Полиэтилен: получение и реакции

Реакция получения полиэтилена – это процесс, в котором происходит расщепление π-связи алкенов и образование линейной макромолекулы. Разрыв двойной связи олефинов обусловлен жестким влиянием среды, которое выражается в увеличении значений давления и температуры по сравнению с величинами, характерными для нормальных условий.

Тип реакции получения полиэтилена из этилена – классическая полимеризация непредельных углеводородов, свойственная всем алкенам.

Видео:ПолиэтиленСкачать

Полиэтилен

Разновидности синтеза

Существует два основных варианта проведения реакции синтеза полиэтилена. Они отличаются условиями и аппаратным исполнением. В обеих ситуациях процесс проходит при повышенном давлении, температуре, в присутствии катализаторов.

Получение ПЭВД

Полиэтилен получают из этилена в результате реакции, при которой мономер переходит в активное состояние.

При воздействии температуры, значения которой достигают 320 °С, давления, повышенного до 320 мПа, инициирование вызывают образующиеся из пероксидных соединений радикалы. Полиэтилен, реакция полимеризации которого идет по радикальному механизму, имеет низкую плотность, называется продуктом высокого давления, обозначается в международном сообществе аббревиатурой LDPE.

Маленькая плотность упаковки макромолекул обусловлена присутствием разветвлений, как это отображено в уравнении реакции получения полиэтилена.

Полиэтилен: получение и реакции

Процесс проводят в автоклавах при идеальном перемешивании или трубчатых реакторах при идеальном вытеснении продуктов.

Получение ПЭНД

При увеличении давления до 5 мПа образование полиэтилена из этилена — результат реакции без участия радикалов. Активацию мономеров обеспечивают комплексные катализаторы.

Температура до 95 °С позволяет проводить процесс в суспензии, каталитическое действие выполняют сложные неорганические соединения титана.

Реакция полимеризации полиэтилена при температуре до 120 °С проходит с участием оксидов хрома, нанесенных на силикагель.

Комплексные соединения хрома, зафиксированные на силикагеле, позволяют проводить процесс в газовой фазе при температуре, не достигающей 100 °С.

Если полиэтилен получают, используя реакцию с катализаторами, продукт представляет собой линейную макромолекулу без разветвлений, имеет большую плотность, в международной литературе обозначается аббревиатурой HDPE.

Полиэтилен: получение и реакции

Реакция синтеза полиэтилена с комплексными катализаторами приводит к получению продукта, который можно перерабатывать из б/у состояния.

Видео:Как производят полиэтилен?Скачать

Как производят полиэтилен?

Полимер из вторичного сырья

Полиэтиленовые отходы утилизируют по технологии, включающей очистку вторичного сырья, измельчение, образование агломератов, гранул, последующую экструзию. Графическое уравнение реакции полиэтилена б/у идентично схеме получения ПЭНД потому, что повторная полимеризация не осуществляется.

Реакция получения полиэтилена б/у, по существу, является физическим процессом, при котором происходит изменения агрегатного состояния.

Видео:Реакция полимеризации. Производство полиэтилена. 10 класс.Скачать

Реакция полимеризации. Производство полиэтилена. 10 класс.

Реакция полимеризации.

Особенности реакции полимеризации:

1) полимеризация – это последовательное соединение одинаковых молекул в более крупные;

2) реакции полимеризации особенно характерны для непредельных соединений:

А) из этилена образуется высокомолекулярное вещество – полиэтилен;

Б) соединение молекул этилена происходит по месту разрыва двойной связи:

Полиэтилен: получение и реакции

Сокращенно уравнение этой реакции записывается так:

3) к концам таких молекул (макромолекул) присоединяются какие-нибудь свободные атомы или радикалы (например, атомы водорода из этилена);

4) продукт реакции полимеризации называется полимером (от греческого поли – много, мерос – часть);

5) исходное вещество, которое вступает в реакцию полимеризации, называется мономером.

Особенности полимера.

1. Полимер – это соединение с высокой молекулярной массой, молекула которого состоит из большого числа повторяющихся группировок, которые имеют одинаковое строение.

2. Эти группировки называются элементарными звеньями и структурными единицами.

Степень полимеризации (обозначается n) – это число элементарных звеньев, которые повторяются в макромолекуле.

В зависимости от степени полимеризации из одних и тех же мономеров можно получать вещества с различными свойствами.

Особенности степени полимеризации:

А) полиэтилен с короткими цепями (n = 20) является жидкостью, обладающей смазочными свойствами;

Б) полиэтилен с длиной цепи в 1500–2000 звеньев представляет собой твердый, но гибкий пластический материал, из которого можно получать пленки, изготовлять бутылки;

В) полиэтилен с длиной цепи 5–6 тыс. звеньев является твердым веществом, из которого можно готовить литые изделия, жесткие трубы, прочные нити.

Условия протекания реакций полимеризации весьма различны:

1) в некоторых случаях необходимы катализаторы и высокое давление;

2) главным фактором является строение молекулы мономера;

3) в реакцию полимеризации вступают непредельные (ненасыщенные) соединения за счет взрыва кратных связей.

В лабораторных условиях полиэтилен получают при нагревании этилового спирта с водоотнимающими веществами (концентрированной серной кислотой, оксидом фосфора (v) и другими): С2Н5ОН → СН2=СН2 + Н2О.

Видео:Реакция полимеризации.Производство полиэтиленаСкачать

Реакция полимеризации.Производство полиэтилена

Что такое полиэтилен

Полиэтилен (ПЭ, PE) – один из самых первых из крупнотоннажных и самый распространенный полимерный материал. Не будет преувеличением сказать, что полиэтилен известен практически всем людям и само это понятие в быту является синонимом пластмассы, как таковой. Не специалисты часто называют полиэтиленом многие материалы, которые ничего общего с ним не имеют.

ПЭ является простейшим из полиолефинов, его химическая формула (–CH2–)n, где n – степень полимеризации. Основными разновидностями ПЭ являются полиэтилен низкого давления (ПЭНД, ПНД), он же полиэтилен высокой плотности (ПВП, PEHD, HDPE) и полиэтилен высокого давления (ПЭВД, ПВД), он же полиэтилен низкой плотности (ПНП, PELD, LDPE). Далее мы рассмотрим эти и другие виды ПЭ подробнее.

Полиэтилен – синтетический полимер, его получают при помощи полимеризации этилена (химическое название – этен) по свободно-радикальному механизму. Крупнотоннажный синтез ПЭВД и ПЭНД производится практически всеми ведущими мировыми нефтяными и газовыми концернами. В России полиэтилен производится на нефтехимических заводах «Роснефти», «Лукойла», «Газпрома», СИБУРа, на «Казаньоргсинтезе» и «Нижнекамскнефтехиме». В странах бывшего СССР полимер выпускают в Белоруссии, Узбекистане, Азербайджане. Серийные марки полиэтилена выпускают в виде гранул размером 2-5 мм, однако существуют и марки в виде порошка, например так выпускают в продажу сверхвысокомолекулярный полиэтилен (СВМПЭ).

Полиэтилен: получение и реакции

Рис.1. Полимер в гранулах

Полиэтилену уже более 100 лет. Впервые его получил инженер из Германии Ганс фон Пехманн в 1899 году, с тех пор он считается изобретателем этого полимера. Но, как часто бывает, важное открытие сразу не нашло применения. Оно пришло только к концу 1920-х годов, а в 1930-е годы производство полиэтилена было окончательно налажено, в чем сыграли большую роль инженеры Эрик Фосет и Реджинальд Гибсон. Изначально они синтезировали низкомолекулярный парафиновый продукт, который можно назвать полиэтиленовым олигомером. В итоге большой работы, в 1936 году изыскания инженеров по разработке установки высокого давления закончились получением патента на ПЭНП (ПЭВД). В 1938 году производство товарного полиэтилена стартовало. Первоначально он предназначался для производства оболочек телефонных кабелей и несколько позже – для выпуска упаковки.

Технологию производства полиэтилена высокой плотности (ПЭНД) начали разрабатывать также в 1920-х годах. Большую роль в производстве этого материала сыграл Карл Циглер – известный в среде пластмасс изобретатель катализаторов ионно-координационной полимеризации, самым важным из которых позже было присвоено имя Циглера-Натта. Окончательно процесс получения ПЭНД был полностью описан лишь в 1954 году и тогда же на нее был выдан патент. Промышленное производство нового полиэтилена с более высокими, чем ПЭВД свойствами стартовало несколько позже.

Видео:Реакция полимеризации. 1 часть. 11 класс.Скачать

Реакция полимеризации. 1 часть. 11 класс.

Получение полиэтилена

Опишем вкратце технологию производства обоих главных типов полиэтиленов.

ПЭВД (LDPE)

Этот полиэтилен, как понятно из названия, синтезируют при повышенном давлении. Синтез обычно проводят в реакторе трубчатого типа или автоклаве. Синтез проходит под действием окислителей – кислорода, пероксидов или и того, и другого. Этилен смешивают с инициатором полимеризации, сжимают до величины давления в 25 МПа и нагревают до 70 градусов С. Обычно реактор состоит из двух ступеней: в первой смесь еще больше разогревают, а во второй уже непосредственно проводят полимеризацию при еще более жестких условиях – температуре до 300 градусов С и давлении до 250 МПа.

Стандартное время нахождения этиленовой смеси в реакторе 70-100 секунд. За этот промежуток 18-20 процентов этилена преобразуется в полиэтилен. Затем непрореагировавший этилен отправляется на рециркуляцию, а получившийся ПЭ охлаждают до и подвергают грануляции. Полиэтиленовые гранулы вновь охлаждаются, сушатся и отправляются на упаковку. Полиэтилен низкой плотности производят в форме неокрашенных гранул.

ПЭНД (HDPE)

ПНД (ПЭ высокой плотности) производят при низком давлении в реакторе. Для синтеза применяют три основные вида техпроцесса полимеризации: суспензионный, растворный, газофазный.

Для производства ПЭ чаще всего применяют раствор этилена в гексане, который нагревают до 160-250 градусов С. Процесс проводят при давлении 3,4-5,3 МПа в течение времени контакта смеси с катализатором 10-15 минут. Готовый ПЭНД отделяют при помощи испарения растворителя. Гранулы получившегося полиэтилена проходят пропарку паром при температуре выше Т плавления ПЭ. Это нужно для перевода в водный раствор низкомолекулярных фракций ПЭ и удаления следов катализаторов. Как и ПЭВД, готовый ПЭНД обычно бывает бесцветным и отгружается в мешках по 25 кг, реже в биг-бэгах, цистернах или другой таре.

Видео:Получение этилена и изучение его свойств. | Практическая работа № 1.Скачать

Получение этилена и изучение его свойств. | Практическая работа № 1.

Виды полиэтилена

Помимо детально описанных в этой статье ПЭНД и ПЭВД промышленностью производятся и используются другие многочисленные типы полиэтиленов, основными группами из которых являются:

ЛПНП, LLDPE — линейный полиэтилен низкой плотности. Этот тип завоевывает всё большую популярность. По свойствам этот полиэтилен подобен ПЭВД, однако превосходит его по многим параметрам, в том числе по прочности и стойкости изделий к короблению.

mLLDPE, MPE — металлоценовый ЛПЭНП.

MDPE — ПЭ средней плотности.

ВМПЭ, HMWPE, VHMWPE — высокомолекулярный.

СВМПЭ, UHMWPE — сверхвысокомолекулярный.

Также существует большое количество сополимеров этилена с различными другими мономерами. Наиболее известными из них являются сополимеры с пропиленом, которые производят под общими названиями рандом- или статсополимер и блоксополимер. Помимо них производят сополимеры этилена с акриловой кислотой, бутил- и этилакрилатом, метилакрилатом и метилметилакрилатом, винилацетатом и т.д. Существуют и эластомеры на основе этилена, их обозначают аббревиатурами POP и POE.

Видео:Как производят полипропилен?Скачать

Как производят полипропилен?

Свойства полиэтилена

Говоря о характеристиках ПЭ нужно понимать, что свойства различных типов этого полимера сильно отличаются. Рассмотрим, как и в случае с синтезом, показатели двух наиболее распространенных типов.

ПЭ высокого давления (LDPE)

Молекулярная масса ПЭВД колеблется от 30 000 до 400 000 атомных единиц.

ПТР в зависимости от марки варьируется от 0,2 до 20 г/10 минут.

Степень кристалличности ПВД примерно составляет 60 процентов.

Температура стеклования равна минус 4 градуса С.

Температура плавления марок материала от 105 до 115 градусов С.

Плотность около 930 кг/куб.м.

Технологическая усадка при переработке от 1,5 до 2 процентов.

Основное свойство структуры полиэтилена высокого давления – разветвленное строение. Отсюда проистекает его низкая плотность, обусловленная рыхлой аморфно-кристаллической структурой материала на молекулярном уровне.

ПЭ низкого давления (HDPE)

Молекулярная масса ПЭНД колеблется от 50 000 до 1 000 000 атомных единиц.

ПТР в зависимости от марки варьируется от 0,1 до 20 г/10 минут..

Степень кристалличности ПНД составляет от 70 до 90 процентов.

Температура стеклования равна 120 градусов С.

Температура плавления марок материала от 130 до 140 градусов С.

Плотность около 950 кг/куб.м3.

Технологическая усадка при переработке от 1,5 до 2,0 процентов.

Общие свойства полиэтиленов

Химические свойства. ПЭ имеет низкую газопроницаемость. Его химстойкость зависит от молекулярной массы и от плотности полимера. ПЭ инертен к разбавленным и концентрированным основаниям, растворам всех солей, некоторым сильнейшим кислотам, органическим растворителям, маслам и смазкам. Полиэтилен не стоек к 50-процентной азотной кислоте и галогенам, например чистому хлору и брому. Причем бром и йод имею свойство диффузии сквозь полиэтилен.

Физические характеристики. Полиэтилен является эластичным достаточно жестким материалом (ПЭВД – существенно мягче, ПЭНД – жестче). Морозостойкость изделий из полиэтилена – до минус 70 градусов С. Высокая ударная вязкость, прочность, хорошие диэлектрические характеристики. Водо- и паропоглощение у полимера невысокое. С точки зрения физиологии и экологии ПЭ является нейтральным инертным веществом, без запаха и вкуса.

Эксплуатационные свойства полиэтилена. Деструкция ПЭ в атмосфере начинается с температуры 80 градусов С. Полиэтилен без специальных добавок не стоек к солнечной радиации и больше всего к ультрафиолету, легко подвергается фотодеструкции. Для уменьшения этого эффекта в композиции ПЭ добавляют стабилизаторы, например сажу для светостабилизации. Полиэтилен не выделяет вредные для здоровья и природы химикаты в окружающую среду, при этом он самостоятельно разлагается очень медленно – процесс занимает десятилетия. ПЭ довольно пожароопасен и поддерживает горение, этот факт нужно учитывать при его использовании.

Видео:ПолиэтиленСкачать

Полиэтилен

Применение полиэтилена

Полиэтилен является самым популярным полимером в мире. Он неприхотлив в переработке и отлично поддается повторному использованию. Получить изделия из полиэтилена можно практически всеми разработанными на сегодняшний день методами переработки пластмасс. Он не требователен к качеству и конструкции оборудования и оснастке, ПЭ не нуждается в специальной подготовке перед переработкой, например сушке. Индустрией концентратов и добавок к полимерам производится огромное количество суперконцентратов пигментов для ПЭ и на основе полиэтилена. Во многих случаях они применимы для окраски в массе изделий не только из других полиолефинов, но и прочих полимеров.

Полиэтилен: получение и реакции

В случае переработки полиэтилена методом экструзии получают пленку, применяющуюся на каждом шагу как в чистом виде, так и в виде пакетов в упаковке, фасовке, сельском хозяйстве; ПЭ трубы для водоснабжения и газа; оболочки кабелей; листы; вспененные профили и т.д..

Литьем полиэтилена под давлением производят многочисленные упаковочные изделия, например крышки и пробки, баночки. Также литьем производят медицинские изделия, хозяйственные товары бытового назначения, канцтовары, игрушки.

Полиэтилен можно переработать экструзионно-выдувным и инжекционно-выдувным формованием, ротоформованием, каландрованием, а также пневмо- или вакуумформованием из листов.

Более редкие, специализированные типы полиэтилена, например сшитый, хлорсульфированный, сверхвысокомолекулярный используют во многих отраслях, но больше всего в строительстве. Например сверхвысокомолекулярный ПЭ входит в состав композиций для выпуска оболочек оптиковолоконного кабеля. Армированный полиэтилен, в отличие от чистого полимера, может являться конструкционным материалом. Изделия из ПЭ хорошо поддаются сварке любыми методами: термоконтактным, газовым, с применением присадочного прутка, трением и т.п.

Видео:Опыты по химии. Получение этилена и опыты с нимСкачать

Опыты по химии. Получение этилена и опыты с ним

Экология и вторичное использование полиэтилена

В последние годы полиэтилен подвергается серьезному давлению из-за своей якобы не экологичности. На самом деле этот материал – один из самых безопасных. Проблема ПЭ в том, что это основной полимер, применяемый для производства пленок, в том числе тонких, и пакетов из них. Не имея адекватной политики по раздельному сбору мусора, многие низкоразвитые страны занимаются захоронением огромного количества ПЭ отходов, что приводит к попаданию полиэтилена в окружающую среду и водные ресурсы и загрязнению их.

Полиэтилен: получение и реакции

Рис.3. Пакеты для мусора – типичное применение вторичного ПЭ

При этом в случае правильного сбора и сортировки мусора, полиэтиленовые отходы становятся ценным ресурсом и отличным вторичным сырьем. Уже достаточно большое количество предприятий в странах бывшего СССР закупают отходы полимера для переработки во вторсырье, получением гранул и последующим использованием в своем производстве или продажей вторичного ПЭ на рынке. Таким образом загрязнение планеты полиэтиленом должно в скором времени сойти на нет.

🌟 Видео

Сверхвысокомолекулярный полиэтилен – Федор Сенатов / ПостНаукаСкачать

Сверхвысокомолекулярный полиэтилен – Федор Сенатов / ПостНаука

Всё о трубах из сшитого полиэтилена Pex-A от компании UsystemsСкачать

Всё о трубах из сшитого полиэтилена Pex-A от компании Usystems

КАК РАСТВОРИТЬ ПОЛИЭТИЛЕН (PE)Скачать

КАК РАСТВОРИТЬ ПОЛИЭТИЛЕН (PE)

78. Что такое реакции полимеризацииСкачать

78. Что такое реакции полимеризации

«Как это делают»: Полиэтилен — что из него можно создать?Скачать

«Как это делают»: Полиэтилен — что из него можно создать?

Опыты по химии. Каталитическое разложение пероксида водородаСкачать

Опыты по химии. Каталитическое разложение пероксида водорода

Понятие о полимерах. Полиэтилен. Химия 9 классСкачать

Понятие о полимерах. Полиэтилен. Химия 9 класс

Учебный фильм Технология ПолиэтиленСкачать

Учебный фильм Технология Полиэтилен

Определяем СВОЙСТВА ПОЛИЭТИЛЕНА. Опыт#1Скачать

Определяем СВОЙСТВА ПОЛИЭТИЛЕНА. Опыт#1

Полимеры. Ч.3-3. Полимеризация этилена (элементарно о реакции)Скачать

Полимеры. Ч.3-3. Полимеризация этилена (элементарно о реакции)

ПолиэтиленСкачать

Полиэтилен
Поделиться или сохранить к себе: