Как найти корни уравнения на графике

Применение производной для решения нелинейных уравнений и неравенств

п.1. Количество корней кубического уравнения

Кубическое уравнение $$ ax^3+bx^2+cx+d=0 $$ на множестве действительных чисел может иметь один, два или три корня.
С помощью производной можно быстро ответить на вопрос, сколько корней имеет данное уравнение. begin f(x)=ax^3+bx^2+cx+d\ f'(x)=3ax^2+bx+c end Если в уравнении (f'(x)=0) дискриминант (D=4b^2-12ac=4(b^2-3ac)gt 0), кубическая парабола имеет две точки экстремума: (x_=frac<-2bpmsqrt>). Если при этом значения функции в точках экстремума (f(x_1)cdot f(x_2)lt 0), т.е. расположены по разные стороны от оси OX, парабола имеет три точки пересечения с этой осью. Исходное уравнение имеет три корня.
Если две точки экстремума найдены, но (f(x_1)cdot f(x_2)=0), уравнение имеет два корня.
Во всех остальных случаях – у исходного уравнения 1 корень.

Пример 1. Сколько корней имеют уравнения:

1) (x^3+3x^2-4=0)
(b^2-3ac=9gt 0 (c=0) )
(f(x)=x^3+3x^2-4 )
(f'(x)=3x^2+6x=3x(x+2) )
(x_1=0, x_2=-2 )
(f(x_1)=-4, f(x_2)=0 )
(f(x_1)cdot f(x_2)=0Rightarrow) два корня
Как найти корни уравнения на графике
2) (x^3+3x^2-1=0)
(b^2-3ac=9gt 0 )
(f(x)=x^3+3x^2-1 )
(f'(x)=3x^2+6x=3x(x+2) )
(x_1=0, x_2=-2 )
(f(x_1)=-1, f(x_2)=3 )
(f(x_1)cdot f(x_2)lt 0Rightarrow) три корня
Как найти корни уравнения на графике
3) (x^3+3x^2+1=0)
(b^2-3ac=9gt 0)
(f(x)=x^3+3x^2+1 )
(f'(x)=3x^2+6x=3x(x+2) )
(x_1=0, x_2=-2 )
(f(x_1)=1, f(x_2)=5 )
(f(x_1)cdot f(x_2)gt 0Rightarrow) один корень
Как найти корни уравнения на графике
4) (x^3+x^2+x+3=0)
(b^2-3ac=1-3lt 0 )
Один корень
Как найти корни уравнения на графике

п.2. Количество корней произвольного уравнения

Задачи на подсчет количества корней решаются с помощью построения графиков при полном или частичном исследовании функций.

Пример 2. а) Найдите число корней уравнения (frac 1x+frac+frac)
б) Найдите число корней уравнения (frac 1x+frac+frac=k)

Построим график функции слева, а затем найдем для него количество точек пересечения с горизонталью (y=1). Это и будет ответом на вопрос задачи (а).
Исследуем функцию: $$ f(x)=frac1x+frac+frac $$ Алгоритм исследования и построения графика – см. §49 данного справочника.
1) ОДЗ: (xneleft)
Все три точки – точки разрыва 2-го рода. begin lim_left(frac1x+frac+fracright)=-infty-1-frac13=-infty\ lim_left(frac1x+frac+fracright)=+infty-1-frac13=+infty\ lim_left(frac1x+frac+fracright)=1-infty-frac12=-infty\ lim_left(frac1x+frac+fracright)=1+infty-frac12=+infty\ lim_left(frac1x+frac+fracright)=frac13+frac12-infty=-infty\ lim_left(frac1x+frac+fracright)=frac13+frac12+infty=+infty end 2) Функция ни четная, ни нечетная.
Функция непериодическая.
3) Асимптоты
1. Вертикальные (x=0, x=1, x=3) – точки разрыва 2-го рода
2. Горизонтальные: begin lim_left(frac1x+frac+fracright)=-0-0-0=-0\ lim_left(frac1x+frac+fracright)=+0+0+0=+0\ end Горизонтальная асимптота (y=0)
На минус бесконечности функция стремится к 0 снизу, на плюс бесконечности – сверху.
3. Наклонные: (k=0), нет.
4) Первая производная $$ f'(x)=-frac-frac-fraclt 0 $$ Производная отрицательная на всей ОДЗ.
Функция убывает.

5) Вторую производную не исследуем, т.к. перегибы не влияют на количество точек пересечения с горизонталью.

6) Точки пересечения с OY – нет, т.к. (x=0) – асимптота
Точки пересечения с OX – две, (0lt x_1lt 1,1lt x_2lt 3)

7) График
Как найти корни уравнения на графике
Получаем ответ для задачи (а) 3 корня.

Решаем более общую задачу (б). Передвигаем горизонталь (y=k) снизу вверх и считаем количество точек пересечения с графиком функции. Последовательно, получаем:
При (klt 0) — три корня
При (k=0) — два корня
При (kgt 0) — три корня

Ответ: а) 3 корня; б) при (k=0) два корня, при (kne 0) три корня.

Пример 3. Найдите все значения параметра a, при каждом из которых уравнение $$ sqrt+sqrt=a $$ имеет по крайней мере одно решение.

Исследуем функцию (f(x)=sqrt+sqrt)
ОДЗ: ( begin x-1geq 0\ 10-2xgeq 0 end Rightarrow begin xgeq 1\ xleq 5 end Rightarrow 1leq xleq 5 )
Функция определена на конечном интервале.
Поэтому используем сокращенный алгоритм для построения графика.
Значения функции на концах интервала: (f(1)=0+sqrt=2sqrt, f(5)=sqrt+0=2)
Первая производная: begin f'(x)=frac<2sqrt>+frac<2sqrt>=frac<2sqrt>-frac<sqrt>\ f'(x)=0 text 2sqrt=sqrtRightarrow 4(x-1)=10-2xRightarrow 6x=14Rightarrow x=frac73\ fleft(frac73right)=sqrt+sqrt=sqrt+sqrt<frac>=frac<sqrt>=2sqrt end Промежутки монотонности:

(x)1(1; 7/3)7/3(7/3; 5)5
(f'(x))+0
(f(x))(2sqrt)(nearrow )max
(2sqrt)
(searrow )2

Можем строить график:
Как найти корни уравнения на графике
(y=a) — горизонтальная прямая.
Количество точек пересечения (f(x)) и (y) равно количеству решений.
Получаем:

$$ alt 2 $$нет решений
$$ 2leq alt 2sqrt $$1 решение
$$ 2sqrtleq alt 2sqrt $$2 решения
$$ a=2sqrt $$1 решение
$$ agt 2sqrt $$нет решений

По крайней мере одно решение будет в интервале (2leq aleq 2sqrt).

п.3. Решение неравенств с построением графиков

Пример 4. Решите неравенство (fracgt frac)

Разобьем неравенство на совокупность двух систем.
Если (xgt 1), то (x-1gt 0), на него можно умножить слева и справа и не менять знак.
Если (xlt 1), то (x-1lt 0), умножить также можно, только знак нужно поменять.
Сразу учтем требование ОДЗ для логарифма: (xgt 0)

Получаем совокупность: begin left[ begin begin xgt 1\ 2+log_3 xgtfrac end \ begin 0lt xlt 1\ 2+log_3 xltfrac end end right. \ 2+log_3 xgt fracRightarrow log_3 xgt fracRightarrow log_3 xgt frac\ left[ begin begin xgt 1\ log_3 xgtfrac end \ begin 0lt xlt 1\ log_3 xltfrac end end right. end Исследуем функцию (f(x)=frac=frac=1-frac)
Точка разрыва: (x=frac12) – вертикальная асимптота
Односторонние пределы: begin lim_left(1-fracright)=1-frac=+infty\ lim_left(1-fracright)=1-frac=-infty end Второе слагаемое стремится к 0 на бесконечности, и это дает горизонтальную асимптоту: (y=1) begin lim_left(1-fracright)=1-frac=1+0\ lim_left(1-fracright)=1-frac=1-0 end На минус бесконечности кривая стремится к (y=1) сверху, а на плюс бесконечности – снизу.
Первая производная: $$ f'(x)=left(1-fracright)’=fracgt 0 $$ Производная положительная на всей ОДЗ, функция возрастает.
Вторая производная: $$ f»(x)=-frac $$ Одна критическая точка 2-го порядка (x=frac12)

Видео:Как найти корни уравнения в Excel с помощью Подбора параметраСкачать

Как найти корни уравнения в Excel с помощью Подбора параметра

Графический способ решения уравнений в среде Microsoft Excel 2007

Тип урока: Обобщение, закрепление пройденного материала и объяснение нового.

Цели и задачи урока:

  • повторение изученных графиков функций;
  • повторение и закрепление графического способа решения уравнений;
  • закрепление навыков записи и копирования формул, построения графиков функций в электронных таблицах Excel 2007;
  • формирование и первичное закрепление знаний о решении уравнений с использованием возможностей электронных таблиц Excel 2007;
  • формирование мышления, направленного на выбор оптимального решения;
  • формирование информационной культуры школьников.

Оборудование: персональные компьютеры, мультимедиапроектор, проекционный экран.

Материалы к уроку: презентация Power Point на компьютере учителя (Приложение 1).

Слайд 1 из Приложения1 ( далее ссылки на слайды идут без указания Приложения1).

Объявление темы урока.

1. Устная работа (актуализация знаний).

Слайд 2 — Соотнесите перечисленные ниже функции с графиками на чертеже (Рис. 1):

у = 6 — х; у = 2х + 3; у = (х + 3) 2 ; у = -(х — 4) 2 ; Как найти корни уравнения на графике.

Как найти корни уравнения на графике

Слайд 3 Графический способ решения уравнений вида f(x)=0.

Корнями уравнения f(x)=0 являются значения х1, х2, точек пересечения графика функции y=f(x) с осью абсцисс (Рис. 2).

Как найти корни уравнения на графике

Найдите корни уравнения х 2 -2х-3=0, используя графический способ решения уравнений (Рис.3).

Как найти корни уравнения на графике

Слайд 5 Графический способ решения уравнений вида f (x)=g (x).

Корнями уравнения f(x)=g(x) являются значения х1, х2, точек пересечения графиков функций y=f(x) и у=g(x). (Рис. 4):

Как найти корни уравнения на графике

Слайд 6 Найдите корни уравнения Как найти корни уравнения на графике, используя графический способ решения уравнений (Рис. 5).

Как найти корни уравнения на графике

2. Объяснение нового материала. Практическая работа.

Решение уравнений графическим способом требует больших временных затрат на построение графиков функций и в большинстве случаев дает грубо приближенные решения. При использовании электронных таблиц, в данном случае – Microsoft Excel 2007, существенно экономится время на построение графиков функций, и появляются дополнительные возможности нахождения корней уравнения с заданной точностью (метод Подбор параметра).

I. Графический способ решения уравнений вида f(x)=0 в Excel.

Дальнейшая работа выполняется учителем в Excel одновременно с учениками с подробными (при необходимости) инструкциями и выводом результатов на проекционный экран. Слайды Приложения 1 используются для формулировки задач и подведения промежуточных итогов.

Пример1: Используя средства построения диаграмм в Excel, решить графическим способом уравнение —х 2 +5х-4=0.

Для этого: построить график функции у=-х 2 +5х-4 на промежутке [ 0; 5 ] с шагом 0,25; найти значения х точек пересечения графика функции с осью абсцисс.

Выполнение задания можно разбить на этапы:

1 этап: Представление функции в табличной форме (рис. 6):

Как найти корни уравнения на графике

  • в ячейку А1 ввести текст Х, в ячейку A2Y;
  • в ячейку В1 ввести число 0, в ячейку С1 – число 0,25;
  • выделить ячейки В1:С1, подвести указатель мыши к маркеру выделения, и в тот момент, когда указатель мыши примет форму черного крестика, протянуть маркер выделения вправо до ячейки V1 (Рис. 7).

Как найти корни уравнения на графике

При вводе формулы можно вводить адрес ячейки с клавиатуры (не забыть переключиться на латиницу), а можно просто щелкнуть мышью на ячейке с нужным адресом.

После ввода формулы в ячейке окажется результат вычисления по формуле, а в поле ввода строки формул — сама формула (Рис. 8):

Как найти корни уравнения на графике

  • скопировать содержимое ячейки B2 в ячейки C2:V2 за маркер выделения. Весь ряд выделенных ячеек заполнится содержимым первой ячейки. При этом ссылки на ячейки в формулах изменятся относительно смещения самой формулы.

2 этап: Построение диаграммы типа График.

  • выделить диапазон ячеек B2:V2;
  • на вкладке Вставка|Диаграммы|График выбрать вид График;
  • на вкладке Конструктор|Выбрать данные (Рис. 9) в открывшемся окне «Выбор источника данных» щелкнуть по кнопке Изменить в поле Подписи горизонтальной оси — откроется окно «Подписи оси». Выделить в таблице диапазон ячеек B1:V1 (значения переменной х). В обоих окнах щелкнуть по кнопкам ОК;

Как найти корни уравнения на графике

  • на вкладке Макет|Оси|Основная горизонтальная ось|Дополнительные параметры основной горизонтальной оси выбрать:

Интервал между делениями: 4;

Интервал между подписями: Единица измерения интервала: 4;

Положение оси: по делениям;

Выбрать ширину и цвет линии (Вкладки Тип линии и Цвет линии);

  • самостоятельно изменить ширину и цвет линии для вертикальной оси;
  • на вкладке Макет|Сетка|Вертикальные линии сетки по основной оси выбрать Основные линии сетки.

Примерный результат работы приведен на рис. 10:

Как найти корни уравнения на графике

3 этап: Определение корней уравнения.

График функции у=-х 2 +5х-4 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня: х1=1; х2=4.

II. Графический способ решения уравнений вида f(x)=g(x) в Excel.

Пример 2: Решить графическим способом уравнение Как найти корни уравнения на графике.

Для этого: в одной системе координат построить графики функций у1= Как найти корни уравнения на графикеи у2=1-х на промежутке [ -1; 4 ] с шагом 0,25; найти значение х точки пересечения графиков функций.

1 этап: Представление функций в табличной форме (рис. 1):

  • Перейти на Лист2.
  • Аналогично Примеру 1, применив приемы копирования, заполнить таблицу. При табулировании функции у1=Как найти корни уравнения на графикевоспользоваться встроенной функцией Корень (Рис. 11).
  • Как найти корни уравнения на графике

    2 этап: Построение диаграммы типа График.

  • Выделить диапазон ячеек (А2:V3);
  • Аналогично Примеру 1 вставить и отформатировать диаграмму типа График, выбрав дополнительно в настройках горизонтальной оси: вертикальная ось пересекает в категории с номером 5.
  • Примерный результат работы приведен на Рис. 12:

    Как найти корни уравнения на графике

    3 этап: Определение корней уравнения.

    Графики функций у1= Как найти корни уравнения на графикеи у2=1-х пересекаются в одной точке (0;1) и, следовательно, уравнение Как найти корни уравнения на графикеимеет один корень – абсцисса этой точки: х=0.

    III. Метод Подбор параметра.

    Графический способ решения уравнений красив, но далеко не всегда точки пересечения могут быть такими «хорошими», как в специально подобранных примерах 1 и 2.

    Возможности электронных таблиц позволяют находить приближенные значения коней уравнения с заданной точностью. Для этого используется метод Подбор параметра.

    Пример 3: Разберем метод Подбор параметра на примере решения уравнения —х 2 +5х-3=0.

    1 этап: Построение диаграммы типа График для приближенного определения корней уравнения.

    Построить график функции у=х 2 +5х-3, отредактировав полученные в Примере 1 формулы.

    • выполнить двойной щелчок по ячейке B2, внести необходимые изменения;
    • с помощью маркера выделения скопировать формулу во все ячейки диапазона C2:V2.

    Все изменения сразу отобразятся на графике.

    Примерный результат работы приведен на Рис. 13:

    Как найти корни уравнения на графике

    2 этап: Определение приближенных значений корней уравнения.

    График функции у=-х 2 +5х-3 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня.

    По графику приближенно можно определить, что х1≈0,7; х2≈4,3.

    3 этап: Поиск приближенного решения уравнения с заданной точностью методом Подбор параметра.

    1) Начать с поиска более точного значения меньшего корня.

    По графику видно, что ближайший аргумент к точке пересечения графика с осью абсцисс равен 0,75. В таблице значений функции этот аргумент размещается в ячейке E1.

    • Выделить ячейку Е2;
    • перейти на вкладку Данные|Анализ «что-если»|Подбор параметра…;

    В открывшемся диалоговом окне Подбор параметра (Рис. 14) в поле Значение ввести требуемое значение функции: 0.

    В поле Изменяя значение ячейки: ввести $E$1 (щелкнув по ячейке E1).

    Щелкнуть по кнопке ОК.

    Как найти корни уравнения на графике

    Как найти корни уравнения на графике

    • В окне Результат подбора (Рис. 15) выводится информация о величине подбираемого и подобранного значения функции:
    • В ячейке E1 выводится подобранное значение аргумента 0,6972 с требуемой точностью (0,0001).

    Установить точность можно путем установки в ячейках таблицы точности представления чисел – числа знаков после запятой (Формат ячеек|Число|Числовой).

    Итак, первый корень уравнения определен с заданной точностью: х1≈0,6972.

    2) Самостоятельно найти значение большего корня с той же точностью. 2≈4,3029).

    IV. Метод Подбор параметра для решения уравнений вида f(x)=g(x).

    При использовании метода Подбор параметров для решения уравнений вида f(x)=g(x) вводят вспомогательную функцию y(x)=f(x)-g(x) и находят с требуемой точностью значения х точек пересечения графика функции y(x) с осью абсцисс.

    3. Закрепление изученного материала. Самостоятельная работа.

    Задание: Используя метода Подбор параметров, найти корни уравнения Как найти корни уравнения на графикес точностью до 0,001.

    • ввести функцию у=Как найти корни уравнения на графикеи построить ее график на промежутке [ -1; 4 ] с шагом 0,25 (Рис. 16):

    Как найти корни уравнения на графике

    • найти приближенное значение х точки пересечения графика функции с осью абсцисс (х≈1,4);
    • найти приближенное решение уравнения с точностью до 0,001 методом Подбор параметра (х≈1,438).

    4. Итог урока.

    Слайд 12 Проверка результатов самостоятельной работы.

    Слайд 13 Повторение графического способа решения уравнения вида f(x)=0.

    Слайд 14 Повторение графического способа решения уравнения вида f(x)=g(x).

    5. Домашнее задание.

    Используя средства построения диаграмм в Excel и метод Подбор параметра, определите корни уравнения х 2 -5х+2=0 с точностью до 0,01.

    Видео:7 класс, 35 урок, Графическое решение уравненийСкачать

    7 класс, 35 урок, Графическое решение уравнений

    Построение графиков функций

    Как найти корни уравнения на графике

    О чем эта статья:

    11 класс, ЕГЭ/ОГЭ

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Видео:3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать

    3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из Вебиума

    Понятие функции

    Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

    Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

    • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
    • Графический способ — наглядно.
    • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
    • Словесный способ.

    Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

    Например, для функции вида Как найти корни уравнения на графикеобласть определения выглядит так

    • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.

    Область значений — множество у, то есть это значения, которые может принимать функция.

    Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

    Видео:Отбор корней тригонометрического уравнения с помощью графикаСкачать

    Отбор корней тригонометрического уравнения с помощью графика

    Понятие графика функции

    Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

    График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

    Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

    Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

    В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

    Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

    Как найти корни уравнения на графике

    Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

    Как найти корни уравнения на графике

    Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

    Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

    Видео:Отбор корней по окружностиСкачать

    Отбор корней по окружности

    Исследование функции

    Важные точки графика функции y = f(x):

    • стационарные и критические точки;
    • точки экстремума;
    • нули функции;
    • точки разрыва функции.

    Стационарные точки — точки, в которых производная функции f(x) равна нулю.

    Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

    Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

    Нули функции — это значения аргумента, при которых функция равна нулю.

    Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

    Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке: Как найти корни уравнения на графике

    Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

    Как найти корни уравнения на графике

    Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

    Схема построения графика функции:

    1. Найти область определения функции.
    2. Найти область допустимых значений функции.
    3. Проверить не является ли функция четной или нечетной.
    4. Проверить не является ли функция периодической.
    5. Найти нули функции.
    6. Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
    7. Найти асимптоты графика функции.
    8. Найти производную функции.
    9. Найти критические точки в промежутках возрастания и убывания функции.
    10. На основании проведенного исследования построить график функции.

    У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

    Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

    Решение системы линейных уравнений графическим методом. 7 класс.

    Построение графика функции

    Чтобы понять, как строить графики функций, потренируемся на примерах.

    Задача 1. Построим график функции Как найти корни уравнения на графике

    Упростим формулу функции:

    Как найти корни уравнения на графикепри х ≠ -1.

    График функции — прямая y = x — 1 с выколотой точкой M (-1; -2).

    Задача 2. Построим график функцииКак найти корни уравнения на графике

    Выделим в формуле функции целую часть:

    Как найти корни уравнения на графике

    График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции Как найти корни уравнения на графике

    Как найти корни уравнения на графике

    Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

    Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

    1. Как найти корни уравнения на графике
    2. Как найти корни уравнения на графике
    3. Как найти корни уравнения на графике

    Вспомним, как параметры a, b и c определяют положение параболы.

    Ветви вниз, следовательно, a 0.

    Точка пересечения с осью Oy — c = 0.

    Координата вершины Как найти корни уравнения на графике, т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

    Ветви вниз, следовательно, a 0.

    Координата вершины Как найти корни уравнения на графике, т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

    xy
    0-1
    12

    Как найти корни уравнения на графике

    Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

    xy
    02
    11

    Как найти корни уравнения на графике

    k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

    xy
    00
    12

    Как найти корни уравнения на графике

    k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

    Как найти корни уравнения на графике

    k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

    Задача 5. Построить график функции Как найти корни уравнения на графике

    Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

    Нули функции: 3, 2, 6.

    Промежутки знакопостоянства функции определим с помощью метода интервалов.

    Вертикальные асимптоты: x = 0, x = 4.

    Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

    Вот так выглядит график:

    Как найти корни уравнения на графике

    Задача 6. Построить графики функций:

    б) Как найти корни уравнения на графике

    г) Как найти корни уравнения на графике

    д) Как найти корни уравнения на графике

    Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

    а) Как найти корни уравнения на графике

    Преобразование в одно действие типа f(x) + a.

    Как найти корни уравнения на графике

    Сдвигаем график вверх на 1:

    Как найти корни уравнения на графике

    б)Как найти корни уравнения на графике

    Преобразование в одно действие типа f(x — a).

    Как найти корни уравнения на графике

    Сдвигаем график вправо на 1:

    Как найти корни уравнения на графике

    В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.

    Как найти корни уравнения на графике

    Сдвигаем график вправо на 1:

    Как найти корни уравнения на графике

    Сдвигаем график вверх на 2:

    Как найти корни уравнения на графике

    г) Как найти корни уравнения на графике

    Преобразование в одно действие типа Как найти корни уравнения на графике

    Как найти корни уравнения на графике

    Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

    Как найти корни уравнения на графике

    Как найти корни уравнения на графике

    д) Как найти корни уравнения на графике

    Мы видим три преобразования вида f(ax), f (x + a), -f(x).

    Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

    Как найти корни уравнения на графике
    Как найти корни уравнения на графике
    Как найти корни уравнения на графике

    Сжимаем график в два раза вдоль оси абсцисс:

    Как найти корни уравнения на графике
    Как найти корни уравнения на графике

    Сдвигаем график влево на 1/2 вдоль оси абсцисс:

    Как найти корни уравнения на графике
    Как найти корни уравнения на графике

    Отражаем график симметрично относительно оси абсцисс:

    🎥 Видео

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

    Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

    10 класс, 43 урок, Уравнение касательной к графику функцииСкачать

    10 класс, 43 урок, Уравнение касательной к графику функции

    Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Линейное уравнение с двумя переменными. 7 класс.Скачать

    Линейное уравнение с двумя переменными. 7 класс.

    Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

    Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

    Как легко составить уравнение параболы из графикаСкачать

    Как легко составить уравнение параболы из графика

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Построить график ЛИНЕЙНОЙ функции и найти:Скачать

    Построить график  ЛИНЕЙНОЙ функции и найти:

    Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!Скачать

    Задание 9 на ОГЭ по математике 2023 / Разбираем все типы уравнений за 5 минут!

    Логарифмическая функция, ее свойства и график. 11 класс.Скачать

    Логарифмическая функция, ее свойства и график. 11 класс.

    СЛОЖИТЕ ДВА КОРНЯСкачать

    СЛОЖИТЕ ДВА КОРНЯ

    Как по графику первообразной определить количество корней уравнения y=fxСкачать

    Как по графику первообразной определить количество корней уравнения y=fx

    Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

    Алгебра 8 класс (Урок№19 - Уравнение х² = а.)
    Поделиться или сохранить к себе: