Гидролиз в организме человека уравнения реакций

Видео:ГИДРОЛИЗ СОЛЕЙ | 9 класс | Кратко и понятноСкачать

ГИДРОЛИЗ СОЛЕЙ | 9 класс | Кратко и понятно

Биологическая роль гидролиза в процессах жизнедеятельности организма

Реферат выполнил: Головенко А.О.

Биологическая роль гидролиза в процессах жизнедеятельности организма. АТФ.

Гидролиз (греч. hydor вода + lysis разложение) – разложение веществ, проходящее с обязательным участием воды и протекающее по схеме:

AB + H-OH → AH + BOH

Реакции гидролиза подвергаются самые различные вещества. Так в процессе пищеварения высокомолекулярные вещества (белки, жиры, полисахариды и др.) подвергаются ферментативному гидролизу с образованием низкомолекулярных соединений (соответственно, аминокислот, жирных кислот и глицерина, глюкозы и др.).

Без этого процесса не было бы возможным усвоение пищевых продуктов, так как высасываться в кишечнике способны только относительно небольшие молекулы. Так, например, усвоение полисахаридов и дисахаридов становится возможным лишь после полного их гидролиза ферментами до моносахаридов. Точно так же белки и липиды гидролизуются до веществ, которые лишь потом могут усваиваться. Рассмотрим основные реакции гидролиза, протекающие в организме.

<img src="http://ic3.static.km.ru/img/58526

Белковые вещества составляют громадный класс органических, то есть углеродистых, а именно углеродисто азотистых соединений, неизбежно встречаемых в каждом организме. Роль белков в организме огромна. Без белков или их составных частей – аминокислот – не может быть обеспечено воспроизводство основных структурных элементов органов и тканей, а также образование ряда важнейших веществ, как, например, ферментов и гормонов. Белки пищи прежде, чем быть использованы для построения тканей тела, предварительно расщепляются. Организмом используется для питания не сам пищевой белок, а его структурные элементы – аминокислоты и, может быть, частично простейшие пептиды, из которых затем в клетках синтезируются специфические для данного вида организма белковые вещества.

Каждый вид организма, каждый орган и каждая ткань содержат свои характерные белки, и при усвоении чужеродных белков пищи организм прежде всего лишает их видовой специфичности. Перед тем, как быть усвоенными белки должны быть разложены на индифферентный материал. Разложение белковых веществ на более простые, лишенные видовой специфичности соединения, способные всасываться в кровь через стенки кишечника, осуществляется в пищеварительных органов человека и животных путем последовательного гидролиза под действием ряда ферментов. В полости рта белки никаким изменениям не подвергаются, так как в состав слюны необходимые для этого протеолитические ферменты не входят. Переваривание белков начинается в желудке.

В желудочно-кишечном тракте пищевые белки распадаются на аминокислоты при участи пищеварительных протеолитических ферментов – пептидогидролаз. Эта группа ферментов различающихся по субстратной специфичности: каждый из этих ферментов предпочтительно (т.е. с наибольшей скоростью) гидролизует пептидные связи (рис.1), образованные определёнными аминокислотами. В результате совместного действия всех пищеварительных пептидогидролаз белки пищи полностью распадаются на аминокислоты. Таким путём организм получает мономеры для синтеза собственных белков.

В желудке переваривание (т. е. гидролитическое расщепление) происходит при действии протеолитического фермента пепсина; существенную роль в этом процессе играет соляная кислота, за счёт которой желудочный сок имеет низкое значение pH (1-2). Под действием этой кислоты выделяемый главными клетками желудочных желез белок пепсиноген превращается в пепсин. HCl катализирует этот процесс, в ходе которого отщепляется часть молекулы и образуется активный центр фермента. Сам пепсин катализирует процесс своего образования, т. е. является автокатализатором.

Пепсин гидролизирует пептидные связи, удалённые от концов пептидной цепи (поэтому пепсин относят к эндопептидазам). При этом белки распадаются на полипептиды, свободные аминокислоты практически не образуются.

Переваривание белков завершается в верхнем отделе тонкого кишечника под действием ферментов поджелудочной железы и клеток кишечника. Эти клетки продуцируют ряд проферментов (трипсиноген, химотрипсиноген, прокарбопептидазы А и В, проэластаза). После каталитического образования в проферментах активного центра и отщепления части молекул, эти белки превращаются соответственно в ферменты: Трипсин, Химотрипсин, Карбопептидазы А и В и Эластазу.

<img src="http://ic3.static.km.ru/img/58526

Трипсин, Химотрипсин и эластаза – эндопептидазы – гидролизуют связи, лежащие ближе к середине полипептидной цепи. Продуктами их действия являются, в основном, пептиды, но образуется и ряд аминокислот.

Карбопептидазы – экзопептидазы. Они гидролизуют пептидную связь, образованную концевым аминокислотным остатком. Карбопептидаза А отщепляет преимущественно концевые аминокислоты с гидрофобным радикалом, а карбоксипептидаза В – остатки лизина и аргинина.

Последний этап переваривания происходит при участии ферментов, синтезируемых клетками кишечника – аминопептидаз и дипептидаз. Первые отщепляют концевые аминокислоты от пептидов, вторые гидролизуют дипептиды.

Таким образом, переваривание пищевых белков – суть, последовательность реакций гидролиза, катализирующегося рядом ферментов.

Гидролиз – также основа синтеза мочевины, протекающего по уравнению:

Данный процесс катализируется ферментом аргиназой, причём возможен и обратный процесс – синтез аргинина из орнитина (Цикл Кребса-Гензелейта).

<img src="http://ic3.static.km.ru/img/58526

Углеводы пищи в пищеварительном тракте распадаются на мономеры при действии гликозидаз – ферментов, катализирующих гидролиз гликозидных связей (рис.2) в полисахаридах.

Переваривание начинается уже в ротовой полости: в слюне содержится фермент амилаза (α

1,4 – гликозидаза), расщепляющая α

1,4 гликозидные связи. Поскольку пища в ротовой полости пребывает недолго, то крахмал здесь переваривается лишь частично. Основным же местом перваривания крахмала служит тонкий кишечник, куда поступает амилаза в составе сока поджелудочной железы. Амилаза не гидролизует гликозидную связь в дисахаридах, поэтому основным продуктом действия кишечой амилазы является дисахарид мальтоза.

<img src="http://ic3.static.km.ru/img/58526

008.gif» />
Из тех глюкозных остатков, которые в молекуле крахмала соединены 1,6-гликозидной связью, образуется дисахарид изомальтоза. Кроме того, с пищей в организм поступают дисахариды сахароза и лактоза (рис.3), которые гидролизуются специфическими гликозидазами – мальтазой, изомальтазой, лактазой и сахаразой соответственно.

<img src="http://ic3.static.km.ru/img/58526

Продукты полного гидролиза углеводов – глюкоза, галактоза и фруктоза – через клетки кишечника поступают в кровь.

<img src="http://ic3.static.km.ru/img/58526

Гидролиз жиров В 12-перстную кишку поступает желчь и сок поджелудочной железы, необходимые для переваривания жиров. В соке поджелудочной железы содержится фермент липаза, катализирующий гидролиз сложноэфирной связи в триацилглицеринах. Поскольку жиры нерастворимы в водных средах, а липаза нерастворима в жирах, гидролиз происходит лишь на поверхности раздела этих фаз и, следовательно, скорость переваривания зависит от площади этой поверхности.

В составе желчи содержатся коньюгированные желчные кислоты (Рис.5) – гликохолевая и таурохолевая. Эти кислоты обладают амфифильными свойствами. На поверхности раздела жир-вода они ориентируются таким образом, что гидрофобная циклическая часть оказывается погружённой в жир, а гидрофильная боковая цепь – в водную фазу. В результате образуется стабильная эмульсия.

<img src="http://ic3.static.km.ru/img/58526

Под действием липазы идёт гидролиз жиров, в ходе которого жирные кислоты отщепляются от триацилглицерина одна за другой, сначала от α-углеродных атомов, потом – от β-углеродного атома (Рис. 6)

Образующиеся в процессе переваривания пищи вещества-мономеры, вступают в ряд реакций. Во многих из них они окисляются, и энергия, выделяющаяся при этом окислении, используется для синтеза АТФ из АДФ – основного процесса аккумулирования энергии в живых организмах. Эта энергия необходима для роста и нормального функционирования организма. Человек получает её как за счёт многостадийного процесса окисления пищи – белков, жиров и углеводов, так и за счёт гидролиза некоторых сложных эфиров, амидов, пептидов и гликозидоа. Однако главным источником энергии для многих биологических процессов – биосинтеза белка, ионного траспорта, сокращения мышц, электрической активности нервных клеток – является аденозинтрифосфат (АТФ).

АТФ (Аденозинтрифосфорная кислота) принадлежит к бионеорганическим соединениям, так как состоит из органической части – аденозина и неорганической части – трёх связанных в цепь фосфатных групп. При рН ³ 7,0 АТФ существует в виде аниона АТФ 4- , так как все фосфатные группы при этом значении водородного показателя ионизированы.

Гидролиз АТФ записывают в виде кислотно-основного равновесия::

АТФ 4- + Н2О Û АДФ 3- + НРО4 2- + Н+

DGо = -30,5 кДж/моль,

где АДФ 3- — анион аденозидифосфата.

Как видно, гидролиз соповождается убылью энергии Гиббса

(DGо = -30,5 кДж/моль). Гидролиз может идти и дальше до образования аденозинмонофосфата (АМФ) и, наконец, до аденозина.

<img src="http://ic3.static.km.ru/img/58526

Освобождение значительной энергии при гидролизе дало основание ввести специальный термин для фосфоорганических веществ – макроэнергетические. Молекула АТФ содержит две высокоэнергетические (макроэнергетические) связи (рис.7).

В химической формуле они традиционно обозначаются знаком

(тильда). В молекуле АДФ только одна высокоэнергетическая связь; в результате синтеза АТФ путём окилительного фосфорилирования добавляется ещё одна, т.е. энергия окисления субстрата трансформируется в энергию химических связей в молекуле АТФ.

Энергия, освобождающаяся при реакциях гидролиза разных веществ, обычно невелика. Если она превышает 30 кДж/моль, то гидролизуемая связь называется высокоэнергетической. Энергия гидролиза АТФ в зависимости от от локализации в клетке может меняться от 40 до 60 кДж/моль. В среднем её принято считать равной 50 кДж/моль.

В таблице 2 представлены значения стандартной энергии Гиббса гидролиза некоторых органических фосфатов.

Таблица 2: Стандартные энергии Гиббса гидролиза бионеорганических соединений

Видео:Гидролиз солей. 9 класс.Скачать

Гидролиз солей. 9 класс.

Водно-электролитный обмен в организме здорового человека: основные составляющие

Гидролиз в организме человека уравнения реакций

Рассмотрение метаболических путей нормально функционирующего организма невозможно без описания обмена низкомолекулярных соединений — минеральных солей и воды. Как известно, вода у взрослого человека составляет 60% от массы тела, то есть 40 — 45 литров. Биологическое значение воды, содержащейся в организме человека, трудно переоценить. Вода и растворенные в ней вещества создают внутреннюю среду организма. Вода обеспечивает транспорт веществ и тепловой энергии по организму. Значительная часть химических реакций организма протекает в водной фазе. Вода участвует в реакциях гидролиза, гидратации, дегидратации. Определяет пространственное строение и свойства гидрофобных и гидрофильных молекул. Поскольку вода является средой, в которой осуществляются процессы обмена веществ в клетках, органах и тканях, непрерывное поступление воды в организм является одним из основных условий поддержания его жизнедеятельности. Основная масса (около 71 %) всей воды в организме входит в состав протоплазмы клеток, составляя так называемую внутриклеточную воду. Внеклеточная вода входит в состав межклеточной, или интерстициалъной, жидкости (около 21%) и воды плазмы крови (около 8%). Содержание воды в организме варьирует в зависимости от органов и тканей. В головном мозге содержится 70-84% воды от всей массы органа, в почках – 82%, в сердце и легких – 79%, в мышцах – 76%, в коже – 72%, в печени – 70%, в костной ткани – 10%. Вода, которая поступает алиментарным путем называется экзогенной, а образовавшаяся в качестве продукта биохимических превращений – эндогенной. Кроме того, различают свободную воду, связанную воду и конституционную воду. Связанная вода удерживается коллоидными системами в виде так называемой воды набухания, Конституционная или внутримолекулярная вода входит в состав молекул белков, жиров и углеводов и освобождается при их окислении. Разные ткани характеризуются различным соотношением свободной, связанной и конституционной воды. Вся вода организма обновляется примерно через месяц, а внеклеточное водное пространство — за неделю.

Водный баланс организма складывается из отребления и выделения воды. С пищей человек получает в сутки около 1100 мл воды, в виде напитков и чистой воды — около 1200 мл. Около 300 мл воды образуется в процессе метаболизма при окислении белков, углеводов и жиров. При испарении с поверхности кожи и альвеол легких в сутки выделяется около 900 мл воды. 1500 мл воды необходимо для растворения экскретируемых почкой осмотически активных веществ при максимальной осмолярности мочи. Секреция воды в пищеварительную трубку составляет 8200 мл, реабсорбция — 8100 мл. 100 мл воды выводится с фекалиями. Простые подсчеты показывают. что средняя суточная потребность человека в воде составляет около 2500 мл.

Водный баланс организма человека.

Средние величины параметров водного баланса организма человека (мл/сут)

Потребление и образование воды

Питье и жидкая пища

Эндоген­ная «вода окисления»

С выдыхаемым воздухом

Внутренний цикл жидкостей желудочно-кишечного тракта (мл/сут)

Итого 8200 — 8100 = вода в кале 100 мл

Очевидно, что обмен воды неразрывно связан в организме с обменом электролитов. Системы регуляции водно-солевого обмена обеспечивают поддержание общей концентрации ионов натрия, калия, кальция, магния, хлора в плазме крови, во внутриклеточной и внеклеточной жидкости на одном и том же уровне. В плазме крови человека концентрация ионов поддерживается с высокой степенью постоянства и составляет (в ммоль/л): натрия — 130—156, калия — 3, 4—5, 3, кальция — 2, 3—2, 75 (в т. ч. ионизированного, не связанного с белками — 1, 13), магния — 0, 7—1, 2, хлора — 97—108, бикарбонатного иона — 27, сульфатного иона — 1, 0, неорганического фосфата — 1—2. По сравнению с плазмой крови и межклеточной жидкостью клетки отличаются более высоким содержанием ионов калия, магния, фосфатов и низкой концентрацией ионов натрия, кальция, хлора и ионов бикарбоната. Различия в солевом составе плазмы крови и тканевой жидкости обусловлены низкой проницаемостью капиллярной стенки для белков. Точная регуляция водно-солевого обмена у здорового человека позволяет поддерживать не только постоянный состав, но и постоянный объем жидкостей тела, сохраняя практически одну и ту же концентрацию осмотически активных веществ и кислотно-щелочное равновесие.

Минеральные вещества поступают в организм в свободном или связанном виде. Ионы всасываются уже в желудке, основная часть минеральных веществ – в кишечнике путем активного транспорта при участии белков–переносчиков. Из желудочно-кишечного тракта минеральные вещества поступают в кровь и лимфу, где связываются со специфическими транспортными белками. Выделяются минеральные вещества главным образом в виде солей и ионов. С мочой выделяются натрий, калий, кальций, магний, хлор, кобальт, йод, бром, фтор. С калом выделяются железо, кальций, медь, цинк, марганец, молибден, и тяжелые металлы.

Наиболее важное значение в водно-электролитном гомеостазе имеют ионы натрия, калия, кальция, хлора. Натрий (Na+) является основным катионом внеклеточных жидкостей. Его содержание во внеклеточной среде в 6—12 раз превышает содержание в клетках. Натрий в количестве 3—6 г в сутки поступает в организм в виде NaCl и всасывается преимущественно в тонком отделе кишечника. Натрий участвует в поддержании равновесия кислотно-основного состояния, осмотического давления внеклеточных и внутриклеточных жидкостей, принимает участие в формировании потенциала действия, оказывает влияние на деятельность практически всех систем организма. Баланс натрия в организме в основном поддерживается деятельностью почек.

Калий (К+) является основным катионом внутриклеточной жидкости. В клетках содержится 98% калия. Суточная потребность человека в калии составляет 2—3 г. Основным источником калия в пище являются продукты растительного происхождения. Особое значение калий имеет благодаря своей потенциалобразующей роли как на уровне поддержания мембранного потенциала, так и в генерации потенциала действия. Мембранный потенциал покоя, т. е. разность потенциалов между клеточным содержимым и внеклеточной средой, сознается благодаря способности клетки активно с затратой энергии поглощать ионы К+ из внешней среды в обмен на ионы Na+ (так называемый К+, Na+-насос) и вследствие более высокой проницаемости клеточной мембраны для ионов К+ чем для ионов Na+. Из-за высокой проницаемости неточной мембраны для ионов К+ дает небольшие сдвиги в содержании калия в клетках (в норме это величина постоянная) и плазму крови ведут к изменению величины мембранного потенциала и возбудимости нервной и мышечной ткани. Калий принимает также участие в регуляции кислотно-основного состояния на конкурентных взаимодействиях между ионами К+ и Na+, а также К+ и Н+ и является фактором поддержания осмотического давления в клетках. Регуляция его выведения осуществляется преимущественно почками.

Кальций (Са2+) обладает высокой биологической активностью. Он является основным структурным компонентом костей скелета, где содержится около 99% всего Са2+. В сутки взрослый человек должен получать с пищей 800—1000 мг кальция. Всасывается кальций преимущественно в двенадцатиперстной кишке в виде одноосновных солей фосфорной кислоты. Примерно 3/4 кальция выводится пищеварительным трактом, куда эндогенный кальций поступает с секретами пищеварительных желез, остальная часть выводится почками. Кальций принимает участие в генерации потенциала действия, в инициации мышечного сокращения, является необходимым компонентом свертывающей системы крови, повышает рефлекторную возбудимость спинного мозга и обладает симпатикотропным действием.

Магний (Mg2+) по содержанию в организме занимает четвертое место среди катионов организма и второе место среди внутриклеточных катионов. Количество общего магния, содержащегося в организме взрослого, составляет 20–28 г. Около 1 % магния находится во внеклеточной жидкости, приблизительно 60 % — в костях, 20% — в мышцах. Остальные 20% приходятся на другие ткани организма, причем большая часть сосредоточена в клетках печени. В плазме крови концентрация магния составляет 0, 75–1, 25 ммоль/л. Из этого количества 55–60 % магния плазмы ионизировано, 15 % связано с органическими и неорганическими кислотами. Биологически активным является только ионизированный магний, концентрация которого в плазме составляет 0, 45–0, 75 ммоль/л. Магний выполняет следующие физиологические функции: входит в состав костей, является антагонистом кальция, влияет на проницаемость биологических мембран, активирует фибринолиз, участвует в функционировании многих ферментов, связанных с обменом АТФ, в качестве кофактора.

Содержание хлора (Cl) в организме составляет около 100 г. В плазме (сыворотке) крови его концентрация достигает 97–108 ммоль/л. Его физиологическая функция связана с участием в формировании трансмембранного потенциала. Являясь основным анионом внеклеточной жидкости, ион хлора активно участвует в обеспечение электронейтральности. Благодаря наличию в мембранах клеток и митохондрий специальных хлорных каналов, хлорид ионы регулируют объем жидкости, трансэпителиальный транспорт ионов, что создает и стабилизирует мембранный потенциал Механизмы регуляции хлора связаны с процессами, стабилизирующими содержание натрия. В связи с тем, что хлорид-ионы способны проникать через мембрану клеток, они вместе с ионами натрия и калия поддерживают осмотическое давление и регулируют водно-солевой обмен. Хлор является составной частью соляной кислоты желудочного сока, денатурирующей белки и активирующей пепсиноген. создают благоприятную среду в желудке для действия протеолитических ферментов желудочного сока. Кроме того, ионы хлора участвуют в создании и поддержании рН в клетках и биологических жидкостях организма.

Фосфор (Р) относится к структурным (тканеобразующим) макроэлементам, его содержание в организме взрослого человека составляет около 700 г.
Большая часть фосфора (85-90%) находится в костной ткани и в зубах, остальное – в мягких тканях и жидкостях. Около 70% общего фосфора в плазме крови входит в органические фосфолипиды, около 30% — представлено неорганическими соединениями (10% соединения с белком, 5% комплексы с кальцием или магнием, остальное – анионы ортофосфата). Биологическая роль фосфора в организме сводится к следующему. Фосфор входит в состав многих веществ организма (фосфолипиды, фосфопротеиды, нуклеотиды, коферменты, ферменты). Фосфолипиды являются основным компонентом мембран всех клеток в организме человека. В костях фосфор находится в виде гидроксилапатита, в зубах в виде фторапатит, выполняя структурную функцию. Остатки фосфорной кислоты входят в состав нуклеиновых кислот и нуклеотидов, а также в состав аденозинтрифосфорной кислоты (АТФ) и креатинфосфата. Остатки фосфорной кислоты входят в состав буферной системы крови, регулируя ее рН.

Автор статьи:

Статья добавлена 31 мая 2016 г.

🔍 Видео

Гидролиз солей. 1 часть. 11 класс.Скачать

Гидролиз солей. 1 часть. 11 класс.

Гидролиз солей. Классификация солей. Решение примеров.Скачать

Гидролиз солей. Классификация солей. Решение примеров.

Гидролиз солей | ХимияСкачать

Гидролиз солей | Химия

Химия 11 класс (Урок№7 - Гидролиз органических и неорганических соединений.)Скачать

Химия 11 класс (Урок№7 - Гидролиз органических и неорганических соединений.)

Химия 9 класс (Урок№8 - Гидролиз солей.)Скачать

Химия 9 класс (Урок№8 - Гидролиз солей.)

Гидролиз солей. Теория для задания 23 ЕГЭ по химии.Скачать

Гидролиз солей. Теория для задания 23 ЕГЭ по химии.

Ступенчатый гидролиз солей по аниону. Решаем примеры.Скачать

Ступенчатый гидролиз солей по аниону. Решаем примеры.

11 класс. Гидролиз солей.Скачать

11 класс. Гидролиз солей.

Летучка: все реакции гидролиза | Химия ЕГЭ 2023 | УмскулСкачать

Летучка: все реакции гидролиза | Химия ЕГЭ 2023 | Умскул

Химия. Химические реакции. Гидролиз. Центр онлайн-обучения «Фоксфорд»Скачать

Химия. Химические реакции. Гидролиз. Центр онлайн-обучения «Фоксфорд»

Гидролиз солей. Опыт 2. Определение реакции среды в растворах солейСкачать

Гидролиз солей. Опыт 2. Определение реакции среды в растворах солей

Необратимый гидролиз КРАТКО и ПОНЯТНО | Химия ЕГЭ 2024 | УМСКУЛСкачать

Необратимый гидролиз КРАТКО и ПОНЯТНО | Химия ЕГЭ 2024 | УМСКУЛ

Химия | ГидролизСкачать

Химия | Гидролиз

Все реакции гидролиза в ЕГЭ за 2 часа | Химия ЕГЭ 2022 | УмскулСкачать

Все реакции гидролиза в ЕГЭ за 2 часа | Химия ЕГЭ 2022 | Умскул

Совместный гидролиз в реакциях ионного обмена: за что?! | Химия ЕГЭ | УмскулСкачать

Совместный гидролиз в реакциях ионного обмена: за что?! | Химия ЕГЭ | Умскул

Как выглядит совместный гидролиз солей на ЕГЭ - химические опыты | Химия 10 класс УмскулСкачать

Как выглядит совместный гидролиз солей на ЕГЭ - химические опыты | Химия 10 класс Умскул

Как выучить Химию с нуля за 10 минут? Принцип Ле-ШательеСкачать

Как выучить Химию с нуля за 10 минут? Принцип Ле-Шателье

Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку
Поделиться или сохранить к себе: