Как правильно решать уравнения с проверкой

Решение простых линейных уравнений

Как правильно решать уравнения с проверкой

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Как правильно решать уравнения с проверкой

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Как правильно решать уравнения с проверкой

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Как правильно решать уравнения с проверкой

  1. Как правильно решать уравнения с проверкой
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Как объяснить уравнения с х (икс) школьнику в 4 классе?

Автор: Творческая Анна

Недавно звонит мама школьника, с которым я занимаюсь и просит объяснить математику ребёнку, т.к он не понимает, а она не него кричит и разговор с сыном не выходит.

У меня не математический склад ума, творческим людям это не свойственно, но я сказала, что посмотрю что они проходят и попробую. И вот что получилось.

Я взяла лист бумаги формата А4, обычный белый, фломастеры, карандаш в руки и начала выделять, то что стоит понять, запомнить, обратить внимание. И чтобы было видно, куда эта цифра переходит и как меняется.

Как правильно решать уравнения с проверкой

Объяснение примеров с левой стороны, на правую сторону.

Видео:УРАВНЕНИЕ 4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ РЕШАЕМ УРАВНЕНИЯ #уравнениеСкачать

УРАВНЕНИЕ  4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ  РЕШАЕМ УРАВНЕНИЯ #уравнение

Пример № 1

Пример уравнения для 4 класса со знаком плюс.

Самым первым действием смотрим, что мы можем сделать в этом уравнении? Тут мы можем выполнить умножение. Умножаем 80*7 получаем 560. Переписываем ещё раз.

Х + 320 = 560 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 560 – 320. Минус ставим потому что при переносе числа, знак что перед ним меняется на противоположный. Выполняем вычитание.

Х = 240 Обязательно делаем проверку. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Проверка:

240 + 320 = 80*7 Складываем числа, с другой стороны умножаем.

Всё верно! Значит мы решили уравнение правильно!

Видео:Уравнения со скобками - 5 класс (примеры)Скачать

Уравнения со скобками - 5 класс (примеры)

Пример № 2

Пример уравнения для 4 класса со знаком минус.

Первым действием смотрим, что мы можем сделать в этом уравнении? В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз.

Х – 180 = 80 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 80 + 180 Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем.

Х = 260 Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Проверка:

Видео:РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯСкачать

РЕШЕНИЕ УРАВНЕНИЙ ЛЕГКО ! 1 КЛАСС МАТЕМАТИКА УРАВНЕНИЯ - ПЕТЕРСОН / ОБЪЯСНЕНИЕ КАК РЕШАТЬ УРАВНЕНИЯ

Пример № 3

Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.

400 – х = 275 + 25 Складываем числа.

400 – х = 300 Числа разделены знаком равенства, х является отрицательным. Чтобы сделать его положительным, нам нужно перенести его через знак равно, собираем числа в одной стороне, х в другой.

400 — 300 = х Цифра 300 была положительной, при переносе в другую сторону поменяла знак и стал минус. Считаем.

Т.к не принято так писать, а первым в уравнении должен быть х, просто меняем их местами.

Проверка:

400 – 100 = 275 + 25 Считаем.

Видео:Уравнения. 5 классСкачать

Уравнения. 5 класс

Пример № 4

Пример уравнения для 4 класса со знаком минус, где х в середине, другими словами пример уравнения, где х отрицательный в середине.

72 – х = 18 * 3 Выполняем умножение. Переписываем пример.

72 – х = 54 Выстраиваем числа в одну сторону, х в другую. Цифра 54 меняет знак на противоположный, т.к перепрыгивает через знак равно.

72 – 54 = х Считаем.

18 = х Меняем местами, для удобства.

Проверка:

Видео:Простые уравнения. Как решать простые уравнения?Скачать

Простые уравнения. Как решать простые уравнения?

Пример № 5

Пример уравнения с х с вычитанием и сложением для 4 класса.

Х – 290 = 470 + 230 Складываем.

Х – 290 = 700 Выставляем числа с одной стороны.

Х = 700 + 290 Считаем.

Проверка:

990 – 290 = 470 + 230 Выполняем сложение.

Видео:3 класс. Математика. УравнениеСкачать

3 класс. Математика. Уравнение

Пример № 6

Пример уравнения с х на умножение и деление для 4 класса.

15 * х = 630/70 Выполняем деление. Переписываем уравнение.

15 * х = 90 Это тоже самое, что 15х = 90 Оставляем х с одной стороны, числа с другой. Данное уравнение принимает следующий вид.

Х = 90/15 при переносе цифры 15 знак умножения меняется на деление. Считаем.

Проверка:

15*6 = 630 / 7 Выполняем умножение и вычитание.

Видео:Решение сложных уравнений 4-5 класс.Скачать

Решение сложных уравнений 4-5 класс.

Теперь озвучиваем основные правила:

  1. Умножаем, складываем, делим или вычитаем;

Выполняем то, что можно сделать, уравнение станет немного короче.

Х в одну сторону, цифры в другую.

Неизвестную переменную в одну сторону (не всегда это х, может быть и другая буква), числа в другую.

При переносе х или цифры через знак равенства, их знак меняется на противоположный.

Если было число положительным, то при переносе перед цифрой ставим знак минус. И наоборот, если число или х было со знаком минус, то при переносе через равно ставим знак плюс.

  • Если в конце уравнение начинается с числа, то просто меняем местами.
  • Всегда делаем проверку!
  • При выполнении домашнего задания, классной работы, тестов, всегда можно взять лист и написать вначале на нём и сделать проверку.

    Дополнительно находим подобные примеры в интернете, дополнительных книгах, методичках. Проще не менять цифры, а брать уже готовые примеры.

    Чем больше ребёнок будет решать сам, заниматься самостоятельно, тем быстрее усвоит материал.

    Если ребенок не понимает примеры с уравнением, стоит объяснить пример и сказать, чтобы остальные делал по образцу.

    Данное подробное описание, как объяснить уравнения с х школьнику для:

    • родителей;
    • школьников;
    • репетиторов;
    • бабушек и дедушек;
    • учителей;

    Детям нужно все делать в цвете, разными мелками на доске, но увы не все так делают.

    Как правильно решать уравнения с проверкой

    Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

    СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

    Из своей практики

    Мальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки.

    При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно.

    В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия.

    Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку.

    Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры.

    Видео:Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнениеСкачать

    Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнение

    Общие сведения об уравнениях

    Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

    С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

    В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

    Видео:Как научить ребёнка решать уравнения без ошибокСкачать

    Как научить ребёнка решать уравнения без ошибок

    Что такое уравнение?

    Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

    Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

    А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

    Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

    Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

    Как правильно решать уравнения с проверкой

    Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

    Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

    Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

    Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

    Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

    Видео:Уравнение. 5 класс.Скачать

    Уравнение. 5 класс.

    Выразить одно через другое

    Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

    Рассмотрим следующее выражение:

    Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

    Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

    Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

    Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

    Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

    При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

    Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

    2 есть 10 − 8

    То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

    Число 2 есть разность числа 10 и числа 8

    Число 2 есть разница между числом 10 и числом 8.

    Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

    Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

    Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

    Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

    В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

    Пример 2. Рассмотрим равенство 8 − 2 = 6

    Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

    Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

    Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

    Пример 3. Рассмотрим равенство 3 × 2 = 6

    Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

    Как правильно решать уравнения с проверкой

    Вернем получившееся равенство Как правильно решать уравнения с проверкойв первоначальное состояние:

    Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

    Как правильно решать уравнения с проверкой

    Пример 4. Рассмотрим равенство Как правильно решать уравнения с проверкой

    Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

    Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

    Как правильно решать уравнения с проверкой

    Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

    Как правильно решать уравнения с проверкой

    Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

    Правила нахождения неизвестных

    Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

    Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

    В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

    Как правильно решать уравнения с проверкой

    Чтобы выразить число 2, мы поступили следующим образом:

    То есть из суммы 10 вычли слагаемое 8.

    Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

    В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

    Как правильно решать уравнения с проверкой

    Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

    Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

    Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

    А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

    Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

    Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

    Как правильно решать уравнения с проверкой

    В результате получается верное числовое равенство. Значит уравнение решено правильно.

    Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

    В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

    Как правильно решать уравнения с проверкой

    Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

    В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

    Как правильно решать уравнения с проверкой

    Чтобы выразить число 8, мы поступили следующим образом:

    То есть сложили разность 6 и вычитаемое 2.

    Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

    В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

    Как правильно решать уравнения с проверкой

    Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

    Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

    Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

    А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

    Если вычислить правую часть, то можно узнать чему равна переменная x

    Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

    В этом случае переменная x берет на себя роль неизвестного вычитаемого

    Как правильно решать уравнения с проверкой

    Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

    Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

    Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

    А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

    Вычисляем правую часть и находим значение x

    Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

    В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

    Как правильно решать уравнения с проверкой

    Чтобы выразить число 3 мы поступили следующим образом:

    Как правильно решать уравнения с проверкой

    То есть разделили произведение 6 на множитель 2.

    Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

    В этом случае переменная x берет на себя роль неизвестного множимого.

    Как правильно решать уравнения с проверкой

    Для нахождения неизвестного множимого предусмотрено следующее правило:

    Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

    Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

    А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

    Как правильно решать уравнения с проверкой

    Вычисление правой части позволяет нам найти значение переменной x

    Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

    Как правильно решать уравнения с проверкой

    В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

    Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

    Как правильно решать уравнения с проверкой

    Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

    А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

    Вычисление правой части равенства Как правильно решать уравнения с проверкойпозволяет узнать чему равно x

    Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

    Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

    Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

    Как правильно решать уравнения с проверкой

    Отсюда Как правильно решать уравнения с проверкой.

    Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

    Как правильно решать уравнения с проверкой

    Отсюда Как правильно решать уравнения с проверкой.

    Вернемся к четвертому примеру из предыдущей темы, где в равенстве Как правильно решать уравнения с проверкойтребовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

    Как правильно решать уравнения с проверкой

    Чтобы выразить число 15 мы поступили следующим образом:

    То есть умножили частное 3 на делитель 5.

    Теперь представим, что в равенстве Как правильно решать уравнения с проверкойвместо числа 15 располагается переменная x

    Как правильно решать уравнения с проверкой

    В этом случае переменная x берет на себя роль неизвестного делимого.

    Как правильно решать уравнения с проверкой

    Для нахождения неизвестного делимого предусмотрено следующее правило:

    Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

    Что мы и сделали, когда выражали число 15 из равенства Как правильно решать уравнения с проверкой. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

    А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

    Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

    Теперь представим, что в равенстве Как правильно решать уравнения с проверкойвместо числа 5 располагается переменная x .

    Как правильно решать уравнения с проверкой

    В этом случае переменная x берет на себя роль неизвестного делителя.

    Как правильно решать уравнения с проверкой

    Для нахождения неизвестного делителя предусмотрено следующее правило:

    Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

    Что мы и сделали, когда выражали число 5 из равенства Как правильно решать уравнения с проверкой. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

    А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

    Как правильно решать уравнения с проверкой

    Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

    Итак, для нахождения неизвестных мы изучили следующие правила:

    • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
    • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
    • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
    • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
    • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
    • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
    • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

    Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

    Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

    Компоненты

    Компонентами мы будем называть числа и переменные, входящие в равенство

    Так, компонентами сложения являются слагаемые и сумма

    Как правильно решать уравнения с проверкой

    Компонентами вычитания являются уменьшаемое, вычитаемое и разность

    Как правильно решать уравнения с проверкой

    Компонентами умножения являются множимое, множитель и произведение

    Как правильно решать уравнения с проверкой

    Компонентами деления являются делимое, делитель и частное

    Как правильно решать уравнения с проверкой

    В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

    Пример 1. Найти корень уравнения 45 + x = 60

    45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

    Вычислим правую часть, получим значение x равное 15

    Значит корень уравнения 45 + x = 60 равен 15.

    Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

    Пример 2. Решить уравнение Как правильно решать уравнения с проверкой

    Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

    В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

    Как правильно решать уравнения с проверкой

    При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

    Как правильно решать уравнения с проверкой

    Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

    Как правильно решать уравнения с проверкой

    Вычислим правую часть получившегося уравнения:

    Как правильно решать уравнения с проверкой

    Мы получили новое уравнение Как правильно решать уравнения с проверкой. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

    Как правильно решать уравнения с проверкой

    При этом переменная x является не просто множителем, а неизвестным множителем

    Как правильно решать уравнения с проверкой

    Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

    Как правильно решать уравнения с проверкой

    Вычислим правую часть, получим значение переменной x

    Как правильно решать уравнения с проверкой

    Для проверки найденный корень отправим в исходное уравнение Как правильно решать уравнения с проверкойи подставим вместо x

    Как правильно решать уравнения с проверкой

    Получили верное числовое равенство. Значит уравнение решено правильно.

    Пример 3. Решить уравнение 3x + 9x + 16x = 56

    Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

    Приведем подобные слагаемые в левой части данного уравнения:

    Как правильно решать уравнения с проверкой

    Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

    Как правильно решать уравнения с проверкой

    Отсюда x равен 2

    Как правильно решать уравнения с проверкой

    Видео:Решение уравнений, 6 классСкачать

    Решение уравнений, 6 класс

    Равносильные уравнения

    В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

    Уравнения называют равносильными, если их корни совпадают.

    Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

    Как правильно решать уравнения с проверкой

    Согласно порядку действий, в первую очередь выполняется умножение:

    Как правильно решать уравнения с проверкой

    Подставим корень 2 во второе уравнение 28x = 56

    Как правильно решать уравнения с проверкой

    Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

    Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

    Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

    Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

    Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

    Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

    Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

    Пример 1. Решить уравнение Как правильно решать уравнения с проверкой

    Вычтем из обеих частей уравнения число 10

    Как правильно решать уравнения с проверкой

    Приведем подобные слагаемые в обеих частях:

    Как правильно решать уравнения с проверкой

    Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

    Как правильно решать уравнения с проверкой

    Отсюда Как правильно решать уравнения с проверкой.

    Вернемся к исходному уравнению Как правильно решать уравнения с проверкойи подставим вместо x найденное значение 2

    Как правильно решать уравнения с проверкой

    Получили верное числовое равенство. Значит уравнение решено правильно.

    Решая уравнение Как правильно решать уравнения с проверкоймы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение Как правильно решать уравнения с проверкой. Корень этого уравнения, как и уравнения Как правильно решать уравнения с проверкойтак же равен 2

    Как правильно решать уравнения с проверкой

    Пример 2. Решить уравнение 4(x + 3) = 16

    Раскроем скобки в левой части равенства:

    Как правильно решать уравнения с проверкой

    Вычтем из обеих частей уравнения число 12

    Как правильно решать уравнения с проверкой

    Приведем подобные слагаемые в обеих частях уравнения:

    Как правильно решать уравнения с проверкойВ левой части останется 4x , а в правой части число 4

    Как правильно решать уравнения с проверкой

    Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

    Как правильно решать уравнения с проверкой

    Отсюда Как правильно решать уравнения с проверкой

    Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

    Как правильно решать уравнения с проверкой

    Получили верное числовое равенство. Значит уравнение решено правильно.

    Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

    Как правильно решать уравнения с проверкой

    Пример 3. Решить уравнение Как правильно решать уравнения с проверкой

    Раскроем скобки в левой части равенства:

    Как правильно решать уравнения с проверкой

    Прибавим к обеим частям уравнения число 8

    Как правильно решать уравнения с проверкой

    Приведем подобные слагаемые в обеих частях уравнения:

    Как правильно решать уравнения с проверкой

    В левой части останется 2x , а в правой части число 9

    Как правильно решать уравнения с проверкой

    В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

    Как правильно решать уравнения с проверкой

    Отсюда Как правильно решать уравнения с проверкой

    Вернемся к исходному уравнению Как правильно решать уравнения с проверкойи подставим вместо x найденное значение 4,5

    Как правильно решать уравнения с проверкой

    Получили верное числовое равенство. Значит уравнение решено правильно.

    Решая уравнение Как правильно решать уравнения с проверкоймы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение Как правильно решать уравнения с проверкой. Корень этого уравнения, как и уравнения Как правильно решать уравнения с проверкойтак же равен 4,5

    Как правильно решать уравнения с проверкой

    Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

    Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

    То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

    Рассмотрим следующее уравнение:

    Как правильно решать уравнения с проверкой

    Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

    Как правильно решать уравнения с проверкой

    Получается верное равенство. Значит число 2 действительно является корнем уравнения Как правильно решать уравнения с проверкой.

    Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

    Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

    Как правильно решать уравнения с проверкой

    Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

    Как правильно решать уравнения с проверкой

    Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

    Как правильно решать уравнения с проверкой

    Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

    На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

    Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

    Как правильно решать уравнения с проверкой

    Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

    Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

    Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

    Как правильно решать уравнения с проверкой

    Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

    Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

    Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

    Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

    Пример 1. Решить уравнение Как правильно решать уравнения с проверкой

    При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

    В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

    Как правильно решать уравнения с проверкой

    Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

    Как правильно решать уравнения с проверкой

    Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

    Как правильно решать уравнения с проверкой

    В результате останется простейшее уравнение

    Как правильно решать уравнения с проверкой

    Ну и нетрудно догадаться, что корень этого уравнения равен 4

    Как правильно решать уравнения с проверкой

    Вернемся к исходному уравнению Как правильно решать уравнения с проверкойи подставим вместо x найденное значение 4

    Как правильно решать уравнения с проверкой

    Получается верное числовое равенство. Значит уравнение решено правильно.

    При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение Как правильно решать уравнения с проверкой. Корень этого уравнения, как и уравнения Как правильно решать уравнения с проверкойравен 4. Значит эти уравнения равносильны.

    Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение Как правильно решать уравнения с проверкой, мы умножили обе части на множитель 8 и получили следующую запись:

    Как правильно решать уравнения с проверкой

    От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения Как правильно решать уравнения с проверкойна множитель 8 желательно переписать следующим образом:

    Как правильно решать уравнения с проверкой

    Пример 2. Решить уравнение Как правильно решать уравнения с проверкой

    Умнóжим обе части уравнения на 15

    Как правильно решать уравнения с проверкой

    В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

    Как правильно решать уравнения с проверкой

    Перепишем то, что у нас осталось:

    Как правильно решать уравнения с проверкой

    Раскроем скобки в правой части уравнения:

    Как правильно решать уравнения с проверкой

    Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

    Как правильно решать уравнения с проверкой

    Приведем подобные слагаемые в обеих частях, получим

    Как правильно решать уравнения с проверкой

    Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

    Как правильно решать уравнения с проверкой

    Отсюда Как правильно решать уравнения с проверкой

    Вернемся к исходному уравнению Как правильно решать уравнения с проверкойи подставим вместо x найденное значение 5

    Как правильно решать уравнения с проверкой

    Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения Как правильно решать уравнения с проверкойравен 5 . Значит эти уравнения равносильны.

    Пример 3. Решить уравнение Как правильно решать уравнения с проверкой

    Умнóжим обе части уравнения на 3

    Как правильно решать уравнения с проверкой

    В левой части можно сократить две тройки, а правая часть будет равна 18

    Как правильно решать уравнения с проверкой

    Останется простейшее уравнение Как правильно решать уравнения с проверкой. Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

    Как правильно решать уравнения с проверкой

    Отсюда Как правильно решать уравнения с проверкой

    Вернемся к исходному уравнению Как правильно решать уравнения с проверкойи подставим вместо x найденное значение 9

    Как правильно решать уравнения с проверкой

    Получается верное числовое равенство. Значит уравнение решено правильно.

    Пример 4. Решить уравнение Как правильно решать уравнения с проверкой

    Умнóжим обе части уравнения на 6

    Как правильно решать уравнения с проверкой

    В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

    Как правильно решать уравнения с проверкой

    Сократим в обеих частях уравнениях то, что можно сократить:

    Как правильно решать уравнения с проверкой

    Перепишем то, что у нас осталось:

    Как правильно решать уравнения с проверкой

    Раскроем скобки в обеих частях уравнения:

    Как правильно решать уравнения с проверкой

    Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

    Как правильно решать уравнения с проверкой

    Приведем подобные слагаемые в обеих частях:

    Как правильно решать уравнения с проверкой

    Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

    Как правильно решать уравнения с проверкой

    Вернемся к исходному уравнению Как правильно решать уравнения с проверкойи подставим вместо x найденное значение 4

    Как правильно решать уравнения с проверкой

    Получилось верное числовое равенство. Значит уравнение решено правильно.

    Пример 5. Решить уравнение Как правильно решать уравнения с проверкой

    Раскроем скобки в обеих частях уравнения там, где это можно:

    Как правильно решать уравнения с проверкой

    Умнóжим обе части уравнения на 15

    Как правильно решать уравнения с проверкой

    Раскроем скобки в обеих частях уравнения:

    Как правильно решать уравнения с проверкой

    Сократим в обеих частях уравнения, то что можно сократить:

    Как правильно решать уравнения с проверкой

    Перепишем то, что у нас осталось:

    Как правильно решать уравнения с проверкой

    Раскроем скобки там, где это можно:

    Как правильно решать уравнения с проверкой

    Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

    Как правильно решать уравнения с проверкой

    Приведем подобные слагаемые в обеих частях уравнения:

    Как правильно решать уравнения с проверкой

    Найдём значение x

    Как правильно решать уравнения с проверкой

    В получившемся ответе можно выделить целую часть:

    Как правильно решать уравнения с проверкой

    Вернемся к исходному уравнению и подставим вместо x найденное значение Как правильно решать уравнения с проверкой

    Как правильно решать уравнения с проверкой

    Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

    Как правильно решать уравнения с проверкой

    Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

    Найдем значение выражения, находящегося в переменной А.

    Как правильно решать уравнения с проверкой

    Значение переменной А равно Как правильно решать уравнения с проверкой. Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно Как правильно решать уравнения с проверкой, то уравнение будет решено верно

    Как правильно решать уравнения с проверкой

    Видим, что значение переменной B , как и значение переменной A равно Как правильно решать уравнения с проверкой. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

    Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

    Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

    Как правильно решать уравнения с проверкой

    Подставим найденное значение 2 вместо x в исходное уравнение:

    Как правильно решать уравнения с проверкой

    Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

    Как правильно решать уравнения с проверкой

    Выполним сокращение в каждом слагаемом:

    Как правильно решать уравнения с проверкой

    Перепишем то, что у нас осталось:

    Как правильно решать уравнения с проверкой

    Решим это уравнение, пользуясь известными тождественными преобразованиями:

    Как правильно решать уравнения с проверкой

    Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

    Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

    Как правильно решать уравнения с проверкой

    Этим методом мы тоже будем пользоваться часто.

    Видео:Математика 4 класс (Урок№21 - Решение уравнений.)Скачать

    Математика 4 класс (Урок№21 - Решение уравнений.)

    Умножение на минус единицу

    Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

    Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

    Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

    Рассмотрим уравнение Как правильно решать уравнения с проверкой. Чему равен корень этого уравнения?

    Прибавим к обеим частям уравнения число 5

    Как правильно решать уравнения с проверкой

    Приведем подобные слагаемые:

    Как правильно решать уравнения с проверкой

    А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения Как правильно решать уравнения с проверкой. Это есть произведение минус единицы и переменной x

    Как правильно решать уравнения с проверкой

    То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение Как правильно решать уравнения с проверкойна самом деле выглядит следующим образом:

    Как правильно решать уравнения с проверкой

    Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

    Как правильно решать уравнения с проверкой

    или разделить обе части уравнения на −1 , что еще проще

    Как правильно решать уравнения с проверкой

    Итак, корень уравнения Как правильно решать уравнения с проверкойравен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

    Как правильно решать уравнения с проверкой

    Получилось верное числовое равенство. Значит уравнение решено верно.

    Теперь попробуем умножить обе части уравнения Как правильно решать уравнения с проверкойна минус единицу:

    Как правильно решать уравнения с проверкой

    После раскрытия скобок в левой части образуется выражение Как правильно решать уравнения с проверкой, а правая часть будет равна 10

    Как правильно решать уравнения с проверкой

    Корень этого уравнения, как и уравнения Как правильно решать уравнения с проверкойравен 5

    Как правильно решать уравнения с проверкой

    Значит уравнения Как правильно решать уравнения с проверкойи Как правильно решать уравнения с проверкойравносильны.

    Пример 2. Решить уравнение Как правильно решать уравнения с проверкой

    В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение Как правильно решать уравнения с проверкой. Для этого умнóжим обе части данного уравнения на −1 .

    Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

    Так, умножение уравнения Как правильно решать уравнения с проверкойна −1 можно записать подробно следующим образом:

    Как правильно решать уравнения с проверкой

    либо можно просто поменять знаки всех компонентов:

    Как правильно решать уравнения с проверкой

    Получится то же самое, но разница будет в том, что мы сэкономим себе время.

    Итак, умножив обе части уравнения Как правильно решать уравнения с проверкойна −1 , мы получили уравнение Как правильно решать уравнения с проверкой. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

    Как правильно решать уравнения с проверкой

    Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

    Пример 3. Решить уравнение Как правильно решать уравнения с проверкой

    Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

    Как правильно решать уравнения с проверкой

    Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

    Как правильно решать уравнения с проверкой

    Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: Как правильно решать уравнения с проверкой

    Приравнивание к нулю

    Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

    А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

    В качестве примера рассмотрим уравнение Как правильно решать уравнения с проверкой. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

    Как правильно решать уравнения с проверкой

    Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

    Как правильно решать уравнения с проверкой

    Приведем подобные слагаемые в левой части:

    Как правильно решать уравнения с проверкой

    Прибавим к обеим частям 77 , и разделим обе части на 7

    Альтернатива правилам нахождения неизвестных

    Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

    К примеру, для нахождения неизвестного в уравнении Как правильно решать уравнения с проверкоймы произведение 10 делили на известный сомножитель 2

    Как правильно решать уравнения с проверкой

    Но если в уравнении Как правильно решать уравнения с проверкойобе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

    Как правильно решать уравнения с проверкой

    Уравнения вида Как правильно решать уравнения с проверкоймы решали выражая неизвестное слагаемое:

    Как правильно решать уравнения с проверкой

    Как правильно решать уравнения с проверкой

    Как правильно решать уравнения с проверкой

    Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении Как правильно решать уравнения с проверкойслагаемое 4 можно перенести в правую часть, изменив знак:

    Как правильно решать уравнения с проверкой

    Как правильно решать уравнения с проверкой

    Далее разделить обе части на 2

    Как правильно решать уравнения с проверкой

    В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда Как правильно решать уравнения с проверкой.

    Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

    Как правильно решать уравнения с проверкой

    В случае с уравнениями вида Как правильно решать уравнения с проверкойудобнее делить произведение на известный сомножитель. Сравним оба решения:

    Как правильно решать уравнения с проверкой

    Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

    Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

    Когда корней несколько

    Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

    Как правильно решать уравнения с проверкой

    В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

    То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

    Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

    Пример 2. Решить уравнение Как правильно решать уравнения с проверкой

    Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

    Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

    Как правильно решать уравнения с проверкой

    Подставляем по-очереди найденные значения в исходное уравнение Как правильно решать уравнения с проверкойи убеждаемся, что при этих значениях левая часть равняется нулю:

    Как правильно решать уравнения с проверкой

    Когда корней бесконечно много

    Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

    Пример 1. Решить уравнение Как правильно решать уравнения с проверкой

    Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

    Как правильно решать уравнения с проверкой

    Пример 2. Решить уравнение Как правильно решать уравнения с проверкой

    Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

    Когда корней нет

    Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение Как правильно решать уравнения с проверкойне имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть Как правильно решать уравнения с проверкой. Тогда уравнение примет следующий вид

    Как правильно решать уравнения с проверкой

    Пусть Как правильно решать уравнения с проверкой

    Как правильно решать уравнения с проверкой

    Пример 2. Решить уравнение Как правильно решать уравнения с проверкой

    Раскроем скобки в левой части равенства:

    Как правильно решать уравнения с проверкой

    Приведем подобные слагаемые:

    Как правильно решать уравнения с проверкой

    Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

    Как правильно решать уравнения с проверкой

    Буквенные уравнения

    Уравнение может содержать не только числа с переменными, но и буквы.

    Например, формула нахождения скорости является буквенным уравнением:

    Как правильно решать уравнения с проверкой

    Данное уравнение описывает скорость движения тела при равноускоренном движении.

    Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения Как правильно решать уравнения с проверкойопределить расстояние, нужно выразить переменную s .

    Умнóжим обе части уравнения Как правильно решать уравнения с проверкойна t

    Как правильно решать уравнения с проверкой

    В правой части переменные t сократим на t и перепишем то, что у нас осталось:

    Как правильно решать уравнения с проверкой

    В получившемся уравнении левую и правую часть поменяем местами:

    Как правильно решать уравнения с проверкой

    У нас получилась формула нахождения расстояния, которую мы изучали ранее.

    Попробуем из уравнения Как правильно решать уравнения с проверкойопределить время. Для этого нужно выразить переменную t .

    Умнóжим обе части уравнения на t

    Как правильно решать уравнения с проверкой

    В правой части переменные t сократим на t и перепишем то, что у нас осталось:

    Как правильно решать уравнения с проверкой

    В получившемся уравнении v × t = s обе части разделим на v

    Как правильно решать уравнения с проверкой

    В левой части переменные v сократим на v и перепишем то, что у нас осталось:

    Как правильно решать уравнения с проверкой

    У нас получилась формула определения времени, которую мы изучали ранее.

    Предположим, что скорость поезда равна 50 км/ч

    А расстояние равно 100 км

    Тогда буквенное уравнение Как правильно решать уравнения с проверкойпримет следующий вид

    Как правильно решать уравнения с проверкой

    Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

    Как правильно решать уравнения с проверкой

    либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

    Как правильно решать уравнения с проверкой

    Затем разделить обе части на 50

    Как правильно решать уравнения с проверкой

    Пример 2. Дано буквенное уравнение Как правильно решать уравнения с проверкой. Выразите из данного уравнения x

    Вычтем из обеих частей уравнения a

    Как правильно решать уравнения с проверкой

    Разделим обе части уравнения на b

    Как правильно решать уравнения с проверкой

    Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

    Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

    Как правильно решать уравнения с проверкой

    Видим, что второе решение намного проще и короче.

    Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

    Пример 3. Дано буквенное уравнение Как правильно решать уравнения с проверкой. Выразите из данного уравнения x

    Раскроем скобки в обеих частях уравнения

    Как правильно решать уравнения с проверкой

    Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

    Как правильно решать уравнения с проверкой

    В левой части вынесем за скобки множитель x

    Как правильно решать уравнения с проверкой

    Разделим обе части на выражение a − b

    Как правильно решать уравнения с проверкой

    В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

    Как правильно решать уравнения с проверкой

    Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

    Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

    Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

    Как правильно решать уравнения с проверкой

    Как правильно решать уравнения с проверкой

    Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

    Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

    Как правильно решать уравнения с проверкой

    Пример 4. Дано буквенное уравнение Как правильно решать уравнения с проверкой. Выразите из данного уравнения x

    Приведем левую часть уравнения к общему знаменателю:

    Как правильно решать уравнения с проверкой

    Умнóжим обе части на a

    Как правильно решать уравнения с проверкой

    В левой части x вынесем за скобки

    Как правильно решать уравнения с проверкой

    Разделим обе части на выражение (1 − a)

    Как правильно решать уравнения с проверкой

    Линейные уравнения с одним неизвестным

    Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

    Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

    Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

    Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

    Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

    Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

    Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

    Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

    Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

    Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

    Как правильно решать уравнения с проверкой

    Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение Как правильно решать уравнения с проверкойпримет вид Как правильно решать уравнения с проверкой.
    Отсюда Как правильно решать уравнения с проверкой.

    Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

    В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

    Поделиться или сохранить к себе: