Как понизить порядок дифференциального уравнения

Видео:14. Дифференциальные уравнения второго порядка, допускающие понижение порядкаСкачать

14. Дифференциальные уравнения второго порядка, допускающие понижение порядка

Дифференциальные уравнения, допускающие понижение порядка

Рассмотрим три частных случая решения дифференциальных уравнений с возможностью понижения порядка. Во всех случаях понижение порядка производится с помощью замены переменной. То есть, решение дифференциального уравнения сводится к решению уравнения более низкого порядка. В основном мы рассмотрим способы понижения порядка дифференциальных уравнений второго порядка, однако их можно применять многократно и понижать порядок уравнений изначально более высокого порядка. Так, в примере 2 решается задача понижения порядка дифференциального уравнения третьего порядка.

Видео:Дифференциальные уравнения, 7 урок, Дифференциальные уравнения, допускающие понижение порядкаСкачать

Дифференциальные уравнения, 7 урок, Дифференциальные уравнения, допускающие понижение порядка

Понижение порядка уравнения, не содержащего y и y

Это дифференциальное уравнение вида Как понизить порядок дифференциального уравнения. Произведём замену переменной: введём новую функцию Как понизить порядок дифференциального уравненияи тогда Как понизить порядок дифференциального уравнения. Следовательно, Как понизить порядок дифференциального уравненияи исходное уравнение превращается в уравнениие первого порядка

Как понизить порядок дифференциального уравнения

с искомой функцией Как понизить порядок дифференциального уравнения.

Решая его, находим Как понизить порядок дифференциального уравнения. Так как Как понизить порядок дифференциального уравнения, то Как понизить порядок дифференциального уравнения.

Отсюда, интегрируя ещё раз, получаем решение исходного уравнения:

Как понизить порядок дифференциального уравнения,

где Как понизить порядок дифференциального уравненияи Как понизить порядок дифференциального уравнения— произвольные константы интегрирования.

Пример 1. Найти общее решение дифференциального уравнения

Как понизить порядок дифференциального уравнения.

Решение. Произведём замену переменной, как было описано выше: введём функцию Как понизить порядок дифференциального уравненияи, таким образом, понизив порядок уравнения, получим уравнение первого порядка Как понизить порядок дифференциального уравнения. Интегрируя его, находим Как понизить порядок дифференциального уравнения. Заменяя Как понизить порядок дифференциального уравненияна Как понизить порядок дифференциального уравненияи интегрируя ещё раз, находим общее решение исходного дифференциального уравнения:

Как понизить порядок дифференциального уравнения

Пример 2. Решить дифференциальное уравнение третьего порядка

Как понизить порядок дифференциального уравнения.

Решение. Дифференциальное уравнение не содержит y и y‘ в явном виде. Для понижения порядка применяем подстановку:

Как понизить порядок дифференциального уравнения.

Тогда Как понизить порядок дифференциального уравненияи получаем линейное дифференциальное уравнение первого порядка:

Как понизить порядок дифференциального уравнения.

Заменяя z произведением функций u и v , получим

Как понизить порядок дифференциального уравнения

Тогда получим выражения с функцией v :

Как понизить порядок дифференциального уравнения

Выражения с функцией u :

Как понизить порядок дифференциального уравнения

Дважды интегрируем и получаем:

Как понизить порядок дифференциального уравнения.

Как понизить порядок дифференциального уравнения.

Интегрируем по частям и получаем:

Как понизить порядок дифференциального уравнения.

Итак, общее решение данного дифференциального уравения:

Как понизить порядок дифференциального уравнения.

Видео:Понижение порядка дифференциального уравнения. Решение задачиСкачать

Понижение порядка дифференциального уравнения. Решение задачи

Понижение порядка уравнения, не содержащего y

Это дифференциальное уравнение вида Как понизить порядок дифференциального уравнения. Произведём замену переменной как в предыдущем случае: введём Как понизить порядок дифференциального уравнения, тогда Как понизить порядок дифференциального уравнения, и уравнение преобразуется в уравнение первого порядка Как понизить порядок дифференциального уравнения. Решая его, найдём Как понизить порядок дифференциального уравнения. Так как Как понизить порядок дифференциального уравнения, то Как понизить порядок дифференциального уравнения. Отсюда, интегрируя ещё раз, получаем решение исходного уравнения:

Как понизить порядок дифференциального уравнения,

где Как понизить порядок дифференциального уравненияи Как понизить порядок дифференциального уравнения— произвольные константы интегрирования.

Пример 3. Найти общее решение дифференциального уравнения

Как понизить порядок дифференциального уравнения.

Решение. Уже знакомым способом произведём замену переменной: введём функцию Как понизить порядок дифференциального уравненияи понизим порядок уравнения. Получаем уравнение первого порядка Как понизить порядок дифференциального уравнения. Решая его, находим Как понизить порядок дифференциального уравнения. Тогда Как понизить порядок дифференциального уравненияи получаем решение исходного дифференциального уравнения второго порядка:

Как понизить порядок дифференциального уравнения.

Пример 4. Решить дифференциальное уравнение

Как понизить порядок дифференциального уравнения.

Решение. Дифференциальное уравнение не содержит y в явном виде. Поэтому для понижения порядка применяем подстановку:

Как понизить порядок дифференциального уравнения.

Получим дифференциальное уравнение первого порядка:

Как понизить порядок дифференциального уравнения.

Это уравение с разделяющимися переменными. Решим его:

Как понизить порядок дифференциального уравнения

Интегрируем полученную функцию:

Как понизить порядок дифференциального уравнения

Мы пришли к цели — общему решению данного дифференциального уравения:

Как понизить порядок дифференциального уравнения.

Пример 5. Найти общее решение дифференциального уравнения

Как понизить порядок дифференциального уравнения.

Решение. Дифференциальное уравнение не содержит y в явном виде. Поэтому для понижения порядка применяем подстановку:

Как понизить порядок дифференциального уравнения.

Получим дифференциальное уравнение первого порядка:

Как понизить порядок дифференциального уравнения.

Как понизить порядок дифференциального уравнения

Это однородное уравение, которое решается при помощи подстановки Как понизить порядок дифференциального уравнения. Тогда Как понизить порядок дифференциального уравнения, Как понизить порядок дифференциального уравнения:

Как понизить порядок дифференциального уравнения

Далее потребуется интегрировать по частям. Введём обозначения:

Как понизить порядок дифференциального уравнения

Как понизить порядок дифференциального уравнения

Таким образом, получили общее решение данного дифференциального уравения:

Как понизить порядок дифференциального уравнения.

Видео:ДУ, допускающие понижение порядка, когда нет Y| poporyadku.schoolСкачать

ДУ, допускающие понижение порядка, когда нет Y| poporyadku.school

Понижение порядка уравнения, не содержащего x

Это уравнение вида Как понизить порядок дифференциального уравнения. Вводим новую функцию Как понизить порядок дифференциального уравнения, полагая Как понизить порядок дифференциального уравнения. Тогда

Как понизить порядок дифференциального уравнения.

Подставляя в уравнение выражения для Как понизить порядок дифференциального уравненияи Как понизить порядок дифференциального уравнения, понижаем порядок уравнения. Получаем уравнение первого порядка относительно z как функции от y:

Как понизить порядок дифференциального уравнения.

Решая его, найдём Как понизить порядок дифференциального уравнения. Так как Как понизить порядок дифференциального уравнения, то Как понизить порядок дифференциального уравнения. Получено дифференциальное уравнение с разделяющимися переменными, из которого находим общее решение исходного уравнения:

Как понизить порядок дифференциального уравнения,

где Как понизить порядок дифференциального уравненияи Как понизить порядок дифференциального уравнения— произвольные константы интегрирования.

Пример 6. Найти общее решение дифференциального уравнения

Как понизить порядок дифференциального уравнения.

Решение. Полагая Как понизить порядок дифференциального уравненияи учитывая, что Как понизить порядок дифференциального уравнения, получаем Как понизить порядок дифференциального уравнения. Понизив порядок исходного уравнения, получаем уравнение первого порядка с разделяющимися переменными. Приводя его к виду Как понизить порядок дифференциального уравненияи интегрируя, получаем Как понизить порядок дифференциального уравнения, откуда Как понизить порядок дифференциального уравнения. Учитывая, что Как понизить порядок дифференциального уравнения, находим Как понизить порядок дифференциального уравнения, откуда получаем решение исходного дифференциального уравнения второго порядка:

Как понизить порядок дифференциального уравнения

Как понизить порядок дифференциального уравнения.

При сокращении на z было потеряно решение уравнения Как понизить порядок дифференциального уравнения, т.е. Как понизить порядок дифференциального уравнения. В данном случае оно содержится в общем решении, так как получается из него при Как понизить порядок дифференциального уравнения(за исключением решения y = 0).

Пример 7. Найти общее решение дифференциального уравнения

Как понизить порядок дифференциального уравнения.

Решение. Дифференциальное уравнение не содержит x в явном виде. Для понижения порядка применяем подстановку:

Как понизить порядок дифференциального уравнения.

Получим дифференциальное уравнение первого порядка:

Как понизить порядок дифференциального уравнения.

Это уравение с разделяющимися переменными. Решим его:

Как понизить порядок дифференциального уравнения

Используя вновь подстановку

Как понизить порядок дифференциального уравнения,

получим ещё одно уравнение с разделяющимися переменными. Решим и его:

Как понизить порядок дифференциального уравнения

Таким образом, общее решение данного дифференциального уравения:

Как понизить порядок дифференциального уравнения.

Пример 8. Найти частное решение дифференциального уравнения

Как понизить порядок дифференциального уравнения,

удовлетворяющее начальному условию y(0) = 1 , y‘(0) = −1 .

Решение. Дифференциальное уравнение не содержит x в явном виде. Поэтому применяем подстановку:

Как понизить порядок дифференциального уравнения.

Таким образом, понизили порядок уравнения и получили уравнение первого порядка

Как понизить порядок дифференциального уравнения.

Это дифференциальное уравнение с разделяющимися переменными. Разделяем переменные и интегрируем:

Как понизить порядок дифференциального уравнения

Чтобы определить C 1 , используем данные условия y(0) = 1 , y‘(0) = −1 или p(0) = −1 . В полученное выражение подставим y = 1 , p = −1 :

Как понизить порядок дифференциального уравнения.

Как понизить порядок дифференциального уравнения

Как понизить порядок дифференциального уравнения.

Разделяя переменные и интегрируя, получаем

Как понизить порядок дифференциального уравнения.

Из начального условия y(0) = 1 следует

Как понизить порядок дифференциального уравнения.

Получаем окончательное решение данного дифференциального уравнения

Как понизить порядок дифференциального уравнения.

Пример 9. Найти частное решение дифференциального уравнения

Как понизить порядок дифференциального уравнения,

удовлетворяющее начальному условию y(1) = 1 , y‘(1) = −1 .

Решение. Дифференциальное уравнение не содержит x в явном виде. Для понижения порядка применяем подстановку:

Как понизить порядок дифференциального уравнения.

Таким образом, получили уравнение первого порядка

Как понизить порядок дифференциального уравнения.

Это дифференциальное уравнение с разделяющимися переменными. Разделив обе части уравнения на p , получим

Как понизить порядок дифференциального уравнения

Интегрируем обе части уравнения

Как понизить порядок дифференциального уравнения

Как понизить порядок дифференциального уравнения

Как понизить порядок дифференциального уравнения

Используем начальные условия и определим C 1 . Если x = 1 , то y = 1 и p = y‘ = −1 , поэтому

Как понизить порядок дифференциального уравнения.

Как понизить порядок дифференциального уравнения

Из начального условия y(1) = 1 следует

Как понизить порядок дифференциального уравнения.

Получаем окончательное решение данного дифференциального уравнения

Как понизить порядок дифференциального уравнения.

Видео:Понижение порядка дифференциальных уравнений | Лекция 35 | МатанализСкачать

Понижение порядка дифференциальных уравнений | Лекция 35 | Матанализ

Дифференциальные уравнения, допускающие понижение порядка

Материал данной статьи дает представление о дифференциальных уравнениях порядка выше второго с возможностью понизить порядок, используя замену. Подобные уравнения часто представлены F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 , не содержащими искомой функции и производных до k – 1 порядка, а также дифференциальными уравнениями записи F ( y , y ‘ , y » , . . . , y ( n ) ) = 0 , не содержащими независимой переменной.

Видео:Как увеличить эффективность ГЗТ | Снижение ГСПГ на ГЗТ дериватами ДГТСкачать

Как увеличить эффективность ГЗТ | Снижение ГСПГ на ГЗТ дериватами ДГТ

Понижение порядка дифференциальных уравнений, не содержащих искомой функции и производных до
k – 1 порядка вида F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0

Мы имеем возможность понижения порядка дифференциального уравнения F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 до n – k , используя замену переменных y ( k ) = p ( x ) . Осуществив подобную замену, имеем: y ( k + 1 ) = p ‘ ( x ) , y ( k + 2 ) = p » ( x ) , . . . , y ( n ) = p ( n — k ) ( x ) . Затем подставим полученный результат в исходное уравнение и увидим дифференциальное уравнение порядка n – k с неизвестной функцией p ( x ) .

После нахождения p ( x ) функцию y ( x ) найдем из равенства y ( k ) = p ( x ) интегрированием k раз подряд.

Для наглядности разберём решение такой задачи.

Задано дифференциальное уравнение 4 y ( 4 ) — 8 y ( 3 ) + 3 y » = 0 . Необходимо найти его общее решение.

Решение

Произведя замену y » = p ( x ) , получим возможность понизить порядок дифференциального уравнения с четвертого до второго. Итак, y ( 3 ) = p ‘ , y ( 4 ) = p » , и, таким образом, исходное уравнение четвертого порядка мы преобразуем в линейное однородное дифференциальное уравнение второго порядка, имеющее постоянные коэффициенты 4 p » — 8 p ‘ + 3 p = 0 .

Характеристическое уравнение будет записано так: 4 k 2 — 8 k + 3 = 0 , а корни его — k 1 = 1 2 и k 2 = 3 2 , тогда общим решением дифференциального уравнения 4 p » — 8 p ‘ + 3 p = 0 будет p ( x ) = C 1 · e 1 2 x + C 2 · e 3 2 x .

Проинтегрируем два раза полученный результат и можем записать необходимое нам общее решение дифференциального уравнения четвертого порядка:

y » = p ( x ) ⇒ y ‘ = ∫ p ( x ) d x = ∫ C 1 · e 1 2 x + C 2 · e 3 2 x d x = = 2 C 1 · e 1 2 x + 2 3 C 2 · e 3 2 x + C 3 ⇒ y = ∫ y ‘ d x = ∫ 2 C 1 · e 1 2 x + 2 3 C 2 · e 3 2 x + C 3 d x = = 4 C 1 · e 1 2 x + 4 9 C 2 · e 3 2 x + C 3 · x + C 4

Ответ: y = 4 C 1 · e 1 2 x + 4 9 C 2 · e 3 2 x + C 3 · x + C 4 ( С 1 , С 2 , С 3 и С 4 являются произвольными постоянными).

Задано общее дифференциальное уравнение третьего порядка y ‘ ‘ ‘ · x · ln ( x ) = y » . Необходимо найти его общее решение.

Решение

Осуществим замену y » = p ( x ) , следовательно, y ‘ ‘ ‘ = p ‘ , а заданное дифференциальное уравнение третьего порядка преобразуется в дифференциальное уравнение, имеющее разделяющиеся переменные записи p ‘ · x · ln ( x ) = p .

Осуществим разделение переменных и интегрирование:

d p p = d x x ln ( x ) , p ≠ 0 ∫ d p p = ∫ d x x ln ( x ) ∫ d p p = ∫ d ( ln ( x ) ) ln ( x ) ln p + C 1 = ln ln ( x ) + C 2

Последующее потенцирование с учетом того, что p ( x ) = 0 тоже является решением, даст нам возможность получить общее решение дифференциального уравнения p ‘ · x · ln ( x ) = p в записи p ( x ) = C · ln ( x ) , в которой C будет произвольной постоянной.

Поскольку в самом начале была использована замена y » = p ( x ) , то y ‘ = ∫ p ( x ) d x тогда: y ‘ = C · ∫ ln ( x ) d x . Задействуем метод интегрирования по частям:

y ‘ = C · ∫ ln ( x ) d x = u = ln ( x ) , d v = d x d u = d x x , v = x = = C · x · ln ( x ) — ∫ x d x x = C · ( x · ln ( x ) — x ) + C 3

Произведем интегрирование повторно для получения общего решения заданного дифференциального уравнения третьего порядка:
y = ∫ y ‘ d x = ∫ C · x · ln ( x ) — x + C 3 d x = = C · ∫ x · ln ( x ) d x — C · ∫ x d x + C 3 · ∫ d x = = C · ∫ x · ln ( x ) d x — C · x 2 2 + C 3 · x = = u = ln x , d v = x d x d u = d x x , v = x 2 2 = = C · x 2 2 · ln x — ∫ x d x 2 — C · x 2 2 + C 3 · x + C 4 = = C · x 2 ln ( x ) 2 — 3 x 2 4 + C 3 · x + C 4

Ответ: y = C · x 2 ln ( x ) 2 — 3 x 2 4 + C 3 · x + C 4 ( С , С 3 и С 4 являются произвольными постоянными).

Видео:ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

Понижение порядка дифференциальных уравнений, не содержащих независимую переменную, записи F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0

Теперь рассмотрим дифференциальные уравнения F ( y , y ‘ , y » , . . . , y ( n ) ) = 0 , не имеющие в своей записи независимую переменную.

В данном случае снижение порядка на единицу возможно с использованием замены d y d x = p ( y ) . Опираясь на правило дифференцирования сложных функций, получим:

d 2 y d x 2 = d p d y d y d x = d p d y p ( y ) d 3 y d x 3 = d d p d y p ( y ) d x = d 2 p d y 2 d y d x p ( y ) + d p d y d p d y d y d x = = d 2 p d y 2 p 2 ( y ) + d p d y 2 p ( y ) . . .

Подставив результат в заданное уравнение, получаем дифференциальное уравнение с порядком ниже на единицу.

Рассмотрим данный алгоритм в решении конкретной задачи.

Задано дифференциальное уравнение 4 y 3 y » = y 4 — 1 и начальные условия: y ( 0 ) = 2 , y ‘ ( 0 ) = 1 2 2 . Необходимо найти частное решение заданного уравнения.

Решение

Заданное уравнение не имеет в своем составе независимую переменную x , следовательно, мы можем снизить порядок уравнения на единицу, используя замену d y d x = p ( y ) .

Тогда d 2 y d x 2 = d p d y · p ( y ) . Произведем подстановку и получим дифференциальное уравнение с разделяющимися переменными 4 y 3 · d p d y · p ( y ) = y 4 — 1 .

4 y 3 · d p d y · p ( y ) = y 4 — 1 ⇔ p ( y ) d p = y 4 — 1 4 y 3 d y , y ≠ 0 ∫ p ( y ) d p = ∫ y 4 — 1 4 y 3 d y p 2 ( y ) 2 + C 1 = y 2 8 + 1 8 y 2 + C 2 p 2 ( y ) = 1 4 y 4 + 8 C y 2 + 1 y 2 , C = C 2 — C 1 P ( y ) = ± 1 2 y 4 + 8 C y 2 + 1 y 2

Поскольку d y d x = p ( y ) , тогда y ‘ = ± 1 2 y 4 + 8 C y 2 + 1 y 2 .

Этап решения позволяет найти константу C , задействовав начальные условия y ( 0 ) = 2 , y ‘ ( 0 ) = 1 2 2 :

y ‘ ( 0 ) = ± 1 2 y 4 ( 0 ) + 8 C y 2 ( 0 ) + 1 y 2 ( 0 ) 1 2 2 = ± 1 2 2 4 + 8 C 2 2 + 1 2 1 2 2 = ± 1 2 5 + 16 C 2 1 = ± 5 + 16 C

Крайнее равенство дает возможность сформулировать вывод:

C = — 1 4 ,а y ‘ = — 1 2 y 4 + 8 C y 2 + 1 y 2 не удовлетворяет условиям задачи.

y ‘ = 1 2 y 4 + 8 C y 2 + 1 y 2 = 1 2 y 4 + 8 · — 1 4 y 2 + 1 y 2 = = 1 2 y 4 + 2 y 2 + 1 y 2 = 1 2 ( y 2 — 1 2 ) y 2 = 1 2 y 2 — 1 y

При y 2 — 1 y ≥ 0 ⇔ y ∈ — 1 ; 0 ∪ [ 1 ; + ∞ ) получаем y ‘ = 1 2 · y 2 — 1 y , откуда

2 y d y y 2 — 1 = d x ∫ 2 y d y y 2 — 1 = ∫ d x ∫ d ( y 2 — 1 ) y 2 — 1 = ∫ d x ln ( y 2 — 1 ) + C 3 = x + C 4 y 2 — 1 = e x + C 3 = x + C 4 y 2 — 1 = x + C 1 , C 5 + C 4 — C 2 y = ± e x + C 5 + 1

Область значений функции y = — e x + C 5 + 1 — это ( — ∞ , — 1 ] , и такой интервал не будет удовлетворять условию y 2 — 1 y ≥ 0 ⇔ y ∈ — 1 ; 0 ∪ [ 1 ; + ∞ ) , а значит y = — e x + C 5 + 1 не рассматриваем.

Обратимся к начальному условию y ( 0 ) = 2 :

y ( 0 ) = e 0 + C 5 + 1 2 = e 0 + C 5 + 1 2 = e C 5 + 1 С 5 = 0

Таким образом, y = e x + C 5 + 1 = e x + 0 + 1 = e x + 1 — необходимое нам частное решение.

При у 2 — 1 y 0 ⇔ y ∈ — ∞ ; — 1 ∪ 0 ; 1 получим y ‘ = — 1 2 · y 2 — 1 y , откуда y = ± e x + C 5 + 1 . Область значений функции y = e — x + C 5 + 1 — интервал [ 1 , + ∞ ) , и такой интервал не будет удовлетворять условию y 2 — 1 y 0 ⇔ y ∈ — ∞ ; — 1 ∪ 0 ; 1 , тогда y = e — x + C 5 + 1 не рассматриваем.

Для функции y = e — x + C 5 + 1 начальное условие y ( 0 ) = 2 не будет удовлетворяться ни для каких С 6 , поскольку

Видео:Дифференциальные уравнения высших порядков, допускающие понижение порядкаСкачать

Дифференциальные уравнения высших порядков, допускающие понижение порядка

Дифференциальные уравнения высших порядков с полной производной

Как понизить порядок дифференциального уравнения

Видео:Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.Скачать

Математика без Ху!ни. Частные производные функции нескольких переменных. Градиент.

Понижение порядка

Рассмотрим дифференциальное уравнение n-го порядка:
(1) .
Порядок этого уравнения легко понизить, если его левая часть является полной (точной) производной по переменной x от некоторой функции :
(2)
.
Отсюда сразу получаем первый интеграл:
(3) .
Он представляет собой дифференциальное уравнение, порядок которого на единицу меньше по сравнению с исходным уравнением (1).

Сделаем пояснения по поводу полной производной. Ее также называют точной производной. Пусть – некотрая функция, зависящая от переменной x . Найдем ее производных, и подставим в Φ. В результате получим сложную функцию, зависящую от одной переменной x :
(4) .
Производная функции называется полной производной функции по x . По правилу дифференцирования сложной функции имеем:
(5) .

Тогда если выполняется (2), то подставляя (5) в (1) получаем:
.
Отсюда . Учитывая (4), получаем (3):
.

Видео:ДУ допускающие понижение порядка, однородные относительно Y и его производных | poporyadku.schoolСкачать

ДУ допускающие понижение порядка, однородные относительно Y и его производных | poporyadku.school

Методы выделения полной производной

Как видно из (1) и (2), если левая часть уравнения является полной производной по переменной x , то оно имеет следующий вид:
.
Все входящие сюда частные производные зависят только от переменных . Старшая производная входит линейным образом только в последний член. То есть, чтобы левая часть уравнения являлась полной производной, необходимо, чтобы уравнение было линейным относительно старшей производной.

Общего способа, позволяющего гарантированно выделить полную производную в уравнении, нет. Для выделения полной производной можно применять те же методы, что и при выделении полного дифференциала в уравнениях первого порядка. См. Методы определения интегрирующего множителя

Эти методы заключаются в том, что можно умножать и делить уравнение на множители, составленные из переменных , и применять следующие формулы:
(Ф1) ;
(Ф2) ;
(Ф3) ;
(Ф4) .
Здесь и – функции от x , возможно сложные. То есть и могут зависеть от x и переменных , которые в свою очередь зависят от x .

Далее мы рассмотрим примеры решений дифференциальных уравнений с помощью выделения полной производной.

Видео:Задача о цепной линии и понижение порядка в диффурах 2-го порядка | Дифференциальные уравненияСкачать

Задача о цепной линии и понижение порядка в диффурах 2-го порядка | Дифференциальные уравнения

Примеры

Все примеры Ниже рассмотрены следующие примеры, в которых нужно решить дифференциальные уравнения методом выделения полной производной.


Пример 1

Решить дифференциальное уравнение второго порядка:
(П1.1) .

Разделим (П1.1) на . При имеем:
(П1.2) .

Выделяем полную производную, используя (Ф4).
;
;
.

Подставляем в (П1.2) и применяем (Ф1).
;
. Отсюда получаем первый интеграл:
.

Потенцируем:
.
Убираем знаки модуля:
.
Заменим постоянную: . Подставляем:
.
Поскольку , то . Переобозначим постоянную . Тогда первый интеграл принимает следующий вид:
(П1.3) .

Теперь рассмотрим случай , который мы до этого отбросили ⇑. Нетрудно видеть, что удовлетворяет исходному уравнению (П1.1). Оно получается из (П1.3), если положить . Таким образом постоянная может принимать нулевое значение. Отбрасываем условие :
(П1.4) .

Разделяем переменные и интегрируем.
;
;
;
;
Логарифмируем:
.

Пример 2

Решить уравнение, преобразовав его к полной производной:
(П2.1) .

Чтобы упростить уравнение, сделаем подстановку:
(П2.2) .
Тогда оно примет следующий вид:
(П2.3) .

Подставим . При этом во втором слагаемом запишем так: . Получаем:
(П2.4) .

Теперь замечаем, что
.
Поэтому умножим (П2.4) на , и выполним преобразования:
;
(П2.5) .

Когда мы умножаем уравнение на множитель , мы автоматически добавляем решение , которое может не содержаться в исходном уравнении. В нашем случае мы автоматически добавили решения и . Однако нетрудно видеть, что они удовлетворяют исходному уравнение (П2.4). Поэтому в результате умножения на множитель, у нас не будет лишних решений, которые не удовлетворяют исходному уравнению.

Теперь можно применить правило дифференцирования частного (Ф3). Тогда, чтобы (П2.5) приняло вид полной производной дроби, разделим его на . При имеем:
;
.
Отсюда получаем первый интеграл:
(П2.6) .

Операция деления на справедлива, если знаменатель не обращается в нуль. Поэтому далее мы ищем решение при . После того, как решение будет найдено, мы рассмотрим случай .

Из (П2.6) имеем:
.
Заменим постоянную интегрирования :
(П2.7) .
Замена постоянной позволяет получить выражение, не загроможденное лишними операциями. При этом также нужно следить, чтобы не произошло потери части решений, или не появились новые. В нашем примере, старая постоянная может принимать любые значения: . Тогда и новая постоянная может принимать любые значения: .

Разделяем переменные в (П2.7) и интегрируем.
;
;
;
.
Снова заменим постоянные: .
.
Извлекая корень четной степени 4 от переменной u , возведенной в четную степень 4, нужно помнить, что результат может иметь два знака – положительный или отрицательный:
(П2.8) .

Возвращаемся к переменной y (см. (П2.2)), и интегрируем. При имеем. ;

;
;

;
.
Еще раз заменим постоянные: :
(П2.9) .

Теперь рассмотрим случай , который мы выше ⇑ исключили из рассмотрения. Из (П2.8) и (П2.2) имеем:
.
Здесь . Заменим постоянную . Новая постоянная может принимать любые значения, кроме нулевого: . Тогда
(П2.10) .
Заметим, что в этом случае, . Интегрируем.
;
.
Заменив постоянную , получаем:
(П2.11) .

Теперь рассмотрим случай , который мы отбросили при делении ⇑ на :
.
Это уравнение имеет вид (П2.10) с . Тогда (П2.11) также является решением уравнения , если положить . Отбросим в (П2.11) условие . В результате получаем решение, в котором :
.

Наконец, мы можем переобозначить постоянные: . В результате получаем решение, справедливое при :
.

Пример 3

Найти общее решение дифференциального уравнения, преобразовав его к полной производной:
(П3.1) .

Попробуем привести уравнение к полной производной, применяя формулы (Ф2) и (Ф3).

Преобразуем исходное уравнение (П3.1), собрав в левой части члены, содержащие логарифм:
;
.

Разделим на и используем формулу (Ф3). При имеем:
;
(П3.2) .

Применим к (П3.2) формулу (Ф2), записав ее аналогично интегрированию по частям в следующем виде: .
.
Здесь мы учли, что .
Подставляем в (П3.2) и выделяем полную производную:
;
;
.
Левая часть уравнения является полной производной. Отсюда получаем первый интеграл:
.

Разделяем переменные и интегрируем.
.
Возводим левую и правую части уравнения в степень -1 . Случай разбирать не нужно, поскольку исходное уравнение (П3.1) не определено при . При имеем:
;
;
(П3.3) .

Подставляем в (П3.3) и потенцируем.
;
.

Заменим постоянную интегрирования . Новая постоянная может принимать только положительные значения: . Тогда
.
Убираем знак модуля:
.
Знак ± включим в состав постоянной . Тогда она может принимать и положительные отрицательные значения, не равные нулю. Переобозначим постоянную :
(П3.4) .

Теперь рассмотрим случай . Нетрудно видеть, что функция является решением исходного уравнения (П3.1). Она входит в (П3.4), если положить . Таким образом, (П3.4) является решением уравнения и при . Отменяем ограничение :
.

Сделаем замену постоянных . Тогда
.

Осталось рассмотреть случай . Если подставить в исходное уравнение (П3.1), то оно выполняется.
Решаем уравнение . Его решение . Таким образом, при , уравнение (П3.1) имеет решение .

Использованная литература.
В. В. Степанов. Курс дифференциальных уравнений, «ЛКИ», 2015.
В. М. Ипатова, О. А. Пыркова, В. Н. Седов. Дифференциальные уравнения. Методы решений. Москва, МФТИ, 2012.
А. Ф. Филиппов. Сборник задач по дифференциальным уравнениям. НИЦ «Регулярная и хаотическая динамика», 2000.

Автор: Олег Одинцов . Опубликовано: 07-07-2021

🔍 Видео

Понижение порядка дифференциального уравнения. Пример решенияСкачать

Понижение порядка дифференциального уравнения. Пример решения

Как мозг порождает сознание? Александр КапланСкачать

Как мозг порождает сознание? Александр Каплан

Дифференциальное уравнение высших порядков, допускающие понижение порядка.Скачать

Дифференциальное уравнение высших порядков, допускающие понижение порядка.

Понижение порядка дифференциального уравнения (2 случай)Скачать

Понижение порядка дифференциального уравнения (2 случай)

ДУ, допускающее понижение порядка (без х)Скачать

ДУ, допускающее понижение порядка (без х)

Диф уравнение 3 го порядка. Понижение порядкаСкачать

Диф  уравнение 3 го порядка.  Понижение порядка

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?
Поделиться или сохранить к себе: