Когда мы решаем сложное тригонометрическое уравнение в ЕГЭ по математике, то рассчитываем получить красивые корни, их которых легко отбираются итоговые значения на отрезке. И обычно корни действительно оказываются красивыми.
Но что делать, если получился какой-нибудь арктангенс? Или арксинус? Как грамотно отметить их на тригонометрическом круге и в итоге безошибочно отобрать корни на отрезке? Что ж, попробуем разобраться.
- Способы отбора корней в тригонометрических уравнениях
- Автор проекта: Шелкова Полина, Класс: 10
- ВВЕДЕНИЕ
- I РАЗДЕЛ (теоретический)
- II РАЗДЕЛ (практический)
- ЗАКЛЮЧЕНИЕ
- Арксинус. Решение простейших уравнений с синусом. Часть 2
- Арксинусом числа (a) ((a∈[-1;1])) называют число (x∈[-frac;frac]) синус которого равен (a) т.е.
- Как вычислить арксинус?
- Чтобы вычислить арксинус — нужно ответить на вопрос: синус какого числа (лежащего в пределах от (-frac) до (frac) ) равен аргументу арксинуса?
- Зачем нужен арксинус? Решение уравнения (sin x=a)
- Если (sin x) равен не табличному значению между (1) и (-1), то решения будут выглядеть как: ( left[ beginx= arcsin a +2πn, n∈Z\ x=π- arcsin a +2πl, l∈Zendright.)
- Арксинус отрицательного числа
- 🎦 Видео
Видео:Отбор корней по окружностиСкачать
Способы отбора корней в тригонометрических уравнениях
Класс: 10
Автор проекта:
Шелкова Полина,
Класс: 10
Руководитель:
Злобова Людмила Викторовна,
учитель математики
ВВЕДЕНИЕ
Слово «тригонометрия» греческое, оно переводится как «измерение треугольников» (τρίγονον — «тригон» — треугольник и μετρειν — «метрео» — измеряю).
Тригонометрия, как и всякая другая наука, выросла из практической деятельности человека. Потребности развивающегося мореплавания, для которого требовалось умение правильно определять курс корабля в открытом море по положению небесных светил, оказали большое влияние на развитие астрономии и тесно связанной с ней тригонометрией. Предполагают, что основополагающее значение для развития тригонометрии в эпоху ее зарождения, имели работы древнегреческого астронома Гиппарха Никейского (180-125 лет до н. э.) (прил. №3). Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху и его таблице хорд (прил. №2). Т.е. таблицы, которые выражают длину хорды для различных центральных углов в круге постоянного радиуса, что является аналогом современных таблиц тригонометрических функций. Впрочем, до нас не дошли оригинальные таблицы Гиппарха, как и почти все, что им написано. И мы, можем составить себе о них представление главным образом по сочинению «Великое построение» или «Альмагесту» знаменитого астронома Клавдия Птолемея, жившего в середине II века н.э.
Несмотря на то, что в работах ученых древности нет «тригонометрии» в строгом смысле этого слова, но по существу они, пользуясь известными им средствами элементарной геометрии, решали те задачи, которыми занимается тригонометрия. Например, задачи на решение треугольников (определение всех сторон и углов треугольника по трем его известным элементам), теоремы Евклида и Архимеда представленные в геометрическом виде, эквивалентны специфическим тригонометрическим формулам. Главным достижением средневековой Индии стала замена хорд синусами. Это позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом, в Индии было положено начало тригонометрии, как учению о тригонометрических величинах.
Учёные стран Ближнего и Среднего Востока с VIII века развили тригонометрию своих предшественников. Уже в середине IX века среднеазиатский учёный аль-Хорезми написал сочинение «Об индийском счёте». После того, как трактаты мусульманских ученых были переведены на латынь, многие идеи греческих, индийских и мусульманских математиков стали достоянием европейской, а затем и мировой науки. В дальнейшем потребности географии, геодезии, военного дела, способствовали развитию тригонометрии. Особенно усиленно шло ее развитие в средневековое время. Большая заслуга в формировании тригонометрии как отдельной науки принадлежит азербайджанскому ученому Насир ад-Дину ат-Туси (1201-1274), написавшему «Трактат о полном четырехстороннике». Творения ученых этого периода привели к выделению тригонометрии как нового самостоятельного раздела науки. Однако в их трудах еще не была введена необходимая символика. Современный вид тригонометрия получила в трудах Леонарда Эйлера (1707-1783). На основании трудов Эйлера были составлены учебники тригонометрии, излагавшие ее в строгой научной последовательности (прил. №4). Тригонометрические вычисления применяются во многих областях человеческой деятельности: в геометрии, в физике, в астрономии, в архитектуре, в геодезии, инженерном деле, в акустике, в электронике и т.д.
I РАЗДЕЛ (теоретический)
Тема проекта и её актуальность: почему я выбрала тему «Способы отбора корней в тригонометрических уравнениях»?
- Расширить и углубить свои знания, полученные в курсе геометрии 8-9 класса.
- Тригонометрические уравнения рассматриваются в курсе алгебры и начал математического анализа 10-11 класса.
- Тригонометрические уравнения включены в КИМы ЕГЭ по математике.
Решение тригонометрических уравнений и отбор корней, принадлежащих заданному промежутку — это одна из сложнейших тем математики, которая выносится на Единый Государственный Экзамен. По результатам анкетирования многие учащиеся затрудняются или вообще не умеют решать тригонометрические уравнения и особенно затрудняются в отборе корней, принадлежащих промежутку. Немаловажно также знать, тригонометрические формулы, табличные значения тригонометрических функций для решения целого ряда заданий Единого Государственного Экзамена по математике.
Цель проекта: изучить способы отбора корней в тригонометрических уравнениях и выбрать для себя наиболее рациональные подходы для качественной подготовки к ЕГЭ.
Задачи:
- познакомиться с историческими сведениями о возникновении тригонометрии, как науки;
- изучить соответствующую литературу;
- научиться решать тригонометрические уравнения;
- найти теоретический материал и изучить методы отбора корней в тригонометрических уравнениях;
- научиться отбирать корни в тригонометрических уравнениях, принадлежащим заданному промежутку;
- подготовиться к ЕГЭ по математике.
Приёмы отбора корней тригонометрического уравнения на заданном промежутке.
При решении тригонометрических уравнений предлагается провести отбор корней из множества значений неизвестного. В тригонометрическом уравнении отбор корней можно осуществлять следующими способами: арифметическим, алгебраическим, геометрическим и функционально-графическим.
Арифметический способ отбора корней состоит в непосредственной подстановке полученных корней в уравнение, учитывая имеющиеся ограничения, при переборе значений целочисленного параметра.
Алгебраический способ предполагает составление неравенств, соответствующих дополнительным условиям, и их решение относительно целочисленного параметра.
Геометрический способ предполагает использование при отборе корней двух вариантов: тригонометрической окружности или числовой прямой. Тригонометрическая окружность более удобна, когда речь идет об отборе корней на промежутке или в случае, когда значение обратных тригонометрических функций, входящих в решения, не являются табличными. В остальных случаях предпочтительнее модель числовой прямой. Числовую прямую удобно использовать при отборе корней на промежутке, длина которого не превосходит 2 или требуется найти наибольший отрицательный или наименьший положительный корень уравнения.
Функционально-графический способ предполагает отбор корней осуществлять с использование графиков тригонометрических функций. Чтобы использовать данный способ отбора корней, требуется умение схематичного построения графиков тригонометрических функций.
II РАЗДЕЛ (практический)
Покажу практически три наиболее эффективных и рациональных, с моей точки зрения, метода отбора корней на примере решения следующего тригонометрического уравнения:
sinx−cos2x=0; [применили формулу двойного угла: cos2x = cos 2 x−sin 2 x]
sinx−(cos 2 x−sin 2 x)=0;
sinx−(1−sin 2 x−sin 2 x)=0;
Введем новую переменную: sinx = t, -1 ≤ t ≤1, получим
Вернемся к замене:
б) Рассмотрим три способа отбора корней, попадающих в отрезок .
1 способ: обратимся к единичной окружности. Отметим на ней дугу, соответствующую указанному отрезку, т.е. выполним отбор корней арифметическим способом и с помощью тригонометрической окружности:
2 способ: указанный отрезок соответствует неравенству: Подставим в него полученные корни:
3 способ: разместим корни уравнения на числовой прямой. Сначала отметим корни, подставив вместо n, и нуль (0), а потом добавим к каждому корню периоды.
Нам останется только выбрать корни, которые попали в нужный нам отрезок.
ЗАКЛЮЧЕНИЕ
При работе над моим проектом я изучила методы решения тригонометрических уравнений и способы отбора корней тригонометрических уравнений. Выяснила для себя положительные и отрицательные моменты. При апробации этих подходов в отборе корней тригонометрического уравнения, понимаешь, что каждый из этих способов удобен по-своему в том или ином случае. Например, алгебраический способ (решение неравенством) наиболее эффективен, когда промежуток для отбора корней достаточно большой, в тоже время он дает практически стопроцентное нахождение целочисленного параметра для вычисления корней, а применение арифметического способа приводит к громоздким вычислениям. При отборе корней уравнения, удовлетворяющих дополнительным условиям, т.е. когда корни уравнения принадлежат заданному промежутку, мне проще и нагляднее получить корни с помощью тригонометрической окружности, а проверить себя можно арифметическим способом. Замечу, что при решении тригонометрических уравнений трудности, связанные с отбором корней, возрастают, если в уравнении приходится учитывать ОДЗ. Как показывает практика и анкетирование моих одноклассников, из четырёх возможных методов отбора корней тригонометрического уравнения по дополнительным условиям, наиболее предпочтительным является отбор корней по окружности. Анкетирование проходили 12 респондентов, изучающих тригонометрию (прил. №5). Большинство из них отвечали, что этот раздел математики достаточно сложный: большой объем информации, очень много формул, табличных значений, которые нужно знать и уметь применять на практике. Еще как одна из проблем — небольшое количество времени, отведенное на изучение этого сложного раздела математики. И я разделяю их мнение. При такой сложности, многие считают, что тригонометрия важный раздел математики, который находит применение в других науках и практической деятельности человека.
СПИСОК ЛИТЕРАТУРЫ
- Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс: учеб для общеобразоват. организаций: базовый и углубленный уровни/ [С.М.Никольский, М.К.Потапов, Н.Н.Решетников и др.]-3 -е изд.- М.: Просвещение, 2016.
- Алгебра и начала математического анализа: Учеб для 10-11 кл.общеобразоват. организаций / А.Н.Колмогоров, А.М.Абрамов, Ю.П.Дудницин и др. под редакцией А.Н.Колмогорова — М. Просвещение, 2017.
- С.В Кравцев и др. Методы решения задач по алгебре: от простых до самых сложных — М: Издательство: «Экзамен», 2005.
- Корянов А.Г., Прокофьев А.А. — Тригонометрические уравнения: методы решения и отбор корней. — М.: Математика ЕГЭ, 2012.
Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
Арксинус. Решение простейших уравнений с синусом. Часть 2
Арксинусом числа (a) ((a∈[-1;1])) называют число (x∈[-frac;frac]) синус которого равен (a) т.е.
Проще говоря, арксинус обратен синусу.
На круге это выглядит так:
Видео:Отбор корней с аркфункциями в №12 | Это будет на ЕГЭ 2023 по математикеСкачать
Как вычислить арксинус?
Чтобы вычислить арксинус — нужно ответить на вопрос: синус какого числа (лежащего в пределах от (-frac) до (frac) ) равен аргументу арксинуса?
Например, вычислите значение арксинуса:
а) Синус какого числа равен (-frac)? Или в более точной формулировке можно спросить так: если (sin x=-frac), то чему равен (x)? Причем, обратите внимание, нам нужно такое значение, которое лежит между (-frac) и (frac). Ответ очевиден:
б) Синус какого числа равен (frac<sqrt>)? Кто-то вспоминает тригонометрический круг, кто-то таблицу, но в любом случае ответ (frac).
в) Синус от чего равен (-1)?
Иначе говоря, (sin x=-1), (x=) ?
Тригонометрический круг со всеми стандартными арксинусами:
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Зачем нужен арксинус? Решение уравнения (sin x=a)
Чтобы понять зачем придумали арксинус, давайте решим уравнение: (sin x=frac).
Это не вызывает затруднений:
Внимание! Если вдруг затруднения всё же были, то почитайте здесь о решении простейших уравнений с синусом.
А теперь решите уравнение: (sin x=frac).
Что тут будет ответом? Не (frac), не (frac), даже не (frac) — вообще никакие привычные числа не подходят, однако при этом очевидно, что решения есть. Но как их записать?
Вот тут-то на помощь и приходит арксинус! Значение правой точки равно (arcsinfrac), потому что известно, что синус равен (frac). Длина дуги от (0) до правой точки тогда тоже будет равна (arcsinfrac). Тогда чему равно значение второй точки? С учетом того, что правая точка находится на расстоянии равному (arcsinfrac) от (π), то её значение составляет (π- arcsinfrac).
Ок, значение этих двух точек нашли. Теперь запишем полный ответ: ( left[ beginx=arcsin frac+2πn, n∈Z\ x=π-arcsin frac+2πl, l∈Zendright.) Без арксинусов решить уравнение (sin x=frac) не получилось бы. Как и уравнение (sin x=0,125), (sin x=-frac), (sin x=frac<sqrt>) и многие другие. Фактически без арксинуса мы можем решать только (9) простейших уравнений с синусом:
С арксинусом – бесконечное количество.
Пример. Решите тригонометрическое уравнение: (sin x=frac<sqrt>).
Решение:
Пример. Решите тригонометрическое уравнение: (sin x=frac<sqrt>).
Решение:
Кто поторопился написать ответ ( left[ beginx=arcsin frac<sqrt>+2πn, n∈Z\ x=π-arcsin frac<sqrt>+2πl, l∈Zendright.), тот на ЕГЭ потеряет 2 балла. Дело в том, что в отличии от прошлых примеров (arcsin frac<sqrt>) — вычислимое значение, но чтобы это стало очевидно нужно избавиться от иррациональности в знаменателе аргумента. Для этого умножим и числитель и знаменатель дробь на корень из двух (frac<sqrt> = frac<1 cdot sqrt> <sqrtcdot sqrt>= frac<sqrt>). Таким образом, получаем:
Значит в ответе вместо арксинусов нужно написать (frac).
Пример. Решите тригонометрическое уравнение: (sin x=frac).
Решение:
И вновь тот, кто поторопился написать ( left[ beginx= arcsin frac+2πn, n∈Z\ x=π- arcsinfrac+2πl, l∈Zendright.) на ЕГЭ потеряет (2) балла. Что не так? – спросите вы. Ведь точно не табличное значение, почему нельзя написать (arcsinfrac)? Пролистайте до самого верха, туда, где было определение арксинуса. Там написана маленькая, но очень важная деталь – аргумент арксинуса должен быть меньше или равен (1) и больше или равен (-1). Ведь синус не может выходить за эти пределы! И если решить уравнение с помощью круга, а не бездумно пользоваться готовыми формулами, то станет очевидно, что у такого уравнения решений нет.
Думаю, вы уловили закономерность.
Если (sin x) равен не табличному значению между (1) и (-1), то решения будут выглядеть как: ( left[ beginx= arcsin a +2πn, n∈Z\ x=π- arcsin a +2πl, l∈Zendright.)
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Арксинус отрицательного числа
Прежде чем научиться решать тригонометрические уравнения с отрицательным синусом советую запомнить формулу:
Если хотите понять логику этой формулы, внимательно рассмотрите картинку ниже:
Удивил последний пример? Почему в нем формула не работает? Потому что запись (arcsin(-frac<sqrt>)) в принципе неверна, ведь (-frac<sqrt> Синус
Тригонометрические уравнения
🎦 Видео
Отбор корней по окружностиСкачать
Задание №13. Как отбирать корни в тригонометрической окружности? 🤔Скачать
Как отобрать корни тригонометрического уравнения на ЕГЭ? 3+1 способа!Скачать
Три способа отбора корней в задании 13 ЕГЭ профильСкачать
Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Как отобрать корни с арккосинусомСкачать
Отбор арктангенса по окружности | Тригонометрия ЕГЭ 2020Скачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
Тригонометрия 8. Отбор корнейСкачать
Выборка с помощью окружностиСкачать
Решаем все типы задач № 12Скачать
Решение тригонометрических неравенств. 10 класс.Скачать
3 СПОСОБА ОТБОРА КОРНЕЙ В ЗАДАНИИ #12 (по окружности, неравенством и подбором)Скачать
Как отбирать корни с помощью числовой окружности? Тригонометрические уравнения Часть 6 из 6Скачать
Отбор корней тригонометрического уравнения с помощью неравенства: пример 1Скачать