Иррациональные выражения и их преобразования
В прошлый раз мы вспомнили (или узнали — кому как), что же такое корень n-й степени , научились извлекать такие корни, разобрали по винтикам основные свойства корней и решали несложные примеры с корнями.
Этот урок будет продолжением предыдущего и будет посвящён преобразованиям самых разных выражений, содержащих всевозможные корни. Такие выражения называются иррациональными. Здесь появятся и выражения с буквами, и дополнительные условия, и избавление от иррациональности в дробях, и некоторые продвинутые приёмы в работе с корнями. Те приёмы, которые будут рассматриваться в данном уроке, станут хорошей базой для решения задач ЕГЭ (и не только) практически любого уровня сложности. Итак, давайте приступим.
Прежде всего я продублирую здесь основные формулы и свойства корней. Чтобы не скакать из темы в тему. Вот они:

Формулы эти надо обязательно знать и уметь применять. Причём в обе стороны — как слева направо, так и справа налево. Именно на них и основывается решение большинства заданий с корнями любой степени сложности. Начнём пока с самого простого — с прямого применения формул или их комбинаций.
Простое применение формул
В этой части будут рассматриваться простые и безобидные примеры — без букв, дополнительных условий и прочих хитростей. Однако даже в них, как правило, имеются варианты. И чем навороченнее пример, тем больше таких вариантов. И у неопытного ученика возникает главная проблема — с чего начинать? Ответ здесь простой — не знаешь, что нужно — делай что можно. Лишь бы ваши действия шли в мире и согласии с правилами математики и не противоречили им.) Например, такое задание:
Вычислить:
Даже в таком простеньком примере возможны несколько путей к ответу.
Первый — просто перемножить корни по первому свойству и извлечь корень из результата:
Второй вариант такой: 

Решать можно как больше нравится. В любом из вариантов ответ получается один — восьмёрка. Мне, например, проще перемножить 4 и 128 и получить 512, а из этого числа отлично извлекается кубический корень. Если кто-то не помнит, что 512 — это 8 в кубе, то не беда: можно записать 512 как 2 9 (первые 10 степеней двойки, я надеюсь, помните?) и по формуле корня из степени:
Вычислить: 
Если работать по первому свойству (всё загнать под один корень), то получится здоровенное число, из которого корень потом извлекать — тоже не сахар. Да и не факт, что он извлечётся ровно.) Поэтому здесь полезно в числе 
И теперь всё наладилось:
Осталось восьмёрку и двойку записать под одним корнем (по первому свойству) и — готово дело. 🙂
Добавим теперь немного дробей.
Пример совсем примитивный, однако и в нём имеются варианты. Можно с помощью вынесения множителя преобразовать числитель и сократить со знаменателем:
А можно сразу воспользоваться формулой деления корней:
Как видим, и так, и сяк — всяко правильно.) Если не споткнуться на полпути и не ошибиться. Хотя где тут ошибаться-то…
Разберём теперь самый последний пример из домашнего задания прошлого урока:
Совершенно немыслимый набор корней, да ещё и вложенных. Как быть? Главное — не бояться! Здесь мы первым делом замечаем под корнями числа 2, 4 и 32 — степени двойки. Первое что нужно сделать — привести все числа к двойкам: всё-таки чем больше одинаковых чисел в примере и меньше разных, тем проще.) Начнём отдельно с первого множителя:
Число 
Теперь, согласно корню из произведения:

В числе 
А с выражением 
Значит, первый множитель запишется вот так:

Вложенные корни исчезли, числа стали поменьше, что уже радует. Вот только корни разные, но пока так и оставим. Надо будет — преобразуем к одинаковым. Берёмся за второй множитель.)
Второй множитель преобразовываем аналогично, по формуле корня из произведения и корня из корня. Где надо — сокращаем показатели по пятой формуле:
Вставляем всё в исходный пример и получаем:
Получили произведение целой кучи совершенно разных корней. Неплохо было бы привести их все к одному показателю, а там — видно будет. Что ж, это вполне возможно. Наибольший из показателей корней равен 12, а все остальные — 2, 3, 4, 6 — делители числа 12. Поэтому будем приводить все корни по пятому свойству к одному показателю — к 12:
Считаем и получаем:
Красивого числа не получили, ну и ладно. Нас просили упростить выражение, а не посчитать. Упростили? Конечно! А вид ответа (целое число или нет) здесь уже не играет никакой роли.
Немного сложения / вычитания и формул сокращённого умножения
К сожалению, общих формул для сложения и вычитания корней в математике нету. Однако, в заданиях сплошь и рядом встречаются эти действия с корнями. Здесь необходимо понимать, что любые корни — это точно такие же математические значки, как и буквы в алгебре.) И к корням применимы те же самые приёмы и правила, что и к буквам — раскрытие скобок, приведение подобных, формулы сокращённого умножения и т.п.
Например, каждому ясно, что 
Если корни разные, то ищем способ сделать их одинаковыми — внесением/вынесением множителя или же по пятому свойству. Если ну никак не упрощается, то, возможно, преобразования более хитрые.
Смотрим первый пример.
Найти значение выражения: 
Все три корня хоть и кубические, но из разных чисел. Чисто не извлекаются и между собой складываются/вычитаются. Стало быть, применение общих формул здесь не катит. Как быть? А вынесем-ка множители в каждом корне. Хуже в любом случае не будет.) Тем более что других вариантов, собственно, и нету:
Стало быть, 
Вот и всё решение. Здесь мы от разных корней перешли к одинаковым с помощью вынесения множителя из-под корня. А затем просто привели подобные.) Решаем дальше.
Найти значение выражения:
С корнем из семнадцати точно ничего не поделаешь. Работаем по первому свойству — делаем из произведения двух корней один корень:
А теперь присмотримся повнимательнее. Что у нас под большим кубическим корнем? Разность ква.. Ну, конечно! Разность квадратов:
Теперь осталось только извлечь корень: 
Дальше очень похожий пример, но посложнее.
Вычислить:
Здесь придётся проявить математическую смекалку.) Мыслим примерно следующим образом: «Так, в примере произведение корней. Под одним корнем разность, а под другим — сумма. Очень похоже на формулу разности квадратов. Но… Корни — разные! Первый квадратный, а второй — четвёртой степени… Хорошо бы сделать их одинаковыми. По пятому свойству можно легко из квадратного корня сделать корень четвёртой степени. Для этого достаточно подкоренное выражение возвести в квадрат.»
Если вы мыслили примерно так же, то вы — на полпути к успеху. Совершенно верно! Превратим первый множитель в корень четвёртой степени. Вот так:
Теперь, ничего не поделать, но придётся вспомнить формулу квадрата разности. Только в применении к корням. Ну и что? Чем корни хуже других чисел или выражений?! Возводим:
«Хм, ну возвели и что? Хрен редьки не слаще. Стоп! А если вынести четвёрку под корнем? Тогда выплывет то же самое выражение, что и под вторым корнем, только с минусом, а ведь именно этого мы и добиваемся!»
Верно! Выносим четвёрку:

А теперь — дело техники:

Вот так распутываются сложные примеры. ) Теперь пора потренироваться с дробями.
Ясно, что надо преобразовывать числитель. Как? По формуле квадрата суммы, разумеется. У нас есть ещё варианты разве? 🙂 Возводим в квадрат, выносим множители, сокращаем показатели (где надо):
Во как! Получили в точности знаменатель нашей дроби. ) Значит, вся дробь, очевидно, равна единице:
Ещё пример. Только теперь на другую формулу сокращённого умножения.)
Понятно, что квадрат разности надо в дело применять. Выписываем знаменатель отдельно и — поехали!
Выносим множители из-под корней:
Следовательно,

Теперь всё нехорошее великолепно сокращается и получается:
Что ж, поднимаемся на следующий уровень. 🙂
Буквы и дополнительные условия
Буквенные выражения с корнями — штука более хитрая, чем числовые выражения, и является неиссякаемым источником досадных и очень грубых ошибок. Перекроем этот источник.) Ошибки всплывают из-за того, что частенько таких заданиях фигурируют отрицательные числа и выражения. Они либо даны нам прямо в задании, либо спрятаны в буквах и дополнительных условиях. А нам в процессе работы с корнями постоянно надо помнить, что в корнях чётной степени как под самим корнем, так и в результате извлечения корня должно быть неотрицательное выражение. Ключевой формулой в задачах этого пункта будет четвёртая формула:
С корнями нечётной степени вопросов никаких — там всегда всё извлекается что с плюсом, что с минусом. И минус, если что, выносится вперёд. Будем сразу разбираться с корнями чётных степеней.) Например, такое коротенькое задание.
Упростить: 

Казалось бы, всё просто. Получится просто икс. ) Но зачем же тогда дополнительное условие 


Что мы видим? На входе было отрицательное число, а на выходе — уже положительное. Было минус три, стало плюс три.) Возвращаемся к буквам. Вне всяких сомнений, по модулю это будет точно икс, но только сам икс у нас с минусом (по условию!), а результат извлечения (в силу арифметического корня!) должен быть с плюсом. Как получить плюс? Очень просто! Для этого достаточно перед заведомо отрицательным числом поставить минус.) И правильное решение выглядит так:
Кстати сказать, если бы мы воспользовались формулой 
Вынести множитель за знак корня: 

Первый взгляд — на подкоренное выражение. Тут всё ОК. При любом раскладе оно будет неотрицательным. Начинаем извлекать. По формуле корня из произведения, извлекаем корень из каждого множителя:
Откуда взялись модули, объяснять, думаю, уже не надо.) А теперь анализируем каждый из модулей.
Множитель | a | так и оставляем без изменений: у нас нету никакого условия на букву a . Мы не знаем, положительное она или отрицательная. Следующий модуль | b 2 | можно смело опустить: в любом случае выражение b 2 неотрицательно. А вот насчёт | c 3 | — тут уже задачка.) Если 
А теперь — обратная задача. Не самая простая, сразу предупреждаю!
Внести множитель под знак корня: 
Если вы сразу запишете решение вот так

то вы попали в ловушку. Это неверное решение! В чём же дело?
Давайте вглядимся в выражение под корнем 




И ошибка здесь состоит в том, что мы вносим под корень неположительное число 

И теперь уже неотрицательное число (-b) спокойно вносим под корень по всем правилам:
Этот пример наглядно показывает, что, в отличие от других разделов математики, в корнях правильный ответ далеко не всегда вытекает автоматически из формул. Необходимо подумать и лично принять верное решение.) Особенно следует быть внимательнее со знаками в иррациональных уравнениях и неравенствах.
Разбираемся со следующим важным приёмом в работе с корнями — избавлением от иррациональности.
Избавление от иррациональности в дробях
Если в выражении присутствуют корни, то, напомню, такое выражение называется выражением с иррациональностью. В некоторых случаях бывает полезно от этой самой иррациональности (т.е. корней) избавиться. Как можно ликвидировать корень? Корень у нас пропадает при… возведении в степень. С показателем либо равным показателю корня, либо кратным ему. Но, если мы возведём корень в степень (т.е. помножим корень сам на себя нужное число раз), то выражение от этого поменяется. Нехорошо.) Однако в математике бывают темы, где умножение вполне себе безболезненно. В дробях, к примеру. Согласно основному свойству дроби, если числитель и знаменатель умножить (разделить) на одно и то же число, то значение дроби не изменится.
Допустим, нам дана вот такая дробь:
Можно ли избавиться от корня в знаменателе? Можно! Для этого корень надо возвести в куб. Чего нам не хватает в знаменателе для полного куба? Нам не хватает множителя 

Корень в знаменателе исчез. Но… он появился в числителе. Ничего не поделать, такова судьба.) Нам это уже не важно: нас просили знаменатель от корней освободить. Освободили? Безусловно.)
Кстати, те, кто уже в ладах с тригонометрией, возможно, обращали внимание на то, что в некоторых учебниках и таблицах, к примеру, 




Зачем нам освобождаться от иррациональности в дробях? Какая разница — в числителе корень сидит или в знаменателе? Калькулятор всё равно всё посчитает.) Ну, для тех, кто не расстаётся с калькулятором, разницы действительно практически никакой… Но, даже считая на калькуляторе, можно обратить внимание на то, что делить на целое число всегда удобнее и быстрее, чем на иррациональное. А уж про деление в столбик вообще умолчу.)
Следующий пример только подтвердит мои слова.
Освободиться от иррациональности в знаменателе дроби:
Как здесь ликвидировать квадратный корень в знаменателе? Если числитель и знаменатель помножить на выражение 
Такое выражение, которое при домножении какой-то суммы (или разности) выводит на разность квадратов, ещё называют сопряжённым выражением. В нашем примере сопряжённым выражением будет служить разность 
Что тут можно сказать? В результате наших манипуляций не то что корень из знаменателя исчез — вообще дробь исчезла! 🙂 Даже с калькулятором отнять корень из трёх от тройки проще, чем считать дробь с корнем в знаменателе. Ещё пример.
Освободиться от иррациональности в знаменателе дроби:
Как здесь выкручиваться? Формулы сокращённого умножения с квадратами сразу не катят — не получится полной ликвидации корней из-за того, что корень у нас в этот раз не квадратный, а кубический. Надо, чтобы корень как-то возвёлся в куб. Стало быть, применять надо какую-то из формул с кубами. Какую? Давайте подумаем. В знаменателе — сумма 
В качестве a у нас тройка, а в качестве b — корень кубический из пяти:
И снова дробь исчезла.) Такие ситуации, когда при освобождении от иррациональности в знаменателе дроби у нас вместе с корнями полностью исчезает сама дробь, встречаются очень часто. Как вам вот такой примерчик!
Попробуйте просто сложить эти три дроби! Без ошибок! 🙂 Один общий знаменатель чего стоит. А что, если попробовать освободиться от иррациональности в знаменателе каждой дроби? Что ж, пробуем:
Ух ты, как интересно! Все дроби пропали! Напрочь. И теперь пример решается в два счёта:
Просто и элегантно. И без долгих и утомительных вычислений. 🙂
Именно поэтому операцию освобождения от иррациональности в дробях надо уметь делать. В подобных навороченных примерах только она и спасает, да.) Разумеется, внимательность никто не отменял. Бывают задания, где просят избавиться от иррациональности в числителе. Эти задания ничем от рассмотренных не отличаются, только от корней очищается числитель.)
Более сложные примеры
Осталось рассмотреть некоторые специальные приёмы в работе с корнями и потренироваться распутывать не самые простые примеры. И тогда полученной информации уже будет достаточно для решения заданий с корнями любого уровня сложности. Итак — вперёд.) Для начала разберёмся, что делать со вложенными корнями, когда формула корня из корня не работает. Например, вот такой примерчик.
Вычислить:
Корень под корнем… К тому же под корнями сумма или разность. Стало быть, формула корня из корня (с перемножением показателей) здесь не действует. Значит, надо что-то делать с подкоренными выражениями: у нас просто нету других вариантов. В таких примерах чаще всего под большим корнем зашифрован полный квадрат какой-нибудь суммы. Или разности. А корень из квадрата уже отлично извлекается! И теперь наша задача — его расшифровать.) Такая расшифровка красиво делается через систему уравнений. Сейчас всё сами увидите.)
Итак, под первым корнем у нас вот такое выражение:
А вдруг, не угадали? Проверим! Возводим в квадрат по формуле квадрата суммы:
Всё верно.) Но… Откуда я взял это выражение 
Нет.) Мы его чуть ниже получим честно. Просто по данному выражению я показываю, как именно составители заданий шифруют такие квадраты. 🙂 Что такое 54? Это сумма квадратов первого и второго чисел. Причём, обратите внимание, уже без корней! А корень остаётся в удвоенном произведении, которое в нашем случае равно 
Итак, у нас под корнем явно тусуется выражение (a+b) 2 , и наша задача — найти a и b. В нашем случае сумма квадратов даёт 54. Вот и пишем:
Теперь удвоенное произведение. Оно у нас 
Получили вот такую системку:
Решаем обычным методом подстановки. Выражаем из второго уравнения, например, и подставляем в первое:
Решим первое уравнение:
Получили биквадратное уравнение относительно a . Считаем дискриминант:
Получили аж четыре возможных значения a . Не пугаемся. Сейчас мы всё лишнее отсеем.) Если мы сейчас для каждого из четырёх найденных значений посчитаем соответствующие значения , то получим четыре решения нашей системы. Вот они:
И тут вопрос — а какое из решений нам подходит? Давайте подумаем. Отрицательные решения можно сразу отбросить: при возведении в квадрат минусы «сгорят», и всё подкоренное выражение в целом не изменится.) Остаются первые два варианта. Выбрать их можно совершенно произвольно: от перестановки слагаемых сумма всё равно не меняется.) Пусть, например, 

Итого получили под корнем квадрат вот такой суммы:
Я не зря так детально описываю ход решения. Чтобы было понятно, как происходит расшифровка.) Но есть одна проблемка. Аналитический способ расшифровки хоть и надёжный, но весьма длинный и громоздкий: приходится решать биквадратное уравнение, получать четыре решения системы и потом ещё думать, какие из них выбрать… Хлопотно? Согласен, хлопотно. Этот способ безотказно работает в большинстве подобных примеров. Однако очень часто можно здорово сократить себе работу и найти оба числа творчески. Подбором.) Да-да! Сейчас, на примере второго слагаемого (второго корня), я покажу более лёгкий и быстрый способ выделения полного квадрата под корнем.
Итак, теперь у нас вот такой корень: 
Размышляем так: «Под корнем — скорее всего, зашифрованный полный квадрат. Раз перед удвоенным минус — значит, квадрат разности. Сумма квадратов первого и второго чисел даёт нам число 54 . Но какие это квадраты? 1 и 53 ? 49 и 5 ? Слишком много вариантов… Нет, лучше начать распутывать с удвоенного произведения. Наши 





Получилось! Значит, наше подкоренное выражение — это на самом деле квадрат разности:
Вот такой вот способ-лайт, чтобы не связываться с системой. Не всегда работает, но во многих таких примерах его вполне достаточно. Итак, под корнями — полные квадраты. Осталось только правильно извлечь корни, да досчитать пример:
А теперь разберём ещё более нестандартное задание на корни.)
Докажите, что число A – целое, если 
Впрямую ничего не извлекается, корни вложенные, да ещё и разных степеней… Кошмар! Однако, задание имеет смысл.) Стало быть, ключ к его решению имеется.) А ключ здесь такой. Рассмотрим наше равенство
как уравнение относительно A. Да-да! Хорошо бы избавиться от корней. Корни у нас кубические, поэтому возведём-ка обе части равенства в куб. По формуле куба суммы:
Кубы и корни кубические друг друга компенсируют, а под каждым большим корнем забираем одну скобку у квадрата и сворачиваем произведение разности и суммы в разность квадратов:
Отдельно сосчитаем разность квадратов под корнями:
Отлично! Значит, всё наше равенство ещё сильнее упростится:
А теперь делаем финт ушами — заменяем сумму корней в скобках на A (согласно условию примера!).
Получаем кубическое уравнение 

Здесь как раз тот случай, когда один из корней легко угадывается — это 
Как разложить? Либо по схеме Горнера, либо делением «уголком» на скобку (A-4), либо даже группировкой (если представить -3A как -16A+13A). Объяснять подробно деление уголком или схему Горнера в теме про корни — уже совсем отклоняться от курса.) Кто в теме — и так поймёт.
А теперь легко заметить, что квадратный трёхчлен во вторых скобках имеет отрицательный дискриминант, а значит, наше уравнение имеет единственный действительный корень 
А теперь — поупрощаем некоторые дробные выражения с корнями. От простого — к сложному. Здесь всё точно так же, как и с многочленами. Только в применении к корням.) Я же говорил, что действия с корнями ничем не отличаются от таковых с буквами. И к корням с таким же успехом применима вся алгебра седьмого класса — формулы сокращённого умножения, разложение на множители, приведение подобных и т.п.
Например, такое задание.
Пример явно намекает на применение формулы разности квадратов:
Спрашивается, а где же здесь квадраты? Сплошные корни… Сейчас покажу. 🙂
Берём числитель нашей дробушки: 
Что такое 
Хорошо, а из 
По такой технологии, между прочим, можно совершенно любой корень превратить в совершенно любую степень. Какую хотим. 🙂 Как, например, 
Хотим из степеней корни делаем, хотим — наоборот, степени из корней. Что хотим, то и творим. Математика, однако! 🙂
Итак, весь наш числитель можно представить как разность квадратов:
А дальше никаких проблем — раскладываем числитель на множители и сокращаем:
Действуем аналогично. Раскладываем на множители и сокращаем. 🙂 В числителе применяем группировку. Например, вот такую:
А в знаменателе просто выносим общий множитель 
Подставляем всё в нашу дробь и сокращаем:
Как видим, разложение на множители очень популярно в теме с корнями. Очень! И особенно — формула разности квадратов. Именно поэтому формулы сокращённого умножения так важно знать и уметь применять. 🙂
Ну и на десерт распутаем что-нибудь навороченное. )
Чтобы не запутаться и не наляпать ошибок, будем действовать по порядку. При взгляде на любой пример всегда задаём сами себе вопрос: «Что в примере мне больше всего не нравится?» В данном примере большинство скажет: «Числитель первой дроби!» Верно! Вот и упростим его отдельно: остальная часть примера от этого никак не пострадает.) Итак,
Вместо знака деления удобно использовать черту дроби. Вот так:
Сначала упростим дробь. Как? Попробуем сократить.) Для этого, ясное дело, надо разложить на множители числитель и знаменатель, да… Берём отдельно числитель 
Если теперь подставить вместо a выражение 
Со знаменателем полная аналогия:
Теперь от упрощённой дроби отнимаем единичку. Как? Делаем из единички дробь и — вперёд!
Следующим пунктом идёт деление полученной дроби на выражение 
Уфф… Дальше… Отнимаем от полученного выражения дробь 
И, наконец, последнее усилие. Возводим результат в куб:
Ну как, всё понятно? Тогда — вперёд, набиваем руку и делаем примеры!
Вынести множители за знак корня: 


Внести множители под знак корня: 

Освободиться от иррациональности в знаменателе дробей:


Вычислить:
Доказать, что A – целое число, если 
Ответы (пока) давать не буду — иначе неинтересно. 🙂 До встречи и успехов!
- Как освободиться от иррациональности в знаменателе: способы, примеры, решения
- Понятие освобождения от иррациональности в знаменателе
- Основные действия для избавления от иррациональности в знаменателе дроби
- Как преобразовать выражение в знаменателе дроби
- Избавление от иррациональности методом умножения на корень
- Избавление от иррациональности методом умножения на сопряженное выражение
- Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов
- Последовательное применение различных способов преобразования
- Алгебра
- Иррациональные уравнения
- Простейшие иррациональные уравнения
- Уравнения с двумя квадратными корнями
- Введение новых переменных
- Замена иррационального уравнения системой
- Уравнения с «вложенными» радикалами
- Иррациональные неравенства
- 💡 Видео
Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

Как освободиться от иррациональности в знаменателе: способы, примеры, решения
При изучении преобразований иррационального выражения очень важным является вопрос о том, как освободиться от иррациональности в знаменателе дроби. Целью этой статьи является объяснение этого действия на конкретных примерах задач. В первом пункте мы рассмотрим основные правила данного преобразования, а во втором – характерные примеры с подробными пояснениями.
Видео:Преобразование выражений, содержащих квадратные корни. Избавление от иррациональности. 8 класс.Скачать

Понятие освобождения от иррациональности в знаменателе
Начнем с пояснения, в чем вообще заключается смысл такого преобразования. Для этого вспомним следующие положения.
Об иррациональности в знаменателе дроби можно говорить в том случае, если там присутствует радикал, он же знак корня. Числа, которые записаны при помощи такого знака, часто относятся к числу иррациональных. Примерами могут быть 1 2 , — 2 x + 3 , x + y x — 2 · x · y + 1 , 11 7 — 5 . К дробям с иррациональными знаменателями также относятся те, что имеют там знаки корней различной степени (квадратный, кубический и т.д.), например, 3 4 3 , 1 x + x · y 4 + y . Избавляться от иррациональности следует для упрощения выражения и облегчения дальнейших вычислений. Сформулируем основное определение:
Освободиться от иррациональности в знаменателе дроби – значит преобразовать ее, заменив на тождественно равную дробь, в знаменателе которой не содержится корней и степеней.
Такое действие может называться освобождением или избавлением от иррациональности, смысл при этом остается тем же. Так, переход от 1 2 к 2 2 , т.е. к дроби с равным значением без знака корня в знаменателе и будет нужным нам действием. Приведем еще один пример: у нас есть дробь x x — y . Проведем необходимые преобразования и получим тождественно равную ей дробь x · x + y x — y , освободившись от иррациональности в знаменателе.
После формулировки определения мы можем переходить непосредственно к изучению последовательности действий, которые нужно выполнить для такого преобразования.
Видео:Алгебра 8. Урок 8 - Квадратный корень. Освобождение от иррациональностиСкачать

Основные действия для избавления от иррациональности в знаменателе дроби
Для освобождения от корней нужно провести два последовательных преобразования дроби: умножить обе части дроби на число, отличное от нуля, а затем преобразовать выражение, получившееся в знаменателе. Рассмотрим основные случаи.
В наиболее простом случае можно обойтись преобразованием знаменателя. Например, мы можем взять дробь со знаменателем, равным корню из 9 . Вычислив 9 , мы запишем в знаменателе 3 и избавимся таким образом от иррациональности.
Однако гораздо чаще приходится предварительно умножать числитель и знаменатель на такое число, которое потом позволит привести знаменатель к нужному виду (без корней). Так, если мы выполним умножение 1 x + 1 на x + 1 , мы получим дробь x + 1 x + 1 · x + 1 и сможем заменить выражение в ее знаменателе на x + 1 . Так мы преобразовали 1 x + 1 в x + 1 x + 1 , избавившись от иррациональности.
Иногда преобразования, которые нужно выполнить, бывают довольно специфическими. Разберем несколько наглядных примеров.
Видео:Алгебра 8 класс. Избавляемся от иррациональности в знаменателеСкачать

Как преобразовать выражение в знаменателе дроби
Как мы уже говорили, проще всего выполнить преобразование знаменателя.
Условие: освободите дробь 1 2 · 18 + 50 от иррациональности в знаменателе.
Решение
Для начала раскроем скобки и получим выражение 1 2 · 18 + 2 · 50 . Используя основные свойства корней, перейдем к выражению 1 2 · 18 + 2 · 50 . Вычисляем значения обоих выражений под корнями и получаем 1 36 + 100 . Здесь уже можно извлечь корни. В итоге у нас получилась дробь 1 6 + 10 , равная 1 16 . На этом преобразования можно закончить.
Запишем ход всего решения без комментариев:
1 2 · 18 + 50 = 1 2 · 18 + 2 · 50 = = 1 2 · 18 + 2 · 50 = 1 36 + 100 = 1 6 + 10 = 1 16
Ответ: 1 2 · 18 + 50 = 1 16 .
Условие: дана дробь 7 — x ( x + 1 ) 2 . Избавьтесь от иррациональности в знаменателе.
Решение
Ранее в статье, посвященной преобразованиям иррациональных выражений с применением свойств корней, мы упоминали, что при любом A и четных n мы можем заменить выражение A n n на | A | на всей области допустимых значений переменных. Следовательно, в нашем случае мы можем записать так: 7 — x x + 1 2 = 7 — x x + 1 . Таким способом мы освободились от иррациональности в знаменателе.
Ответ: 7 — x x + 1 2 = 7 — x x + 1 .
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Избавление от иррациональности методом умножения на корень
Если в знаменателе дроби находится выражение вида A и само выражение A не имеет знаков корней, то мы можем освободиться от иррациональности, просто умножив обе части исходной дроби на A . Возможность этого действия определяется тем, что A на области допустимых значений не будет обращаться в 0 . После умножения в знаменателе окажется выражение вида A · A , которое легко избавить от корней: A · A = A 2 = A . Посмотрим, как правильно применять этот метод на практике.
Условие: даны дроби x 3 и — 1 x 2 + y — 4 . Избавьтесь от иррациональности в их знаменателях.
Решение
Выполним умножение первой дроби на корень второй степени из 3 . Получим следующее:
x 3 = x · 3 3 · 3 = x · 3 3 2 = x · 3 3
Во втором случае нам надо выполнить умножение на x 2 + y — 4 и преобразовать получившееся выражение в знаменателе:
— 1 x 2 + y — 4 = — 1 · x 2 + y — 4 x 2 + y — 4 · x 2 + y — 4 = = — x 2 + y — 4 x 2 + y — 4 2 = — x 2 + y — 4 x 2 + y — 4
Ответ: x 3 = x · 3 3 и — 1 x 2 + y — 4 = — x 2 + y — 4 x 2 + y — 4 .
Если же в знаменателе исходной дроби имеются выражения вида A n m или A m n (при условии натуральных m и n ), нам нужно выбрать такой множитель, чтобы получившееся выражение можно было преобразовать в A n n · k или A n · k n (при натуральном k ). После этого избавиться от иррациональности будет несложно. Разберем такой пример.
Условие: даны дроби 7 6 3 5 и x x 2 + 1 4 15 . Избавьтесь от иррациональности в знаменателях.
Решение
Нам нужно взять натуральное число, которое можно разделить на пять, при этом оно должно быть больше трех. Чтобы показатель 6 стал равен 5 , нам надо выполнить умножение на 6 2 5 . Следовательно, обе части исходной дроби нам придется умножить на 6 2 5 :
7 6 3 5 = 7 · 6 2 5 6 3 5 · 6 2 5 = 7 · 6 2 5 6 3 5 · 6 2 = 7 · 6 2 5 6 5 5 = = 7 · 6 2 5 6 = 7 · 36 5 6
Во втором случае нам потребуется число, большее 15 , которое можно разделить на 4 без остатка. Берем 16 . Чтобы получить такой показатель степени в знаменателе, нам надо взять в качестве множителя x 2 + 1 4 . Уточним, что значение этого выражения не будет 0 ни в каком случае. Вычисляем:
x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 15 · x 2 + 1 4 = = x · x 2 + 1 4 x 2 + 1 4 16 = x · x 2 + 1 4 x 2 + 1 4 4 4 = x · x 2 + 1 4 x 2 + 1 4
Ответ: 7 6 3 5 = 7 · 36 5 6 и x x 2 + 1 4 15 = x · x 2 + 1 4 x 2 + 1 4 .
Видео:Сможешь избавиться от иррациональности? Обычный корень и кубическийСкачать

Избавление от иррациональности методом умножения на сопряженное выражение
Следующий метод подойдет для тех случаев, когда в знаменателе исходной дроби стоят выражения a + b , a — b , a + b , a — b , a + b , a — b . В таких случаях нам надо взять в качестве множителя сопряженное выражение. Поясним смысл этого понятия.
Для первого выражения a + b сопряженным будет a — b , для второго a — b – a + b . Для a + b – a — b , для a — b – a + b , для a + b – a — b , а для a — b – a + b . Иначе говоря, сопряженное выражение – это такое выражение, в котором перед вторым слагаемым стоит противоположный знак.
Давайте рассмотрим, в чем именно заключается данный метод. Допустим, у нас есть произведение вида a — b · a + b . Оно может быть заменено разностью квадратов a — b · a + b = a 2 — b 2 , после чего мы переходим к выражению a − b , лишенному радикалов. Таким образом, мы освободились от иррациональности в знаменателе дроби с помощью умножения на сопряженное выражение. Возьмем пару наглядных примеров.
Условие: избавьтесь от иррациональности в выражениях 3 7 — 3 и x — 5 — 2 .
Решение
В первом случае берем сопряженное выражение, равное 7 + 3 . Теперь производим умножение обеих частей исходной дроби на него:
3 7 — 3 = 3 · 7 + 3 7 — 3 · 7 + 3 = 3 · 7 + 3 7 2 — 3 2 = = 3 · 7 + 3 7 — 9 = 3 · 7 + 3 — 2 = — 3 · 7 + 3 2
Во втором случае нам понадобится выражение — 5 + 2 , которое является сопряженным выражению — 5 — 2 . Умножим на него числитель и знаменатель и получим:
x — 5 — 2 = x · — 5 + 2 — 5 — 2 · — 5 + 2 = = x · — 5 + 2 — 5 2 — 2 2 = x · — 5 + 2 5 — 2 = x · 2 — 5 3
Возможно также перед умножением выполнить преобразование: если мы вынесем из знаменателя сначала минус, считать будет удобнее:
x — 5 — 2 = — x 5 + 2 = — x · 5 — 2 5 + 2 · 5 — 2 = = — x · 5 — 2 5 2 — 2 2 = — x · 5 — 2 5 — 2 = — x · 5 — 2 3 = = x · 2 — 5 3
Ответ: 3 7 — 3 = — 3 · 7 + 3 2 и x — 5 — 2 = x · 2 — 5 3 .
Важно обратить внимание на то, чтобы выражение, полученное в итоге умножения, не обращалось в 0 ни при каких переменных из области допустимых значений для данного выражения.
Условие: дана дробь x x + 4 . Преобразуйте ее так, чтобы в знаменателе не было иррациональных выражений.
Решение
Начнем с нахождения области допустимых значений переменной x . Она определена условиями x ≥ 0 и x + 4 ≠ 0 . Из них можно сделать вывод, что нужная область представляет собой множество x ≥ 0 .
Сопряженное знаменателю выражение представляет собой x — 4 . Когда мы можем выполнить умножение на него? Только в том случае, если x — 4 ≠ 0 . На области допустимых значений это будет равносильно условию x≠16. В итоге мы получим следующее:
x x + 4 = x · x — 4 x + 4 · x — 4 = = x · x — 4 x 2 — 4 2 = x · x — 4 x — 16
Если x будет равен 16 , то мы получим:
x x + 4 = 16 16 + 4 = 16 4 + 4 = 2
Следовательно, x x + 4 = x · x — 4 x — 16 при всех значениях x , принадлежащих области допустимых значений, за исключением 16 . При x = 16 получим x x + 4 = 2 .
Ответ: x x + 4 = x · x — 4 x — 16 , x ∈ [ 0 , 16 ) ∪ ( 16 , + ∞ ) 2 , x = 16 .
Видео:как избавиться от иррациональности в знаменателеСкачать

Преобразование дробей с иррациональностью в знаменателе с использованием формул суммы и разности кубов
В предыдущем пункте мы выполняли умножение на сопряженные выражения с тем, чтобы потом использовать формулу разности квадратов. Иногда для избавления от иррациональности в знаменателе полезно воспользоваться и другими формулами сокращенного умножения, например, разностью кубов a 3 − b 3 = ( a − b ) · ( a 2 + a · b + b 2 ) . Этой формулой удобно пользоваться, если в знаменателе исходной дроби стоят выражения с корнями третьей степени вида A 3 — B 3 , A 3 2 + A 3 · B 3 + B 3 2 . и т.д. Чтобы применить ее, нам нужно умножить знаменатель дроби на неполный квадрат суммы A 3 2 + A 3 · B 3 + B 3 2 или разность A 3 — B 3 . Точно также можно применить и формулу суммы a 3 + b 3 = ( а ) · ( a 2 − a · b + b 2 ) .
Условие: преобразуйте дроби 1 7 3 — 2 3 и 3 4 — 2 · x 3 + x 2 3 так, чтобы избавиться от иррациональности в знаменателе.
Решение
Для первой дроби нам нужно воспользоваться методом умножения обеих частей на неполный квадрат суммы 7 3 и 2 3 , поскольку потом мы сможем выполнить преобразование с помощью формулы разности кубов:
1 7 3 — 2 3 = 1 · 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 — 2 3 · 7 3 2 + 7 3 · 2 3 + 2 3 2 = = 7 3 2 + 7 3 · 2 3 + 2 3 2 7 3 3 — 2 3 3 = 7 2 3 + 7 · 2 3 + 2 2 3 7 — 2 = = 49 3 + 14 3 + 4 3 5
Во второй дроби представим знаменатель как 2 2 — 2 · x 3 + x 3 2 . В этом выражении виден неполный квадрат разности 2 и x 3 , значит, мы можем умножить обе части дроби на сумму 2 + x 3 и воспользоваться формулой суммы кубов. Для этого должно быть соблюдено условие 2 + x 3 ≠ 0 , равносильное x 3 ≠ — 2 и x ≠ − 8 :
3 4 — 2 · x 3 + x 2 3 = 3 2 2 — 2 · x 3 + x 3 2 = = 3 · 2 + x 3 2 2 — 2 · x 3 + x 3 2 · 2 + x 3 = 6 + 3 · x 3 2 3 + x 3 3 = = 6 + 3 · x 3 8 + x
Подставим в дробь — 8 и найдем значение:
3 4 — 2 · 8 3 + 8 2 3 = 3 4 — 2 · 2 + 4 = 3 4
Подведем итоги. При всех x , входящих в область значений исходной дроби (множество R ), за исключением — 8 , мы получим 3 4 — 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x . Если x = 8 , то 3 4 — 2 · x 3 + x 2 3 = 3 4 .
Ответ: 3 4 — 2 · x 3 + x 2 3 = 6 + 3 · x 3 8 + x , x ≠ 8 3 4 , x = — 8 .
Видео:Уравнения с корнем. Иррациональные уравнения #shortsСкачать

Последовательное применение различных способов преобразования
Часто на практике встречаются более сложные примеры, когда мы не можем освободиться от иррациональности в знаменателе с помощью всего одного метода. Для них нужно последовательно выполнять несколько преобразований или подбирать нестандартные решения. Возьмем одну такую задачу.
Условие: преобразуйте 5 7 4 — 2 4 , чтобы избавиться от знаков корней в знаменателе.
Решение
Выполним умножение обеих частей исходной дроби на сопряженное выражение 7 4 + 2 4 с ненулевым значением. Получим следующее:
5 7 4 — 2 4 = 5 · 7 4 + 2 4 7 4 — 2 4 · 7 4 + 2 4 = = 5 · 7 4 + 2 4 7 4 2 — 2 4 2 = 5 · 7 4 + 2 4 7 — 2
А теперь применим тот же способ еще раз:
5 · 7 4 + 2 4 7 — 2 = 5 · 7 4 + 2 4 · 7 + 2 7 — 2 · 7 + 2 = = 5 · 7 4 + 2 4 · 7 + 2 7 2 — 2 2 = 5 · 7 4 + 7 4 · 7 + 2 7 — 2 = = 5 · 7 4 + 2 4 · 7 + 2 5 = 7 4 + 2 4 · 7 + 2
Ответ: 5 7 4 — 2 4 = 7 4 + 2 4 · 7 + 2 .
Видео:Как избавиться от иррациональности в знаменателеСкачать

Алгебра
План урока:
Видео:Избавление от иррациональности в знаменателе дробиСкачать

Иррациональные уравнения
Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.
Приведем примеры иррациональных ур-ний:
Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести
Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.
Видео:8 причин прокрастинации - советы для студентов и школьников от лектора с физтехаСкачать

Простейшие иррациональные уравнения
Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:
где а – некоторое число (константа), f(x) – рациональное выражение.
Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:
Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии
n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.
Пример. Решите ур-ние
Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.
Ответ: корней нет.
Пример. Решите ур-ние
Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:
Пример. Решите ур-ние
Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:
Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).
Пример. Найдите решение ур-ния
Решение. Возведем обе части в пятую степень:
х 2 – 14х – 32 = 0
Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:
D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324
Итак, нашли два корня: (– 2) и 16.
Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.
Пример. Решите ур-ние
Решение. Возводим обе части во вторую степень:
х – 2 = х 2 – 8х + 16
D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9
Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):
при х = 3 х – 4 = 3 – 4 = – 1
при х = 6 6 – 4 = 6 – 4 = 2
Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.
Пример. Решите ур-ние
Решение. Здесь используется кубический корень, а потому возведем обе части в куб:
3х 2 + 6х – 25 = (1 – х) 3
3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3
Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:
Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.
Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:
при х = 2 1 – х = 1 – 2 = – 1
Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:
Видео:Избавиться от иррациональности в знаменателе 1/(√2+√3+√5)Скачать

Уравнения с двумя квадратными корнями
Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.
Пример. Решите ур-ние
Решение. Перенесем вправо один из корней:
Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:
Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:
Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:
(2х – 4) 2 = 13 – 3х
4х 2 – 16х + 16 = 13 – 3х
4х 2 – 13х + 3 = 0
D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121
Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:
Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3
На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.
Видео:Урок 29 (осн). Задачи по теме "Плотность" - 1Скачать

Введение новых переменных
Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние
Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.
Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:
х 1/2 – 10х 1/4 + 9 = 0
Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид
Это квадратное ур-ние. Найдем его корни:
D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64
Получили два значения t. Произведем обратную замену:
х 1/4 = 1 или х 1/4 = 9
Возведем оба ур-ния в четвертую степень:
(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4
х = 1 или х = 6561
Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:
В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.
Пример. Решите ур-ние
х 1/3 + 5х 1/6 – 24 = 0
Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:
Его корни вычислим через дискриминант:
D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121
Далее проводим обратную заменуx 1/6 = t:
х 1/6 = – 8 или х 1/6 = 3
Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.
Видео:8 класс, 38 урок, Иррациональные уравненияСкачать

Замена иррационального уравнения системой
Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.
Пример. Решите ур-ние
Решение. Заменим первый корень буквой u, а второй – буквой v:
Исходное ур-ние примет вид
Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:
Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:
Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:
(х + 6) + (11 – х) = u 3 + v 2
из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:
17 = u 3 + (5 – u) 2
17 = u 3 + u 2 – 10u + 25
u 3 + u 2 – 10u + 8 = 0
Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа
подставим полученные значения в (4):
x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3
x + 6 = 1 или х + 6 = 8 или х + 6 = – 64
х = – 5 или х = 2 или х = – 70
Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим
Корень подошел. Проверяем следующее число, х = 2:
Корень снова оказался верным. Осталась последняя проверка, для х = – 70:
Итак, все три числа прошли проверку.
Видео:Освобождение от иррациональности (радикалов) в знаменателе дробиСкачать

Уравнения с «вложенными» радикалами
Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:
При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:
Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:
Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:
Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:
Возводим в квадрат и получаем:
х 2 + 40 = (х + 4) 2
х 2 + 40 = х 2 + 8х + 16
И снова нелишней будет проверка полученного корня:
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Иррациональные неравенства
По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:
Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.
Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида
Может быть справедливым только тогда, когда
То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во
при четном n можно заменить системой нер-в
Пример. При каких значениях x справедливо нер-во
Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:
х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)
Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во
чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.
Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.
Пример. Найдите решение нер-ва
Решение. Всё очень просто – надо всего лишь возвести обе части в куб:
x 2 – 7x– 8 2 – 7x– 8 = 0
D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81
Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:
Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.
Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.
Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид
Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.
Пример. Решите нер-во
Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):
И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:
D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9
Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.
стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:
f(x) > 0 (подкоренное выражение не может быть отрицательным);
g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).
Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.
Пример. Решите нер-во
Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим
х 2 – 10х + 21 > 0(1)
Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:
Во-вторых, выражение 4 – х не может быть отрицательным:
Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):
Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:
Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:
Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:
Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:
Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).
Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3
💡 Видео
Избавиться от иррациональности в знаменателе ➜ 1/(∜2+∜3)Скачать

Степень числа с иррациональным показателем. 11 класс.Скачать

Преобразование иррациональных выражений. 11 класс.Скачать

Избавиться от иррациональности в знаменателе ➜ 1/(1+√2+√3)Скачать































































































































