Угловая скорость
Проведем координатную ось X через центр окружности (начало координат), вдоль которой движется точка (рис. 1.86). Тогда положение точки А на окружности в любой момент времени однозначно определяется углом φ между осью X и радиусом-вектором , проведенным из центра окружности к движущейся точке. Углы будем выражать в радианах(1).
При движении точки угол φ изменяется. Обозначим изменение угла за время Δt через Δφ. Для нахождения положения точки в любой момент времени надо знать угол φ0 в начальный момент времени t0 и определить, на сколько изменился угол за время движения (рис. 1.87):
Пусть точка движется по окружности с постоянной по модулю скоростью. Тогда за любые равные промежутки времени радиус-вектор поворачивается на одинаковые углы. Быстрота обращения точки определяется углом поворота радиуса-вектора за данный интервал времени. Например, если радиус-вектор точки за каждую секунду поворачивается на угол 90° = , а другой точки — на угол 45 = , то мы говорим, что первая точка обращается быстрее второй в два раза.
Если при равномерном обращении за время Δt радиус-вектор повернулся на угол Δφ, то быстрота обращения определится углом поворота в единицу времени. Быстроту обращения характеризуют угловой скоростью.
Угловой скоростью при равномерном движении точки по окружности называется отношение угла Δφ поворота радиуса-вектора к промежутку времени Δt, за который этот поворот произошел.
Обозначим угловую скорость греческой буквой ω (омега). Тогда по определению(2)
В СИ(3) угловая скорость выражается в радианах в секунду (рад/с).
Радиан в секунду равен угловой скорости равномерно обращающейся точки, при которой за время 1 с радиус-вектор этой точки поворачивается на угол 1 рад.
Например, угловая скорость точки земной поверхности равна 0,0000727 рад/с, а точильного диска более 100 рад/с.
Угловую скорость можно выразить через частоту обращения, т. е. число оборотов за 1с. Если точка делает п оборотов в секунду, то время одного оборота равно .
Это время называют периодом обращенияи обозначают буквой Т. Таким образом, частота и период обращения связаны следующим соотношением:
T = . (1.28.3)
Полному обороту точки на окружности соответствует угол Δφ = 2π. Поэтому, согласно формуле (1.28.2),
Частота обращения точек рабочих колес мощных гидротурбин составляет 1—10 с -1 , винта вертолета — 4—6 с -1 , ротора газовой турбины — 200—300 с -1 .
Если при равномерном обращении точки угловая скорость известна, то можно найти изменение угла поворота Δφ за время Δt. Оно равно Δφ = ωΔt. С учетом этого формула (1.28.1) примет вид: φ = φ0 + ωΔt. Приняв начальный момент времени t0 равным нулю, получим, что Δt = t — t0 = t. Тогда угол поворота равен
По этой формуле можно найти положение точки на окружности в любой момент времени.
Угловое ускорение
В случае переменной угловой скорости вводится новая физическая величина, характеризующая быстроту ее изменения, — угловое ускорение:
Угловое ускорение равно производной угловой скорости по времени. Если β = const, то ω(t) = ω0 + β(t — t0), где ω0 — угловая скорость в начальный момент времени t0. При t0 = 0
Эта формула подобна формуле проекции скорости vx = v0x + axt при прямолинейном движении точки. Соответственно угол поворота
Эту формулу можно получить точно таким же способом, как и уравнение координаты при прямолинейном движении х =
Связь между линейной и угловой скоростями
Скорость точки, движущейся по окружности, часто называют линейной скоростью, чтобы подчеркнуть ее отличие от угловой скорости. Между линейной скоростью точки, обращающейся по окружности, и ее угловой скоростью существует связь. При равномерном движении точки по любой траектории модуль скорости равен отношению пути s ко времени Δt, за которое этот путь пройден. Точка А, движущаяся по окружноcти радиусом R, за время Δt проходит путь, равный длине дуги (рис. 1.88): s = = ΔφR. Модуль линейной скорости движения
Итак, модуль линейной скорости точки, движущейся по окружности, равен произведению угловой скорости на радиус окружности:
Эта формула справедлива как для равномерного, так и для неравномерного движения точки по окружности.
Из выражения (1.28.9) видно, что чем больше радиус окружности, тем больше линейная скорость точки. Для точек земного экватора v = 463 м/с, а на широте Санкт-Петербурга — 233 м/с. На полюсах Земли v = 0.
Модуль ускорения точки, движущейся равномерно по окружности (центростремительное, или нормальное, ускорение) можно выразить через угловую скорость тела и радиус окружности. Так как а = = и v = ωR, то
Чем больше радиус окружности, тем большее по модулю ускорение имеет точка при заданной угловой скорости. Ускорение любой точки поверхности Земли на экваторе составляет 3,4 см/с 2 .
Связь линейного ускорения с угловым
С изменением угловой скорости точки меняется и ее линейная скорость. Нормальное ускорение связано согласно формуле (1.28.10) с угловой скоростью и не зависит, следовательно, от углового ускорения. Но тангенциальное ускорение, определяемое формулой (1.27.4), выражается через угловое ускорение:
Мы научились полностью описывать движение точки по окружности. При фиксированном радиусе окружности модуль скорости (линейная скорость) пропорционален угловой скорости, а нормальное ускорение пропорционально ее квадрату. Тангенциальное ускорение пропорционально угловому ускорению.
Упражнение 5
- Поезд движется по закруглению радиусом 200 м со скоростью 36 км/ч. Найдите модуль нормального ускорения.
- Тело брошено с поверхности Земли под углом 60° к горизонту. Модуль начальной скорости равен 20 м/с. Чему равен радиус кривизны траектории в точке максимального подъема?
- Определите радиус кривизны траектории снаряда в момент вылета из орудия, если модуль скорости снаряда равен 1 км/с, а скорость составляет угол 60° с горизонтом.
- Снаряд вылетает из орудия под углом 45° к горизонту. Чему равна дальность полета снаряда, если радиус кривизны траектории в точке максимального подъема равен 15 км?
- Сферический резервуар, стоящий на земле, имеет радиус R. При какой наименьшей скорости камень, брошенный с поверхности Земли, может перелететь через резервуар, коснувшись его вершины? Под каким углом к горизонту должен быть при этом брошен камень?
- Въезд на один из самых высоких в Японии мостов имеет форму винтовой линии, обвивающей цилиндр радиусом r. Полотно дороги составляет угол α с горизонтальной плоскостью. Найдите модуль ускорения автомобиля, движущегося по въезду с постоянной по модулю скоростью v.
- Точка начинает двигаться равноускоренно по окружности радиусом 1 м и за 10 с проходит путь 50 м. Чему равно нормальное ускорение точки через 5 с после начала движения?
- Поезд въезжает на закругленный участок пути с начальной скоростью 54 км/ч и проходит путь 600 м за 30 с. Радиус закругления равен 1 км. Определите модуль скорости и полное ускорение поезда в конце этого пути, считая тангенциальное ускорение постоянным по модулю.
- Груз Р начинает опускаться с постоянным ускорением а = 2 м/с 2 и приводит в движение ступенчатый шкив радиусами г = 0,25 м и R = 0,50 м (рис. 1.89). Какое ускорение а1, будет иметь точка М через t = 0,50 с после начала движения?
Рис. 1.89
- Маховик приобрел начальную угловую скорость ω = 2π рад/с. Сделав 10 оборотов, он вследствие трения в подшипниках остановился. Найдите угловое ускорение маховика, считая его постоянным.
- Маховое колесо радиусом R = 1 м начинает движение из состояния покоя равноускоренно. Через t1 = 10 с точка, лежащая на его ободе, приобретает скорость v1 = 100 м/с. Найдите скорость, а также нормальное, касательное и полное ускорения этой точки в момент времени t2 = 15 с.
- Шкив радиусом R = 20 см начинает вращаться с угловым ускорением β = 3 рад/с2. Через какое время точка, лежащая на его ободе, будет иметь ускорение а = 75 см/с2?
- Точка начинает обращаться по окружности с постоянным ускорением β = 0,04 рад/с2. Через какое время вектор ее ускорения будет составлять с вектором скорости угол а = 45°?
(1) Напомним, что радиан равен центральному углу, опирающемуся на дугу, длина которой равна радиусу окружности. 1 рад приблизительно равен 57°17’48». В радианной мере угол равен отношению длины дуги окружности к ее радиусу: .
(2) Когда точка движется неравномерно, то мгновенная угловая скорость определяется как предел отношения Δφ к Δt при условии, что Δt —> 0:
(3) СИ — Международная система единиц. В этой системе за единицу длины принят 1 м, за единицу времени — 1с. Подробнее о СИ будет рассказано в дальнейшем.
Видео:Лекция 10. Угловая скорость и угловое ускорение │Физика с нуляСкачать
iSopromat.ru
Рассмотрим понятия угловой скорости и углового ускорения при вращении твердого тела:
Видео:КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ - Угловое Перемещение, Угловая Скорость, Центростремительное УскорениеСкачать
Угловая скорость
Угловой скоростью называют скорость вращения тела, определяющаяся приращением угла поворота тела за промежуток времени.
Обозначение: ω (омега).
Формулы угловой скорости
Формула для расчета угловой скорости в зависимости от заданных параметров вращения может иметь вид:
- если известно количество оборотов n за единицу времени t:
- если задан угол поворота φ за единицу времени:
- Количество оборотов за единицу времени [об/мин], [c -1 ].
- Угол поворота за единицу времени [рад/с].
Быстрота изменения угла φ (перемещения из положения П1 в положение П2) – это и есть угловая скорость:
Например, тело совершающее 1,5 оборота за одну секунду имеет угловую скорость
Приняв k как единичный орт положительного направления оси, получим:
Вектор угловой скорости – скользящий вектор: он может быть приложен к любой точке оси вращения и всегда направлен вдоль оси, при положительном значении угловой скорости направления ω и k совпадают, при отрицательном – противоположны.
Видео:угловая СКОРОСТЬ формула угловое УСКОРЕНИЕ 9 классСкачать
Угловое ускорение
Угловое ускорение характеризует величину изменения угловой скорости при вращении твердого тела:
Единицы измерения углового ускорения: [рад/с 2 ], [с -2 ]
Вектор углового ускорения так же направлен по оси вращения. При ускоренном вращении их направления совпадают, при замедленном — противоположны.
Другими словами, при положительном ускорении угловая скорость нарастает, а при отрицательном вращение замедляется.
Для некоторых частных случаев вращательного движения твердого тела могут быть использованы формулы:
- равномерное вращение ( ω — const)
В технике угловая скорость часто задается в оборотах в минуту n [об/мин]. Один оборот – это 2π радиан:
Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах
Видео:Угловая скорость, угловое ускорениеСкачать
Угловое ускорение
Система понятий кинематики включает в себя также такую величину как угловое ускорение тела. Дадим ей определение, рассмотрим основные аспекты с использованием примеров.
Видео:Вращательное движение. 10 класс.Скачать
Основные понятия
Угловое ускорение – величина, характеризующая изменение скорости с течением времени.
Пусть рассматриваемый промежуток времени это: Δ t = t 1 — t , а изменение угловой скорости составит Δ ω = ω 1 — ω , тогда числовое значение среднего углового ускорения за тот же интервал времени: » open=» ε = ∆ ω ∆ t = ε . Перейдем к пределу, когда Δ t > 0 , тогда формула углового ускорения будет иметь вид: ε = l i m ∆ t → 0 ∆ ω ∆ t = d ω d t = d 2 φ d t = ω ˙ = φ ¨ .
Числовое значение ускорения в заданный момент времени есть первая производная от угловой скорости или вторая производная от угла поворота по времени.
Размерность углового ускорения 1 T 2 (т.е. 1 в р е м я 2 ). Укажем также, в чем измеряется угловое ускорение: за единицу измерения стандартно принимается р а д / с 2 или иначе: 1 с 2 ( с — 2 ) .
Ускоренное вращение тела – это вращение, при котором угловая скорость (ее модуль) возрастает с течением времени.
Замедленное вращение тела – это вращение, при котором угловая скорость (ее модуль) убывает с течением времени.
В общем, довольно просто заметить, что, если ω и ε имеют одинаковые знаки, наблюдается ускоренное вращение, а, когда противоположные знаки – замедленное.
Рисунок 1 . Вектор углового ускорения
Если мы представим угловое ускорение как вектор ε → = d ω → d t , имеющий направление вдоль оси вращения, то в случае ускоренного вращения ε → и ω → совпадут по направлениям (левая часть
рисунка 1 ) и будут противоположны по направлениям в случае замедленного вращения (правая часть
рисунка 1 ).
Видео:Урок 44. Вращение твердого тела. Линейная и угловая скорость. Период и частота вращения.Скачать
Закон равнопеременного вращения
Равнопеременное вращение – вращение, при котором угловое ускорение во все время движения является постоянным ( ε = c o n s t ) .
Выведем формульно закон равнопеременного вращения. Пусть в начальный момент времени t 0 угол вращения равен ϕ = ϕ 0 ; угловая скорость — ω = ω 0 (т.е. ω 0 является начальной угловой скоростью).
Выражение ε = d ω d t = ω ˙ = φ ¨ дает нам возможность сделать запись: d ω = ε d t . Проинтегрируем левую часть крайней записи в пределах от ω 0 до ω , а правую – в пределах от 0 до t , тогда:
ω = ω 0 + ε t , d φ = ω 0 d t + ε t d t .
Проинтегрируем вторично и получим формулу, выражающую закон равнопеременного вращения:
Закон равнопеременного вращения: φ = φ 0 + ω t + ε t 2 2 .
Вращение является равноускоренным, когда ω и ε имеют одинаковые знаки.
Вращение является равнозамедленным, когда ω и ε противоположны по знаку.
Угловое ускорение имеет связь с полным и тангенциальным ускорениями. Пусть некоторая точка вращается неравномерно по окружности с радиусом R , тогда: α r = ε R . Нормальное ускорение имеет также связь с угловым: a n = ω 2 R . Учтем это выражение и для полного ускорения получим: a = a r 2 + a n 2 = R ε 2 + ω 4 Для равнопеременного движения: ω = ε t ; a n = ω 2 R = ε 2 t 2 R и a = R ε 2 + ε 4 t 4 = R ε 1 + ε 2 t 4 .
Видео:УГЛОВАЯ СКОРОСТЬ кинематика угловое ускорение 10 классСкачать
Практические примеры
На рисунке 2 заданы различные типы вращения гироскопа (волчка). С учетом соответствующих подписей необходимо указать, какой рисунок верно демонстрирует направление углового ускорения.
Правило буравчика (правого винта) связывает направление вращения и псевдовектор угловой скорости. Рисунки 2 . 1 . и 2 . 3 . показывают направление псевдовектора вверх, а рисунки 2 . 2 . и 2 . 4 . – вниз.
Когда угловая скорость возрастает, ее приращение и вектор ускорения совпадут с вектором угловой скорости (рисунки 2 . 1 . и 2 . 4 . ). Когда угловая скорость будет уменьшаться, ее приращение и вектор ускорения окажутся противоположно направлены вектору угловой скорости (рисунки 2 . 2 . и 2 . 3 . ). Таким образом, все рисунки демонстрируют верное направление углового ускорения.
Пусть задана некоторая материальная точка, совершающая движение по окружности с радиусом R . При этом выражение ϕ = α t 3 отражает зависимость угла поворота от времени. Необходимо найти полное ускорение заданной точки как функцию времени.
Запишем выражения для угловой скорости и углового ускорения заданной точки:
ω = d φ d t = 3 α t 2 ; ε = 6 α t .
Полное ускорение запишем как:
a = a r 2 + a n 2 = R ε 2 + ω 4 = R 36 a 2 t 2 + 81 a 4 t 8 = 3 a t R 4 + 9 a 2 t 6 .
🎥 Видео
угловая и линейная скоростьСкачать
Угловая скорость и угловое ускорениеСкачать
Момент силыСкачать
10 класс, 43 урок, Уравнение касательной к графику функцииСкачать
Основное уравнение динамики вращательного движения. 10 класс.Скачать
Уравнение трех угловых ускоренийСкачать
Урок 93. Основное уравнение динамики вращательного движенияСкачать
Одиссея по застывшим звёздам ВселеннойСкачать
Физика - уравнения равноускоренного движенияСкачать
Рассмотрение темы: "Угловое ускорение"Скачать
Физика - Магнитное полеСкачать
2.4. Угловая скорость и угловое ускорение твердого тела, вращающегося вокруг неподвижной оси, как векторы.Скачать
Кинематика вращательного движения. ТермехСкачать