Как найти угол между линиями заданными уравнениями

Угол между прямыми
Содержание
  1. Определение угла между прямыми
  2. Угол между прямыми на плоскости
  3. Угол между прямыми заданными уравнениями с угловым коэффициентом
  4. Угол между прямыми через направляющие векторы этих прямых
  5. Угол между прямыми через векторы нормалей этих прямых
  6. Угол между прямыми через направляющий вектор и вектор нормали этих прямых
  7. Примеры задач на вычисления угла между прямыми на плоскости
  8. Угол между прямыми в пространстве
  9. Угол между прямыми онлайн
  10. Предупреждение
  11. 1. Угол между прямыми на плоскости
  12. Прямые заданы каноническими уравнениями
  13. 1.1. Определение угла между прямыми
  14. 1.2. Условие параллельности прямых
  15. 1.3. Условие перпендикулярности прямых
  16. Прямые заданы общими уравнениями
  17. 1.4. Определение угла между прямыми
  18. 1.5. Условие параллельности прямых
  19. 1.6. Условие перпендикулярности прямых
  20. 2. Угол между прямыми в пространстве
  21. 2.1. Определение угла между прямыми
  22. 2.2. Условие параллельности прямых
  23. 2.3. Условие перпендикулярности прямых
  24. VMath
  25. Инструменты сайта
  26. Основное
  27. Навигация
  28. Информация
  29. Действия
  30. Содержание
  31. Длина дуги, угол между линиями, площадь области на поверхности
  32. Краткие теоретические сведения
  33. Решение задач
  34. Задача 1 (почти Феденко 684)
  35. Решение задачи 1
  36. Задача 2 (почти Феденко 682)
  37. Решение задачи 2
  38. Задача 3
  39. Решение задачи 3
  40. Задача 4 (Дополнение к Задаче 3)
  41. Задача 5 (Феденко 683)
  42. 📹 Видео

Видео:Видеоурок "Угол между прямыми"Скачать

Видеоурок "Угол между прямыми"

Определение угла между прямыми

Как найти угол между линиями заданными уравнениями

Видео:Угол между прямыми в пространстве. 10 класс.Скачать

Угол между прямыми в пространстве. 10 класс.

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

то угол между ними можно найти, используя формулу:

Если знаменатель равен нулю (1 + k 1· k 2 = 0), то прямые перпендикулярны.

Как найти угол между линиями заданными уравнениями

Соответственно легко найти угол между прямыми

tg γ = tg ( α — β ) = tg α — tg β 1 + tg α ·tg β = k 1 — k 2 1 + k 1· k 2

Угол между прямыми через направляющие векторы этих прямых

Как найти угол между линиями заданными уравнениями

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано параметрически

x = l t + a y = m t + b

то вектор направляющей имеет вид

Если уравнение прямой задано как

то для вычисления направляющего вектора, можно взять две точки на прямой.
Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = — C B значит точка на прямой имеет координаты K(0, — C B ), при y = 0 => x = — C A значит точка на прямой имеет координаты M(- C A , 0). Вектор направляющей KM = .

Если дано каноническое уравнение прямой

то вектор направляющей имеет вид

Если задано уравнение прямой с угловым коэффициентом

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b ), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b ). Вектор направляющей KM =

Угол между прямыми через векторы нормалей этих прямых

Как найти угол между линиями заданными уравнениями

cos φ = | a · b | | a | · | b |

Если уравнение прямой задано как

то вектор нормали имеет вид

Если задано уравнение прямой с угловым коэффициентом

то вектор нормали имеет вид

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

Как найти угол между линиями заданными уравнениями

sin φ = | a · b | | a | · | b |

Видео:14. Угол между прямыми в пространствеСкачать

14. Угол между прямыми в пространстве

Примеры задач на вычисления угла между прямыми на плоскости

Как найти угол между линиями заданными уравнениями

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ = k 1 — k 2 1 + k 1· k 2 = 2 — (-3) 1 + 2·(-3) = 5 -5 = 1

Как найти угол между линиями заданными уравнениями

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор , для второй прямой направляющий вектор

cos φ = |1 · 2 + 2 · 1| 1 2 + 2 2 · 2 2 + 1 2 = 4 5 · 5 = 0.8

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2 x + 3 y = 0 => y = — 2 3 x ( k 1 = — 2 3 )

x — 2 3 = y 4 => y = 4 3 x — 8 3 ( k 2 = 4 3 )

tg γ = k 1 — k 2 1 + k 1· k 2 = — 2 3 — 4 3 1 + (- 2 3 )· 4 3 = — 6 3 1 — 8 9 = 18

Видео:Угол между кривымиСкачать

Угол между кривыми

Угол между прямыми в пространстве

cos φ = | a · b | | a | · | b |

Если дано каноническое уравнение прямой

то направляющий вектор имеет вид

Если уравнение прямой задано параметрически

x = l t + a y = m t + b z = n t + c

то направляющий вектор имеет вид

Решение: Так как прямые заданы параметрически, то — направляющий вектор первой прямой, направляющий вектор второй прямой.

cos φ = |2 · 1 + 1 · (-2) + (-1) · 0| 2 2 + 1 2 + (-1) 2 · 1 2 + (-2) 2 + 0 2 = 0 6 · 5 = 0

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор .

Преобразуем второе уравнение к каноническому вид.

1 — 3 y = 1 + y -1/3 = y — 1/3 -1/3

3 z — 5 2 = z — 5/3 2/3

Получено уравнение второй прямой в канонической форме

x — 2 -2 = y — 1/3 -1/3 = z — 5/3 2/3

— направляющий вектор второй прямой.

cos φ = 3·(-2) + 4·(- 1 3 ) + 5· 2 3 3 2 + 4 2 + 5 2 · (-2) 2 + (- 1 3 ) 2 + ( 2 3 ) 2 = -6 — 4 3 + 10 3 9 + 16 + 25 · 4 + 1 9 + 4 9 = -4 50 · 41/9 = 12 5 82 = 6 82 205

Видео:Угол между прямыми в пространстве. 11 класс.Скачать

Угол между прямыми в пространстве. 11 класс.

Угол между прямыми онлайн

С помощью этого онлайн калькулятора можно найти угол между прямыми. Дается подробное решение с пояснениями. Для вычисления угла между прямыми, задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), выберите вид уравнения (канонический, параметрический, общий (для двухмерного пространства)), введите данные в ячейки и нажмите на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Видео:Найти угол между плоскостямиСкачать

Найти угол между плоскостями

1. Угол между прямыми на плоскости

Прямые заданы каноническими уравнениями

1.1. Определение угла между прямыми

Пусть в двухмерном пространстве прямые L1 и L2 заданы каноническими уравнениями

Как найти угол между линиями заданными уравнениями,(1.1)
Как найти угол между линиями заданными уравнениями,(1.2)

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 (рис.1).

Как найти угол между линиями заданными уравнениями,
Как найти угол между линиями заданными уравнениями,(1.3)

Из выражения (1.3) получим:

Как найти угол между линиями заданными уравнениямиКак найти угол между линиями заданными уравнениями.(1.4)

Таким образом, из формулы (1.4) можно найти угол между прямыми L1 и L2. Как видно из Рис.1 пересекающиеся прямые образуют смежные углы φ и φ1. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (1.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

Как найти угол между линиями заданными уравнениями.(1.5)
Как найти угол между линиями заданными уравнениями.(1.6)
Как найти угол между линиями заданными уравнениями.

Упростим и решим:

Как найти угол между линиями заданными уравнениями.
Как найти угол между линиями заданными уравнениями

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

Как найти угол между линиями заданными уравнениями

Угол между прямыми равен:

Как найти угол между линиями заданными уравнениями

1.2. Условие параллельности прямых

Пусть φ=0. Тогда cosφ=1. При этом выражение (1.4) примет следующий вид:

Как найти угол между линиями заданными уравнениями.(1.7)

Сделаем преобразования с выражением (1.7):

Как найти угол между линиями заданными уравнениями,
Как найти угол между линиями заданными уравнениями,
Как найти угол между линиями заданными уравнениямиКак найти угол между линиями заданными уравнениями,
Как найти угол между линиями заданными уравнениями,
Как найти угол между линиями заданными уравнениями,
Как найти угол между линиями заданными уравнениями.(1.8)

Таким образом условие параллельности прямых L1 и L2 имеет вид (1.8). Если m2≠0 и p2≠0, то (1.8) можно записать так:

Как найти угол между линиями заданными уравнениями.(1.9)

Пример 2. Определить, параллельны ли прямые

Как найти угол между линиями заданными уравнениями.(1.10)
Как найти угол между линиями заданными уравнениями.(1.11)
Как найти угол между линиями заданными уравнениями, Как найти угол между линиями заданными уравнениями.

Удовлетворяется равенство (1.9), следовательно прямые (1.10) и (1.11) параллельны.

Ответ. Прямые (1.10) и (1.11) параллельны.

1.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (1.4) примет следующий вид:

Как найти угол между линиями заданными уравнениями.(1.12)

Правая часть выражения (1.12) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Как найти угол между линиями заданными уравнениями.(1.13)

Пример 3. Определить, перпендикулярны ли прямые

Как найти угол между линиями заданными уравнениями(1.14)
Как найти угол между линиями заданными уравнениями.(1.15)
Как найти угол между линиями заданными уравнениями.(16)

Удовлетворяется условие (1.13), следовательно прямые (1.14) и (1.15) перпендикулярны.

Ответ. Прямые (1.14) и (1.15) перпендикулярны.

Прямые заданы общими уравнениями

1.4. Определение угла между прямыми

Пусть две прямые L1 и L2 заданы общими уравнениями

Как найти угол между линиями заданными уравнениями(1.17)
Как найти угол между линиями заданными уравнениями.(1.18)

Так как нормальным вектором прямой L1 является n1=(A1, B1), а нормальным вектором прямой L2 является n2=(A2, B2), то задача об определении угла между прямыми L1 и L2 сводится к определению угла φ между векторами n1 и n2 (Рис.2).

Как найти угол между линиями заданными уравнениями.

Из определения скалярного произведения двух векторов, имеем:

Как найти угол между линиями заданными уравнениями.(1.19)

Из уравнения (19) получим

Как найти угол между линиями заданными уравнениямиКак найти угол между линиями заданными уравнениями.(1.20)

Пример 4. Найти угол между прямыми

5x1−2x2+3=0(1.21)
x1+3x2−1=0.(1.22)
Как найти угол между линиями заданными уравнениями(23)
Как найти угол между линиями заданными уравнениями

Упростим и решим:

Как найти угол между линиями заданными уравнениями
Как найти угол между линиями заданными уравнениями

Данный угол больше 90°. Найдем минимальный угол между прямыми. Для этого вычтем этот угол из 180:

Как найти угол между линиями заданными уравнениями

1.5. Условие параллельности прямых

Так как угол между паралленьными прямыми равен нулю, то φ=0, cos(φ)=1. Тогда сделав преобразования, представленные выше для канонических уравнений прямых получим условие параллельности:

Как найти угол между линиями заданными уравнениями.(1.24)

С другой стороны условие параллельности прямых L1 и L2 эквивалентно условию коллинеарности векторов n1 и n2 и можно представить так:

Как найти угол между линиями заданными уравнениями.(1.25)

Как видим уравнения (1.24) и (1.25) эквивалентны при A2≠0 и B2≠0. Если в координатах нормальных векторов существует нулевой коэффициент, то нужно использовать уравнение (1.24).

Пример 5. Определить, параллельны ли прямые

4x+2y+2=0(1.26)

Удовлетворяется равенство (1.24), следовательно прямые (1.26) и (1.27) параллельны.

Ответ. Прямые (1.26) и (1.27) параллельны.

1.6. Условие перпендикулярности прямых

Условие перпендикулярности прямых L1 и L2 можно извлекать из формулы (1.20), подставляя cos(φ)=0. Тогда скалярное произведение (n1,n2)=0. Откуда

A1A2+B1B2=0.(1.28)

Таким образом условие перпендикулярности прямых определяется равенством (1.28).

Пример 6. Определить, перпендикулярны ли прямые

4x−1y+2=0(1.29)
2x+8y−14=0.(1.30)

Удовлетворяется равенство (1.28), следовательно прямые (1.29) и (1.30) перпендикулярны.

Ответ. Прямые (1.29) и (1.30) перпендикулярны.

Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

2. Угол между прямыми в пространстве

2.1. Определение угла между прямыми

Пусть в пространстве прямые L1 и L2 заданы каноническими уравнениями

Как найти угол между линиями заданными уравнениями,(2.1)
Как найти угол между линиями заданными уравнениями,(2.2)

Задача об определении угла между прямыми L1 и L2 сводится к задаче об определении угла между направляющими векторами q1 и q2 .

Как найти угол между линиями заданными уравнениями,(2.3)

Из выражения (2.3) получим:

Как найти угол между линиями заданными уравнениямиКак найти угол между линиями заданными уравнениями.(2.4)

Таким образом, из формулы (2.4) можно найти угол между прямыми L1 и L2. Если найденный угол больше 90°, то можно найти минимальный угол между прямыми L1 и L2: φ1=180-φ.

Из формулы (2.4) можно вывести условия параллельности и перпендикулярности двух прямых.

Пример 1. Определить угол между прямыми

Как найти угол между линиями заданными уравнениями.(2.5)
Как найти угол между линиями заданными уравнениями(2.6)
Как найти угол между линиями заданными уравнениямиКак найти угол между линиями заданными уравнениями.
Как найти угол между линиями заданными уравнениями.

Упростим и решим:

Как найти угол между линиями заданными уравнениями.
Как найти угол между линиями заданными уравнениями

Угол между прямыми равен:

Как найти угол между линиями заданными уравнениями

2.2. Условие параллельности прямых

Условие параллельности прямых эквивалентно условию коллинеарности направляющих векторов q1 и q2, т.е. соответствующие координаты этих векторов пропорциональны. Пусть

m1=αm2, p1=αp2, l1=αl2(2.7)

где α − некоторое число. Тогда соответствующие координаты векторов q1 и q2 пропорциональны, и, следовательно прямые L1 и L2 параллельны.

Условие параллельности прямых можно представить и так:

Как найти угол между линиями заданными уравнениями(2.8)

Отметим, что любую пропорцию Как найти угол между линиями заданными уравненияминужно понимать как равенство ad=bc.

Пример 2. Определить, параллельны ли прямые

Как найти угол между линиями заданными уравнениями.(2.9)
Как найти угол между линиями заданными уравнениями.(2.10)
Как найти угол между линиями заданными уравнениями, Как найти угол между линиями заданными уравнениями, Как найти угол между линиями заданными уравнениями.

Удовлетворяется равенство (2.8) (или (2.7)), следовательно прямые (2.9) и (2.10) параллельны.

Ответ. Прямые (2,9) и (2,10) параллельны.

Пример 3. Определить, параллельны ли прямые

Как найти угол между линиями заданными уравнениями.(2.11)
Как найти угол между линиями заданными уравнениями.(2.12)
Как найти угол между линиями заданными уравнениями.(2.13)

Выражение (2.13) нужно понимать так:

Как найти угол между линиями заданными уравнениями, Как найти угол между линиями заданными уравнениями, Как найти угол между линиями заданными уравнениями.(2.14)

Как мы видим из (2.14) условия (2.13) выполняются. Следовательно прямые (2.11) и (2.12) параллельны.

Ответ. Прямые (2.11) и (2.12) параллельны.

2.3. Условие перпендикулярности прямых

Пусть φ=90°. Тогда cosφ=0. При этом выражение (2.4) примет следующий вид:

Как найти угол между линиями заданными уравнениями.(2.15)

Правая часть выражения (2.15) равно нулю тогда и только тогда, когда числитель равен нулю. Следовательно, для того, чтобы прямые L1 и L2 были перпендикулярны , должно выполняться условие

Как найти угол между линиями заданными уравнениями.(2.16)

Пример 3. Определить, перпендикулярны ли прямые

Как найти угол между линиями заданными уравнениями(2.17)
Как найти угол между линиями заданными уравнениями.(2.18)
Как найти угол между линиями заданными уравнениямиКак найти угол между линиями заданными уравнениями.(2.19)

Удовлетворяется условие (2.16), следовательно прямые (2.17) и (2.18) перпендикулярны.

Ответ. Прямые (2.17) и (2.18) перпендикулярны.

Видео:9. Угол между плоскостями Условия параллельности и перпендикулярности плоскостейСкачать

9. Угол между плоскостями Условия параллельности и перпендикулярности плоскостей

VMath

Инструменты сайта

Основное

Информация

Действия

Содержание

Видео:21. Угол между прямой и плоскостьюСкачать

21. Угол между прямой и плоскостью

Длина дуги, угол между линиями, площадь области на поверхности

Видео:Видеоурок "Уравнение прямой с угловым коэффициентом"Скачать

Видеоурок "Уравнение прямой с угловым коэффициентом"

Краткие теоретические сведения

Зная первую квадратичную форму поверхности, мы можем решить три задачи:

2. Найти угол между двумя линиями на поверхности в точке их пересечения:
Если две линии, лежащие на поверхности с первой квадратичной формой $I_1=E,du^2+2F,du,dv+G,dv^2$, пересекаются в некоторой точке $P$ поверхности и имеют в этой точке направления $(du:dv)$ и $(delta u:delta v)$, то косинус угла между ними определяется по формуле: begin mbox,varphi = displaystylefrac<sqrtcdotsqrt> \ mbox,varphi = displaystylefrac<sqrtcdotsqrt>. end Говорим, что кривая на поверхности $vec=vec(u,v)$ в точке $(u,v)$ имеет направление $(du:dv)$, если вектор $dvec=vec_udu+vec_vdv$ является касательным вектором кривой в этой точке.

3. Найти площадь области $Omega$ на поверхности: begin S = iintlimits_sqrtdu,dv, end где $D$ — прообраз $Omega$ на плоскости $(u,v)$.

Видео:Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

Решение задач

Задача 1 (почти Феденко 684)

Найти длину дуги кривой, заданной уравнениями $v=3u$ на поверхности с первой квадратичной формой begin I_1=du^2+frac19,mbox^2u,dv^2 end между точками $M_1(u_1,v_1)$ и $M_2(u_2,v_2)$.

Решение задачи 1

Задача 2 (почти Феденко 682)

Под каким углом пересекаются линии $$ u+v=a, ,, u-v=a,$$ лежащие на поверхности: begin x=u,mboxv, ,, y=u,mbox,v, ,, z=au. end

Решение задачи 2

Первая квадратичная форма данной поверхности: begin I_1=(1+a^2),du^2+u^2,dv^2. end

Данные линии пересекаются в точке: begin left < beginu+v&=a,\ u-v&=a. end right. quad Rightarrow quad P(u=a,v=0). end

Направления данных линий: begin du+dv=0, ,, delta u-delta v=0,, Rightarrow end begin du = -dv, ,, delta u = delta v. end

Задача 3

Дана поверхность: $$z=axy.$$ Найти углы между координатными линиями.

Решение задачи 3

Координатные линии на данной поверхности задаются уравнениями: $x=x_0$, $y=y_0$. Запишем коэффициенты первой квадратичной формы: begin &E=1+(z_x)^2=1+a^2y^2,\ &F=z_xz_y=a^2xy, \ &G=1+(z_y)^2=1+a^2x^2. end

Направления координатных линий: begin &x=x_0 ,, Rightarrow dx=0,\ &y=y_0 ,, Rightarrow delta y=0. end

Задача 4 (Дополнение к Задаче 3)

Как мы вывели в примере выше, угол между координатными линиями равен

Из формулы следует, что координатная сеть поверхности ортогональна (координатные линии пересекаются под прямым углом), тогда и только тогда, когда $F$=0.

Задача 5 (Феденко 683)

Найти периметр и внутренние углы криволинейного треугольника $$ u=pm av^2/2,,, v=1,$$ расположенного на поверхности $$I_1=du^2+(u^2+a^2)dv^2.$$

Как найти угол между линиями заданными уравнениямиВершины треугольника: begin &A(u=0,, v=0),\ &B(u=-frac,, v=1), \ &C(u=frac,, v=1). end

Зная координаты вершин и уравнения сторон, найдем длины дуг, составляющих стороны треугольника $ABC$, и углы между линиями в точках их пересечения, то есть в вершинах треугольника: begin &s_1 = |BC| = a,\ &s_2 = |AC| = frac76 a,\ &s_3 = |BC| = frac76 a,\ &P_=s_1+s_2+s_3=fraca. end begin &mbox,A = 1, ,, mbox,B=mbox,C=frac23. end

📹 Видео

§16 Угол между двумя прямыми на плоскостиСкачать

§16 Угол между двумя прямыми на плоскости

Угол между прямыми в пространстве. Практическая часть. 10 класс.Скачать

Угол между прямыми в пространстве. Практическая часть. 10 класс.

10 класс, 21 урок, Угол между прямой и плоскостьюСкачать

10 класс, 21 урок, Угол между прямой и плоскостью

10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

10 класс, 43 урок, Уравнение касательной к графику функции

Математика без Ху!ни. Взаимное расположение прямой и плоскости.Скачать

Математика без Ху!ни.  Взаимное расположение прямой и плоскости.

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Угол между прямой и плоскостью. Видеоурок по геометрии 10 классСкачать

Угол между прямой и плоскостью. Видеоурок по геометрии 10 класс

Угол между прямыми в пространстве. Практическая часть. 11 класс.Скачать

Угол между прямыми в пространстве. Практическая часть. 11 класс.

Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.
Поделиться или сохранить к себе: