим частям уравнения одного и того же выражения или вычитание из обеих частей уравнения одного и того же выражения.

    В предыдущем пункте мы добавили условие про то, что ОДЗ для прибавляемого или вычитаемого выражения должна быть не уже, чем ОДЗ для преобразовываемого уравнения. Это условие сделало рассматриваемое преобразование равносильным. Здесь имеют место рассуждения, аналогичные рассуждениям, приведенным в начале этого пункта статьи касательно того, что равносильное уравнение – это частный случай уравнения-следствия и что знание о равносильности преобразования практически полезнее знания об этом же преобразовании, но с позиций того, что оно приводит к уравнению-следствию.

    А может ли в результате прибавления одного и того же выражения или вычитания одного и того же выражения из обеих частей уравнения получиться уравнение, которое помимо всех корней исходного уравнения будет иметь какие-либо еще корни? Нет, не может. Если ОДЗ для прибавляемого или вычитаемого выражения не уже, чем ОДЗ для исходного уравнения, то в результате прибавления или вычитания получится равносильное уравнение. Если же ОДЗ для прибавляемого или вычитаемого выражения будет уже, чем ОДЗ для исходного уравнения, то это может привести к потере корней, а не к появлению посторонних корней. Подробнее об этом поговорим в следующем пункте.

    • Перенос слагаемого из одной части уравнения в другую со знаком, измененным на противоположный.

    Это преобразование уравнения всегда равносильное. Поэтому нет смысла рассматривать его как преобразование, приводящее к уравнению-следствию, по озвученным выше причинам.

    • Умножение или деление обеих частей уравнения на одно и то же число.

    В предыдущем пункте мы доказали, что если умножение или деление обеих частей уравнения проводится на отличное от нуля число, то это является равносильным преобразованием уравнения. Поэтому, опять же, нет говорить о нем, как о преобразовании, приводящем к уравнению-следствию.

    Но здесь стоит обратить внимание на оговорку про отличие от нуля числа, на которое проводится умножение или деление обеих частей уравнения. Для деления эта оговорка понятна – с начальных классов мы уяснили, что на нуль делить нельзя. А зачем эта оговорка для умножения? Давайте поразмыслим, к чему приведет умножение обеих частей уравнения на нуль. Для наглядности возьмем конкретное уравнение, например, 2·x+1=x+5 . Это линейное уравнение, имеющее единственный корень, которым является число 4 . Запишем уравнение, которое получится при умножении обеих частей этого уравнения на нуль: (2·x+1)·0=(x+5)·0 . Очевидно, корнем этого уравнения является любое число, ведь при подстановке в это уравнение вместо переменной x любого числа получается верное числовое равенство 0=0 . То есть, в нашем примере умножение обеих частей уравнения на нуль привело к уравнению-следствию, что явилось причиной появления бесконечного множества посторонних корней для исходного уравнения. Причем, стоит заметить, что в этом случае обычные способы отсеивания посторонних корней не справляются со своей задачей. Значит, проделанное преобразование бесполезно для решения исходного уравнения. И это типичная ситуация для рассматриваемого преобразования. Именно поэтому такое преобразование, как умножение обеих частей уравнения на нуль, не используется для решения уравнений. Это преобразование и другие преобразования, которые не следует использовать для решения уравнений, нам еще предстоит разобрать в последнем пункте.

    • Умножение или деление обеих частей уравнения на одно и то же выражение.

    В предыдущем пункте мы доказали, что это преобразование является равносильным при выполнении двух условий. Напомним их. Первое условие: ОДЗ для этого выражения должна быть не уже, чем ОДЗ для исходного уравнения. Второе условие: выражение, на которое проводится умножение или деление, не должно обращаться в нуль на ОДЗ для исходного уравнения.

    Давайте изменим первое условие, то есть, будем считать, что ОДЗ для выражения, на которое планируется умножение или деление обеих частей уравнения, уже, чем ОДЗ для исходного уравнения. В результате проведения такого преобразования будет получено уравнение, ОДЗ для которого будет уже, чем ОДЗ для исходного уравнения. Такие преобразования могут привести к потере корней, о них мы будем говорить в следующем пункте.

    А что будет, если убрать второе условие про не обращение в нуль значений выражения, на которое проводится умножение или деление обеих частей уравнения, на ОДЗ для исходного уравнения?

    Деление обеих частей уравнения на одно и то же выражение, которое обращается в нуль на ОДЗ для исходного уравнения, приведет к уравнению, ОДЗ которого будет уже, чем ОДЗ для исходного уравнения. Действительно, ведь из нее выпадут числа, обращающие в нуль выражение, на которое было проведено деление. Это может привести к потере корней.

    А как обстоят дела с умножением обеих частей уравнения на одно и то же выражение, которое обращается в нуль на ОДЗ для исходного уравнения? Можно показать, что при умножении обеих частей уравнения A(x)=B(x) на выражение C(x) , ОДЗ для которого не уже, чем ОДЗ для исходного уравнения, и которое обращается в нуль на ОДЗ для исходного уравнения, получается уравнение-следствие, которое помимо всех корней уравнения A(x)=B(x) может иметь и другие корни. Сделаем это, тем более что этот пункт статьи как раз посвящен преобразованиям, приводящим к уравнениям-следствиям.

    Пусть выражение C(x) такое, что ОДЗ для него не уже, чем ОДЗ для уравнения A(x)=B(x) , и оно обращается в нуль на ОДЗ для уравнения A(x)=B(x) . Докажем, что при этом уравнение A(x)·C(x)=B(x)·C(x) есть следствие уравнения A(x)=B(x) .

    Пусть q – корень уравнения A(x)=B(x) . Тогда A(q)=B(q) – верное числовое равенство. Так как ОДЗ для выражения C(x) не уже, чем ОДЗ для уравнения A(x)=B(x) , то выражение C(x) определено при x=q , значит, C(q) – это некоторое число. Умножение обеих частей верного числового равенства на любое число дает верное числовое равенство, поэтому, A(q)·C(q)=B(q)·C(q) — верное числовое равенство. Значит q – корень уравнения A(x)·C(x)=B(x)·C(x) . Этим доказано, что любой корень уравнения A(x)=B(x) является корнем уравнения A(x)·C(x)=B(x)·C(x) , откуда следует, что уравнение A(x)·C(x)=B(x)·C(x) есть следствие уравнения A(x)=B(x) .

    Заметим, что при указанных условиях уравнение A(x)·C(x)=B(x)·C(x) может иметь корни, посторонние для исходного уравнения A(x)=B(x) . Ими являются все такие числа из ОДЗ для исходного уравнения, которые обращают выражение C(x) в нуль (все числа, обращающие в нуль выражение C(x) являются корнями уравнения A(x)·C(x)=B(x)·C(x) , так как их подстановка в указанное уравнение дает верное числовое равенство 0=0 ), но которые не являются корнями уравнения A(x)=B(x) . Уравнения A(x)=B(x) и A(x)·C(x)=B(x)·C(x) при указанных условиях будут равносильными тогда, когда все числа из ОДЗ для уравнения A(x)=B(x) , обращающие в нуль выражение C(x) , являются корнями уравнения A(x)=B(x) .

    Итак, умножение обеих частей уравнения на одно и то же выражение, ОДЗ для которого не уже, чем ОДЗ для исходного уравнения, и которое обращается в нуль на ОДЗ для исходного уравнения, в общем случае приводит к уравнению-следствию, то есть, может привести к появлению посторонних корней.

    Приведем пример для иллюстрации. Возьмем уравнение x+3=4 . Его единственным корнем служит число 1 . Умножим обе части этого уравнения на одно и то же выражение, обращающееся в нуль на ОДЗ для исходного уравнения, например, на x·(x−1) . Это выражение обращается в нуль при x=0 и x=1 . Умножение обеих частей уравнения на это выражение даст нам уравнение (x+3)·x·(x−1)=4·x·(x−1) . Полученное уравнение имеет два корня: 1 и 0 . Число 0 – это посторонний корень для исходного уравнения, появившийся в результате проведенного преобразования.

    Видео:ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

    ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

    Преобразования, проведение которых может привести к потере корней

    Некоторые преобразования из списка основных преобразований при определенных условиях могут привести к потере корней. Например, при делении обеих частей уравнения x·(x−2)=x−2 на одно и то же выражение x−2 происходит потеря корня. Действительно, в результате проведения такого преобразования получается уравнение x=1 с единственным корнем, которым является число 1 , а исходное уравнение имеет два корня 1 и 2 .

    Нужно отчетливо понимать, когда происходит потеря корней в результате проведения преобразований, чтобы при решении уравнений не терять корни. Давайте разбираться с этим.

    В результате проведения указанных преобразований потеря корней может произойти тогда и только тогда, когда ОДЗ для преобразованного уравнения оказывается уже, чем ОДЗ для исходного уравнения.

    Для доказательства этого утверждения нужно обосновать два момента. Во-первых, нужно доказать, что если в результате проведения указанных преобразований уравнения сужается ОДЗ, то может произойти потеря корней. И, во-вторых, нужно обосновать, что если в результате проведения указанных преобразований происходит потеря корней, то ОДЗ для полученного уравнения уже, чем ОДЗ для исходного уравнения.

    Если ОДЗ для уравнения, полученного в результате преобразования, уже, чем ОДЗ для исходного уравнения, то, естественно, ни один корень исходного уравнения, находящийся вне ОДЗ для полученного уравнения, не может быть корнем уравнения, полученного в результате проведения преобразования. Значит, все эти корни будут потеряны при переходе от исходного уравнения к уравнению, ОДЗ для которого уже, чем ОДЗ для исходного уравнения.

    Теперь обратно. Докажем, что если в результате проведения указанных преобразований происходит потеря корней, то ОДЗ для полученного уравнения уже, чем ОДЗ для исходного уравнения. Это можно сделать методом от противного. Предположение о том, что в результате проведения указанных преобразований происходит потеря корней, но не сужается ОДЗ, противоречит утверждениям, доказанным в предыдущих пунктах. Действительно, из этих утверждений следует, что если при проведении указанных преобразований не сужается ОДЗ, то получаются или равносильные уравнения или уравнения-следствия, значит, не может происходить потеря корней.

    Итак, причиной возможной потери корней при проведении основных преобразований уравнений выступает сужение ОДЗ. Понятно, что, решая уравнения, мы не должны терять корни. Здесь, естественно, возникает вопрос: «Что же делать, чтобы не терять корни при преобразовании уравнений»? Ответим на него в следующем пункте. А сейчас давайте пробежимся по списку основных преобразований уравнений, чтобы более детально посмотреть, какие преобразования могут привести к потере корней.

    • Замена выражений, находящихся в левой и правой частях уравнения, тождественно равными им выражениями.

    Если заменить выражение в левой или правой части уравнения тождественно равным выражением, ОДЗ для которого уже, чем ОДЗ для исходного уравнения, то это приведет к сужению ОДЗ, и из-за этого могут быть потеряны корни. Наиболее часто к сужению ОДЗ и, как следствие, к возможной потере корней приводят замены выражений в левой или правой части уравнений тождественно равными им выражениями, проводящиеся на базе некоторых свойств корней, степеней, логарифмов и некоторых тригонометрических формул. Например, замена выражения в левой части уравнения Как преобразовать уравнение в приведенное уравнениетождественно равным ей выражением Как преобразовать уравнение в приведенное уравнение, сужает ОДЗ и приводит к потере корня −16 . Аналогично, замена выражения в левой части уравнения Как преобразовать уравнение в приведенное уравнениетождественно равным ему выражением Как преобразовать уравнение в приведенное уравнениеприводит к уравнению Как преобразовать уравнение в приведенное уравнение, ОДЗ для которого уже, чем ОДЗ для исходного уравнения, что влечет потерю корня −3 .

    • Прибавление к обеим частям уравнения одного и того же числа или вычитание из обеих частей уравнения одного и того же числа.

    Это преобразование равносильное, поэтому, при его проведении не могут быть потеряны корни.

    • Прибавление к обеим частям уравнения одного и того же выражения или вычитание из обеих частей уравнения одного и того же выражения.

    Если прибавить или вычесть выражение, ОДЗ которого уже, чем ОДЗ для исходного уравнения, то это приведет к сужению ОДЗ и, как следствие, к возможной потере корней. Это стоит иметь в виду. Но здесь стоит отметить, что на практике обычно приходится прибегать к прибавлению или вычитанию выражений, которые присутствуют в записи исходного уравнения, что не приводит к изменению ОДЗ и не влечет потери корней.

    • Перенос слагаемого из одной части уравнения в другую со знаком, измененным на противоположный.

    Это преобразование уравнения равносильное, поэтому, в результате его проведения корни не теряются.

    • Умножение или деление обеих частей уравнения на одно и то же число, отличное от нуля.

    Это преобразование тоже равносильное, и из-за него потеря корней не происходит.

    • Умножение или деление обеих частей уравнения на одно и то же выражение.

    Это преобразование может приводить к сужению ОДЗ в двух случаях: когда ОДЗ для выражения, на которое проводится умножение или деление, уже, чем ОДЗ для исходного уравнения, и когда проводится деление на выражение, обращающееся в нуль на ОДЗ для исходного уравнения. Заметим, что на практике обычно не приходится прибегать к умножению и делению обеих частей уравнения на выражение с более узкой ОДЗ. А вот с делением на выражение, обращающееся на ОДЗ для исходного уравнения в нуль, иметь дело приходиться. Существует метод, позволяющий справляться с потерей корней при таком делении, о нем мы расскажем в следующем пункте этой статьи.

    Видео:Задание 4 Приведенные квадратные уравнения Теорема ВиетаСкачать

    Задание 4  Приведенные квадратные уравнения  Теорема Виета

    Как избежать потери корней?

    Если для преобразования уравнений использовать только преобразования из списка основных преобразований и при этом не допускать сужения ОДЗ, то потери корней не произойдет.

    Означает ли это, что нельзя проводить какие-либо другие преобразования уравнений? Нет, не означает. Если придумать какое-нибудь еще преобразование уравнения и полностью описать его, то есть, указать, когда оно приводит к равносильным уравнениям, когда – к уравнениям-следствиям, и когда может приводить к потере корней, то его вполне можно будет взять на вооружение.

    Стоит ли полностью отказываться от преобразований, сужающих ОДЗ? Не стоит этого делать. В своем арсенале не помешает оставить преобразования, при которых из ОДЗ для исходного уравнения выпадает конечное количество чисел. Почему от таких преобразований не стоит отказываться? Потому что существует метод, позволяющий в таких случаях избежать потери корней. Он состоит в отдельной проверке чисел, выпадающих из ОДЗ, на предмет того, есть ли среди них корни исходного уравнения. Проверить это можно подстановкой этих чисел в исходное уравнение. Те из них, которые при подстановке дают верное числовое равенство, являются корнями исходного уравнения. Их нужно включить в ответ. После такой проверки можно спокойно проводить задуманное преобразование без боязни потерять корни.

    Типичным преобразованием, при котором ОДЗ для уравнения сужается на несколько чисел, является деление обеих частей уравнения на одно и то же выражение, которое обращается в нуль в нескольких точках из ОДЗ для исходного уравнения. Такое преобразование лежит в основе метода решения возвратных уравнений. Но оно используется и при решении уравнений других видов. Приведем пример.

    Решение уравнения Как преобразовать уравнение в приведенное уравнениеможно провести методом введения новой переменной. Чтобы ввести новую переменную, надо разделить обе части уравнения на 1+x . Но при таком делении может произойти потеря корня, так как хотя ОДЗ для выражения 1+x не уже, чем ОДЗ для исходного уравнения, но выражение 1+x обращается в нуль при x=−1 , а это число принадлежит ОДЗ для исходного уравнения. Значит, может произойти потеря корня −1 . Чтобы исключить потери корня, следует отдельно проверить, является ли −1 корнем исходного уравнения. Для этого можно подставить −1 в исходное уравнение и посмотреть, какое равенство при этом получается. В нашем случае подстановка дает равенство Как преобразовать уравнение в приведенное уравнение, что то же самое 4=0 . Это равенство неверное, значит −1 не является корнем исходного уравнения. После такой проверки можно осуществлять задуманное деление обеих частей уравнения на 1+x , не опасаясь за то, что может произойти потеря корней.

    В заключение этого пункта еще раз обратимся к уравнениям из предыдущего пункта Как преобразовать уравнение в приведенное уравнениеи Как преобразовать уравнение в приведенное уравнение. Преобразование этих уравнений на базе тождеств Как преобразовать уравнение в приведенное уравнениеи Как преобразовать уравнение в приведенное уравнениеприводит к сужение ОДЗ, а это влечет потерю корней. В этом пункте мы сказали, что для того, чтобы не терять корни, нужно отказаться от преобразований, сужающих ОДЗ. Значит, от указанных преобразований нужно отказаться. А как же быть? Можно провести преобразования не на базе тождеств Как преобразовать уравнение в приведенное уравнениеи Как преобразовать уравнение в приведенное уравнение, из-за которых сужается ОДЗ, а на базе тождеств Как преобразовать уравнение в приведенное уравнениеи Как преобразовать уравнение в приведенное уравнение. В результате перехода от исходных уравнений Как преобразовать уравнение в приведенное уравнениеи Как преобразовать уравнение в приведенное уравнениек уравнениям Как преобразовать уравнение в приведенное уравнениеи Как преобразовать уравнение в приведенное уравнениене происходит сужения ОДЗ, значит, не будут потеряны корни.

    Здесь же особо отметим, что при замене выражений тождественно равными выражениями нужно тщательно следить за тем, чтобы выражения были именно тождественно равными. Например, в уравнении Как преобразовать уравнение в приведенное уравнениенельзя заменить выражение x+3 выражением Как преобразовать уравнение в приведенное уравнениес целью упрощения вида левой части до Как преобразовать уравнение в приведенное уравнение, так как выражения x+3 и Как преобразовать уравнение в приведенное уравнениене являются тождественно равными, ведь их значения не совпадают при x+3 . В нашем примере такое преобразование приводит к потере корня. А в общем случае замена выражения не тождественно равным выражением приводит к уравнению, которое не позволяет получить решение исходного уравнения.

    Видео:Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать

    Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполные

    Преобразования уравнений, к которым не следует прибегать

    Преобразований, которые упоминаются в этой статье, обычно достаточно для нужд практики. То есть, не стоит сильно озадачиваться придумыванием каких-либо еще преобразований, лучше сосредоточиться на правильном использовании уже проверенных.

    📸 Видео

    РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

    РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии
    Поделиться или сохранить к себе: