Гальванический элемент цинк серебро уравнение

Видео:Электроды и гальванические элементыСкачать

Электроды и гальванические элементы

СХЕМА РАБОТЫ ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА И ТИПОВЫЕ ЗАДАЧИ

Гальванический элемент цинк серебро уравнение

Фундаментальные законы физики и химии, и в том числе, закон сохранения массы и энергии вещества, находят свое подтверждение на уровне перемещения мельчайших частиц – электронов, массами которых в химии обычно пренебрегают.

Речь идет об окислительно-восстановительных процессах, сопровождающихся переходом электронов от одних веществ (восстановителей) к другим (окислителям). Причем вещества могут обмениваться электронами, непосредственно соприкасаясь друг с другом.

Однако существует множество случаев, когда прямого контакта веществ не происходит, а процесс окисления-восстановления все равно идет. А если он идет самопроизвольно, то при этом еще и энергия выделяется. Ее человек с успехом использует для выполнения электрической работы.

Реализуется такая возможность в гальваническом элементе, схема работы которого, а также расчеты, связанные с ним, рассматриваются в данной статье.

Видео:Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.Скачать

Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.

Простейший гальванический элемент: схема работы

Гальванический элемент – это прибор, позволяющий при посредстве химической реакции получить электрическую энергию.

Пластинка металла и вода: простые взаимоотношения

Давайте сначала разберемся, что происходит с пластинкой металла, если опустить ее в воду?

Процесс схож с диссоциацией соли: диполи воды ориентируются к ионам металла и извлекают их из пластины. Но почему же тогда не происходит растворения самой пластины в воде? Все дело в строении кристаллической решетки.

Кристаллы соли состоят из катионов и анионов, поэтому диполями воды извлекаются из решетки и те, и другие.

У металла же кристаллическая решетка представлена атомами-ионами. Внутри нее всегда происходит превращение атомов в катионы за счет отщепления валентных электронов и обратный процесс: катионы снова превращаются в атомы, присоединяя электроны. Электроны являются общими для всех ионов и атомов, присутствующих в кристаллической решетке металла.

Процессы внутри металлической кристаллической решетки в обобщенном виде можно показать так:

Гальванический элемент цинк серебро уравнение

В итоге, вода, окружающая пластинку – это уже не собственно вода, а раствор, составленный из молекул воды и перешедших в нее из пластины ионов металла. На пластине же возникает избыток электронов, которые скапливаются у ее поверхности, так как сюда притягиваются гидратированные катионы металла.

Гальванический элемент цинк серебро уравнение

Возникает так называемый двойной электрический слой.

Гальванический элемент цинк серебро уравнение

Бесконечно катионы металла с пластины в раствор уходить не будут, поскольку существует и обратный процесс: переход катионов из раствора на пластину. И он будет идти до тех пор, пока не наступит динамическое равновесие:

Гальванический элемент цинк серебро уравнение

На границе раздела «металлическая пластина – раствор» возникает разность потенциала, которая называется равновесным электродным потенциалом металла.

Пластинка металла и раствор его соли: к чему приводит такое соседство

А что произойдет, если металлическую пластинку поместить не в воду, а в раствор соли этого же металла, например, цинковую пластинку Zn в раствор сульфата цинка ZnSO4?

В растворе сульфата цинка уже присутствуют катионы цинка Zn 2+ . Таким образом, при погружении в него цинковой пластины возникнет избыточное количество этих катионов, и уже известное нам равновесие (см. выше) сместится влево. Все это приведет к тому, что отрицательный заряд на пластинке будет иметь меньшее значение, так как меньшее количество катионов с нее будет переходить в раствор. Как результат – более быстрое наступление равновесия и менее значительный скачок потенциала.

Потенциал металла в растворе его же соли в момент равновесия записывают так:

Гальванический элемент цинк серебро уравнение

Металл, погруженный в раствор электролита, называют электродом, обратимым относительно катиона.

Цинк – достаточно активный металл. А если речь будет идти о медной пластинке Cu, погруженной в раствор, например, сульфата меди (II) CuSO4?

Медь – металл малоактивный. Двойной электрический слой, конечно же, появится и в этом случае. Но! Катионы из пластинки в раствор переходить не будут. Наоборот, катионы меди (II) Cu 2+ из раствора соли начнут встраиваться в кристаллическую решетку пластинки и создавать положительный заряд на ее поверхности. Сюда же подойдут сульфат-анионы SO4 2- и создадут вокруг нее отрицательный заряд. То есть распределение зарядов в данном случае будет совершенно противоположным, чем на цинковой пластинке.

Гальванический элемент цинк серебро уравнение

Это общая закономерность: пластинки из малоактивных металлов при погружении в раствор их солей всегда заряжаются положительно.

Видео:Гальванические элементы. 1 часть. 10 класс.Скачать

Гальванические элементы. 1 часть. 10 класс.

Как устроен гальванический элемент Даниэля-Якоби, или Так где же все-таки электрический ток?

Известно, что электрический ток – это направленное движение заряженных частиц (электронов).

На активном металле скапливаются электроны, а поверхность малоактивного металла, заряжается положительно. Если соединить проводником (например, металлической проволокой) оба металла, то электроны с одного перейдут на другой, а двойной электрический слой перестанет существовать. Это будет означать возникновение электрического тока.

Причем, ток возникает за счет окислительно-восстановительного процесса: активный металл окисляется (так как отдает электроны малоактивному), а малоактивный металл восстанавливается (так как принимает электроны от активного). Металлы друг с другом не соприкасаются, а взаимодействуют через посредника: внешнего проводника. Данная схема и есть схема гальванического элемента. Именно так устроен и работает гальванический элемент Даниэля-Якоби:

Гальванический элемент цинк серебро уравнение

В схеме элемента показан «солевой мостик». Он представляет собой трубку, в которой присутствует электролит, не способный взаимодействовать ни с электродами (катодом или анодом), ни с электролитами в пространствах у электродов. Например, это может быть раствор сульфата натрия Na2SO4. Подобный мостик нужен для того, чтобы уравновешивать (нейтрализовать) заряды, образующиеся в растворах гальванического элемента.

Таким образом, возникшая электрическая цепь замыкается: анод → проводник с гальванометром → катод → раствор в катодном пространстве → «солевой мостик» → раствор в анодном пространстве → анод.

Анод – электрод, на котором происходит окисление (цинковая пластинка):

Гальванический элемент цинк серебро уравнение

Электроны цинка Zn отправляются по внешней цепи (то есть по проводнику) на катод.

Катод – электрод, на котором происходит восстановление (медная пластинка):

Гальванический элемент цинк серебро уравнение

Катионы меди Cu 2+ , пришедшие на пластинку из раствора сульфата меди (II), получают электроны цинкового анода.

В общем виде весь процесс окисления-восстановления в гальваническом элементе выглядит так:

Гальванический элемент цинк серебро уравнение

Для любого гальванического элемента можно составить запись в виде схемы. Например, для приведенного элемента Даниэля-Якоби она будет выглядеть так:

Гальванический элемент цинк серебро уравнение

3 – скачок потенциала (граница раздела фаз);

4 – электролит в анодном пространстве;

5 – электролит в катодном пространстве;

6 – граница между растворами (солевой мостик).

Или сокращенно: Гальванический элемент цинк серебро уравнение

Видео:Уравнение Нернста. Условия изменения направления ОВР. Продукты в ОВР. Ч.5-3.Скачать

Уравнение Нернста. Условия изменения направления ОВР. Продукты в ОВР. Ч.5-3.

Типовые задачи на схему гальванического элемента: примеры решения

По вопросу, рассмотренному в данной статье, возможны два основных вида задач.

Задача 1. Составьте схему гальванического элемента, в котором протекает реакция:

Гальванический элемент цинк серебро уравнениеРешение:

Гальванический элемент цинк серебро уравнение

Задача 2. Напишите электродные и суммарные уравнения реакций, протекающих в гальваническом элементе:

Гальванический элемент цинк серебро уравнениеРешение:

Гальванический элемент цинк серебро уравнение

Итак, разобрав принцип работы гальванического элемента, мы научились записывать схему его работы и определять основные процессы на электродах.

Видео:Разбор схемы гальванического элементаСкачать

Разбор схемы гальванического элемента

Гальванические элементы

Если окислительно-восстановительную реакцию осуществить так, чтобы процессы окисления и восста­новления были пространственно разделены, и создать возможность перехода электронов от восстановителя к окислителю по проводнику (внешней цепи), то во внешней цепи возникнет направленное перемещение электронов – электрический ток. При этом энергия, химической окислительно-восстановительной реакции превращается в электрическую энергию. Устройства, в которых происходит такое превращение, называются химическими источниками электрической энергии, или гальваническими элементами.

Всякий гальванический элемент состоит из двух электродов – металлов, погруженных в растворы электролитов; последние сообщаются друг с другом обычно через пористую перегородку. Электрод, на ко­тором в ходе реакции происходит процесс окисления, называется анодом; электрод, на котором осуществля­ется восстановление – катодом.

При схематическом изображении гальванического элемента граница раздела между металлом и раство­ром обозначается вертикальной чертой, граница меж­ду растворами электролитов – двойной вертикальной чертой. Например, схема гальванического элемента, в основе работы которого лежит реакция

изображается следующим образом:

Zn | Zn(NО3)2 || AgNО Гальванический элемент цинк серебро уравнение| Ag.

Эта же схема может быть изображена в ионной форме:

Zn | Zn 2+ || Ag + | Ag.

В данном случае металлические электроды непо­средственно участвуют в происходящей реакции. На аноде цинк окисляется Zn = Zn 2+ + 2 Гальванический элемент цинк серебро уравнениеи в форме ионов переходит в раствор, а на катоде серебро восстанавливается Ag + + Гальванический элемент цинк серебро уравнение=Ag

и в виде металла осаждается на электроде. Склады­вая уравнения электродных процессов (с учетом числа принимаемых и отдаваемых электронов), получаем суммарное уравнение реакции: Zn+2Ag + = Zn 2+ + 2Ag.

Максимальное напряжение гальванического эле­мента, отвечающее обратимому протеканию происхо­дящей в нем реакции, называется электродвижущей силой (ЭДС) элемента. Если реакция осуществля­ется в стандартных условиях, т. е. если все вещества, участвующие в реакции, находятся в своих стандарт­ных состояниях, то наблюдаемая при этом ЭДС на­зывается стандартной электродвижущей силой дан­ного элемента.

ЭДС гальванического элемента может быть представлена как разность двух электродных потенциалов Е, каждый из которых отвечает полуреакции, протекающей на одном из электродов. Так, для рас­смотренного выше серебряно-цинкового элемента ЭДС выражается разностью:

Здесь ЕAg и ЕZn – потенциалы, отвечающие электродным про­цессам, происходящим соответственно на серебряном и цинковом электродах.

При вычислении электродвижущей силы меньший (в алгебраическом смысле) электродный потенциал вычитается из большего.

Пример 1. Стандартный электродный потенциал никеля больше, чем у кобальта. Изменится ли это соотношение, если измерить потенциал никеля в растворе его ионов с концентрацией 0,001 г-ион/л, а кобальта – 0,1 г-ион/л?

Решение. Электродный потенциал металла (Е) зави­сит от концентрации его ионов в растворе. Эта зависимость выражается уравнением Нернста:

Е = Е 0 + Гальванический элемент цинк серебро уравнение.

Е° для никеля и кобальта соответственно равны – 0,25 и – 0,277В. Определим электродные потенциалы этих металлов при данных в условии концентрациях:

ЕNi 2+ /Ni = – 0,25 + Гальванический элемент цинк серебро уравнениеlg 10 -3 = – 0,337 В,

ЕCo 2+ /Co = – 0,277 + Гальванический элемент цинк серебро уравнениеlg 10 -1 = – 0,306 В.

Таким образом, при изменившейся концентрации потен­циал кобальта стал больше потенциала никеля.

Пример 2. Магниевую пластинку опустили в раствор его соли. При этом электродный потенциал магния оказался равен –2,41 В. Вычислите концентрацию ионов магния в г-ион/л.

Решение.Подобные задачи также решаются на осно­вании уравнения Нернста:

–2,41 = –2,37 + Гальванический элемент цинк серебро уравнениеlg C,

lgC = – Гальванический элемент цинк серебро уравнение1,3793= Гальванический элемент цинк серебро уравнение,6207,
CMg 2+ = 4,17 · 10 -2 г-ион/л.

Пример 3. Составьте схему гальванического элемента, в котором электродами являются магниевая и цинковая пластинки, опущенные в растворы их ионов с активной кон­центрацией 1 г-ион/л. Какой металл является анодом, ка­кой катодом? Напишите уравнение окислительно-восстано­вительной реакции, протекающей в этом гальваническом элементе, и вычислите его ЭДС.

Решение. Схема данного гальванического элемента

(–) Mg | Mg 2+ || Zn 2+ | Zn(+)

Вертикальная черта обозначает поверхность раздела между металлом и раствором, а две черточки – границу раздела двух жидких фаз – пористую перегородку (или соедини­тельную трубку, заполненную раствором электролита). Магний имеет меньший потенциал (–2,37 В) и является анодом, на котором протекает окислительный процесс:

Mg –2 Гальванический элемент цинк серебро уравнение= Mg 2+ . (1)

Цинк, потенциал которого –0,763В, – катод, т. е. элект­род, на котором протекает восстановительный процесс:

Zn 2+ + 2 Гальванический элемент цинк серебро уравнение= Zn (2)

Уравнение окислительно-восстановительной реакции, которая лежит в основе работы данного гальванического эле­мента, можно получить, сложив электронные уравнения анодного (1) и катодного (2) процессов:

Mg + Zn 2+ = Mg 2+ + Zn

Для определения электродвижущей силы – ЭДС, гальванического элемента из потенциала катода следует вы­честь потенциал анода. Так как концентрация ионов в раст­воре равна 1 г-ион/л, то ЭДС элемента равна разности стандартных потенциалов двух его электродов:

ЭДС = Гальванический элемент цинк серебро уравнение= – 0,763 – (– 2,37) = 1,607 В.

Коррозия металлов.

Методы защиты от коррозии

I

В силу широчайшего использования различных металлических конструк-ций, аппаратов, приборов коррозионный процесс наносит огромный ущерб на-родному хозяйству. Любой вопрос новой техники сейчас же вызывает необходи-мость решения проблем в области корро-зии. Защита металлов от коррозии не-возможна без знания закономерностей течения этого процесса.

К о р р о з и я — это процесс самопроизвольного разрушения металлов вследствие их взаимодействия с окружающей средой.

Свободный металл (Ме ○ ) является термодинамически неустойчивой формой по сравне-нию с ионной (Ме + n ) – ведь в природе металлы, как правило, встреча-ются не в самородном состоянии, а в виде минералов и руд (соли или оксиды ме-таллов).Этим и объясняется само-произвольное разрушение большинства метал-лов. Судить о степени термодинамической не-стабильности можно по величине стандартного электродного потенциала – чем отрицатель-нее эта величина, тем в большей степени металл будет подвержен коррозионному разруше-нию (см. таблицу).

Коррозионный процесс относится к окислительно-восстановительным и включает в себя две сопряженные реакции – окисление и восстановление, например Ме ○ + Ок ○ → Ме + n + Ок − n ,

где окисление: Ме ○ − ne → Ме + n ;

восстановление: Ок ○ + ne → Ок − n .

В зависимости от механизма протекания этих сопряженных реакций коррозия бывает химической или электрохимической.

Химическая коррозия подразумевает процесс взаимодействия металла с окружающей средой за счет гетерогенной химической реакции (атом металла непосредственно взаимо-действует с молекулой реагента и переходит в ионное состояние без переноса электрона через компактный металл). К химической коррозии относятся окисление металлов при вы-соких температурах в газовой атмосфере либо разрушение металла при его соприкоснове-нии с растворами неэлектролитов.

Электрохимическая коррозия протекает с разделением анодной (окисле-ние) и катодной (восстановление)реакций либо в пространстве (по поверхности), либо во времени (если они протекают в одной точке п оверхности). Возникает эта коррозия на границе раздела фаз «металл — электролит» и сопровождается перемещением электронов с одних участков ме-талла к другим, т.е. появлением электрического тока. К ней относят:

— атмосферную коррозию во влажной газовой или воздушной атмосфере;

— электрокоррозию под действием блуждающих токов и др.

В зависимости от характера разрушений, сопровождающих процесс элект-рохимической коррозии, различают с п л о ш н у ю коррозию, захватывающую всю поверхность металла, и м е с т н у ю, локализующуюся на отдельных участках:

— коррозия пятнами (диаметр поражения велик по сравнению с его глубиной);

— язвенная коррозия (диаметр поражения мал, велика глубина проникновения);

— питтинговая коррозия (точечное поражение, проходящее часто через всю толщу металла) и др.

Скорость коррозии может быть выражена различными способами, однако чаще пользуются весовым, глубинным и токовым показателями.

Весовой или массовый показатель скорости коррозии численно равен потере массы за единицу времени, отнесенную к единице площади:

Гальванический элемент цинк серебро уравнениекор = ∆ m/τ•S (г/см 2 ч).

Глубинный показатель оценивает скорость коррозии по глубине проник-новения коррозионного разрушения в толщу металла за определенный проме-жуток времени: Пгл (мм/год).

Токовый показатель — плотность тока: i (А/см 2 ).

Стандартные электродные потенциалы некоторых металлов (Е ○ ) и общая термодинамическая характеристика их коррозионной стойкости по отношению к водным растворам

Термодинамическая стабильность металлаМеталл и его электродный потенциал (Е ○ , В)
1. Металлы повышенной нестабильности (неблагородные). Могут корродировать даже в нейтральных средах, не содержащих окислителейLi (-3,045) Na (-2,714) Cr(II)(-0.913) K (-2,925) Mg (-2,370) Zn (-0,762) Ba(-2,900) Be (-1,850) Cr(III)(-0,740) Ca(-2,870) Al (-1,670) Fe(II)(-0,440)
2. Металлы нестабильные. Устойчивы в ней-тральных средах при отсутствии кислорода, в кислых средах могут корродировать и в от-сутствие кислородаCd (-0,402) Pb (-0,126) Co (-0,277) Fe(III) (-0,037) Ni (-0,250) Sn(II) (-0,136)
3. Металлы промежуточной стабильности (полублагородные). В отсутствие О2 и окис-лителей устойчивы в кислых и нейтральных средахSn(IV) (+0,007) Ag (+0,799) Cu(II) (+0,337) Cu(I) (+0,521) Hg(I) (+789)
4. Металлы высокой стабильности (благород-ные) не корродируют в нейтральных средах при наличии О2. Могут корродировать в кислых средах при наличии О2 или окислителейHg(II) (+0,854) Pd (II) (+0,987) Ir (II) (+1,156) Pt (III) (+1,190)
5. Металлы полной стабильности. Устойчивы в кислых средах при наличии О2 . Могут растворяться в комплексообразователях при наличии окислителейAu (III) (+1,500) Au(I) (+1,680)

Рассмотрим электрохимическую коррозию на примере действия серной кислоты на технический цинк, содержащий примеси железа. В этом случае на поверхности цинка возникает множество микрогальванопар, в которых цинк яв-ляется анодом (т.к. электродный потенциал цинка (-0,762 В) отрицательнее электродного потенциала железа (-0,44 В), а железо – катодом. Анодный про-цесс в этом случае – окисление цинка, катодный – восстановление окислителя, присутствующего в электролите (катионы водорода):

на аноде Zn ○ — 2e = Zn +2 ионизация цинка (окисление);

на катоде 2Н + + 2e = Н2↑ восстановление катионов водорода.

Поверхность цинка (анод) разрушается, высвободившиеся электроны перетека-ют к включениям железа (катод), на которых выделяется газообразный водород.

Помимо электрохимического растворения цинк может растворяться и в результате химического процесса: Zn ○ + 2Н + = Zn +2 + Н2↑ . Однако опыт показывает, что скорость растворения цинка в этом случае значительно ниже, чем скорость ионизации цинка как анода гальванопары. Вторичный процесс обусловлен взаимодействием образовавшихся катионов металла и кислотного остатка, присутствующего в электролите: Zn +2 + SO4 -2 =ZnSO4. Таким обра-зом протекает коррозионный процесс в кислых средах.

Течение коррозионного процесса в нейтральных средах отличается от вышерассмотренного. Например: коррозия технического железа, покрытого пленкой влаги, на воздухе или электролите с нейтральной реакцией среды. Анодный процесс аналогичен – ионизируется металл; на катоде в этом случае восстанавливаются молекулы кислорода, растворенного в воде:

на аноде Fe ○ — 2e = Fe +2 ионизация железа (окисление);

на катоде О2 + 2Н2О + 4е = 4ОН — восстановление кислорода.

Возможные вторичные процессы:

Нередко продукты коррозии оказываются малорастворимыми и своим при-сутствием на поверхности металла защищают его от дальнейшего разрушения – пассивируют металл. Это могут быть оксиды, гидроксиды, соли.

П а с с и в а ц и е й или пассивностью металла называется такое его сос-тояние, в каком он не подвергается коррозионному разрушению. Это состояние может быть достигнуто как за счет действия соответствующих окислителей, так и в случае анодной поляризации. Целый ряд металлов уже в естественных усло-виях имеет на своей поверхности оксидную пленку, которая надежно защищает от воздействия агрессивных агентов окружающей среды. Такие металлы называ-ются самопассивирующимися. К ним относятся: алюминий (с термодинамической точки зрения активный металл, но за счет поверхностной оксидной пленки коррозионностойкий), титан, ванадий, молибден, хром, никель и др.

II

Каждая шестая доменная печь работает на коррозию — таков итог действия коррозии, приводящей к разрушению конструкций, понижению качества продук ции, а также к авариям и несчастным случаям на производстве. Это наносит на-родному хозяйству огромный ущерб.

Любой метод защиты изменяет ход коррозионного процесса, уменьшая его скорость. Однако, выбирая способ защиты металла, необходимо учитывать кон-роль коррозионного процесса.

Разрушение металла — совместное протекание двух процессов: окисления (анодный процесс) и восстановления (катодный процесс) и общая скорость кор-розии определяется скоростью более медленнотекущего процесса (медленно текущая реакция называется л и м и т и р у ю щ е й). Катодный контролькоррозионного процесса имеет место, если лимитирующей является катодная реакция. Анодный контрольесли лимитирующей является анодная реак-ция. При выборе метода защиты это необходимо учитывать. Если разрушение металла протекает с анодным контролем, необходимо подобрать метод защиты усиливающий анодную поляризацию. Если разрушение металла протекает с ка-тодным контролем — метод усиливающий катодную поляризацию. Напомним, что п о л я р и з а ц и е й называется смещение потенциала электрода при протекании через систему электрического тока. Анодная поляризация — сме- щение потенциала в положительную сторону. Нижеприведенные иаграммы ил-люстрируют снижение скорости коррозии при усилении анодной (рис. 1) и катодной (рис. 2) поляризации.

Гальванический элемент цинк серебро уравнениеГальванический элемент цинк серебро уравнение

Рис. 1. Анодный контроль Рис. 2. Катодный контроль

Все методы защиты условно делятся на четыре группы:

1) электрохимические методы;

2) методы, связанные с изменением свойств корродирующего металла;

3) методы, связанные с изменением свойств коррозионной среды;

4) комбинированные методы.

Электрохимические методы защиты основаны на изменении электро- химических свойств металла под действием поляризующего тока. Катодная защита применяется для повышения коррозионной стойкости металлов в ус-ловиях почвенной, морской коррозии, при контакте металла с агрессивными хи-мическими средами. Защита обеспечивается в этом случае наложением тока от внешнего источника питания (защищаемая поверхность соединяется с отрица-тельным полюсом этого источника) — на защищаемой поверхности протекают только восстановительные процессы. Протекторная защита ( частный слу-чай катодной защиты) — создание макрогальванической пары с менее благород-ным металлом-протектором. П р о т е к т о р играет роль анода и растворяется со скоростью, достаточной для создания в системе тока необходимой силы. В качестве протектора могут быть использованы цинк, алюминий, магний и их сплавы. Анодная защитаприменима к металлам и сплавам, способных пасси-вироваться при смещении их электродного потенциала в положительную сторо-ну и достижения состояния полной пассивации (здесь защищаемая поверхность соединяется с положительным полюсом внешнего источника питания). Элек-трохимические методы защиты можно использовать только в хорошо проводи- мой среде — в морской воде, почве, растворах электролитов.

Группа методов защиты,основанная на изменении свойств металлов, осуществляется либо специальной обработкой их поверхности, либо легированием. Легированиемназыва-ется введение в защищаемый металллегирующих эле-ментов, повышающих термодинамическую устойчивость анодной фазы (напри-мер: легирование стали – никелем, никеля – медью, меди – золотом и т. д.), либо содействующих пассивированию анодной фазы (легирование сталей хро-мом или кремнием, никеля – хромом). Кроме того, для увеличения коррозионной стойкости металлов широко используются различные покрытия. Предназначение защитного покрытия — создание барьерного слоя, препятствующе-го проникновению коррозионной среды к поверхности металла. Материал пок-рытия прежде всего должен обладать высокой химической устойчивостью, сла- бой проницаемостью для воды, газов, агрессивных ионов (Cl — , SO4 -2 ), хорошей адгезией к металлу, механической прочностью и др. Покрытия делятся на две группы: металлические и неметаллические. Неметаллические покрытия, в свою очередь,бывают неорганические (оксидные, солевые, силикатные, асбоце-

ментные и др.) и органические (лакокрасочные, битумные, резиновые, поли-мерные). Металлические покрытиябывают анодными и катодными. Анодное металлическое покрытие имеет место в случае нанесения на защищаемый металл другого металла с более отрицательным электродным потенциалом, например, железо (-0,44 В), покрытое цинком (-0,76 В). Катодное металли-ческое покрытие — на защищаемый металл наносят другой металл с более положительным электродным потенциалом, например, железо (-0,44 В),покртое медью (+0,345 В). Если нарушается целостность защитного металлического покрытия в процессе эксплуатации, начинают работать гальванопары. В случае анодного покрытия — разрушается металл покрытия (анод), защищаемый металл (катод) остается без изменения. В случае катодного покрытия – разрушается защищаемый металл (анод, т.к. его электродный потенциал отрицательнее по-тенциала покрытия), металл покрытия (катод) не изменяется.

Для повышения защитного эффекта часто используют системы из не-скольких покрытий: фосфатное покрытие перед нанесением лакокрасочного, цинковое покрытие с последующим фосфатированием и нанесением лака, мно- гослойные металлические покрытия, лакокрасочные покрытия с наполнителем из металлического порошка и др.

Скорость коррозии можно уменьшить также изменением свойств корро-зионной среды, в результате которой уменьшается ее агрессивность, или введением в коррозионную среду небольших добавок замедлителей коррозии — ингибиторов. Обработка среды заключается в уменьшении влажности и запы-ленности воздуха производственного помещения, деаэрировании (уменьшении концентрации кислорода) жидких сред и т. д. Ингибиторы коррозии в зависимости от условий их применения делят на летучие и жидкостные, кото-рые, в свою очередь, бывают кислотные, щелочные и нейтральные (замедля-ющие скорость коррозии соответственно в кислых, щелочных или нейтраль-ных средах). Ингибиторы широко исполь-зуются для защиты от разрушений внешних и внутренних поверхностей труб и аппаратов, в циркуляционных охла-дительных системах, коммуникационных системах, в различных емкостях для хранения жидких продуктов и др.Их большое преимущество состоит в том, что они пригодны при защите уже пораженных коррозией систем без замены мате-риала или конструкции. Механизм действия ингибиторов обусловлен их ад-сорбцией на границе раздела «металл – коррозионная среда». Защитное дейст-вие ингибитора тем больше, чем больше размер ингибирующей молекулы. Кро-ме того, защитный эффект наступает при более низких концентрациях, если мо-лекулы ингибитора полярны, чем в случае неполярных молекул. Здесь, при растворении ингибитора образуются положительно заряженные ионы. При рас-творении металла его положительно заряженные ионы переходят в раствор, а на поверхности металла скапливается избыток отрицательных зарядов. Отрица-тельно заряженная поверхность металла притягивает положительные ионы ингибитора, которые адсорбируясь блокируют дальнейшее его растворение. В настоящее время в качестве ингибиторов используются глицерин (СН2ОН-СНОН- СН2ОН), ацетальдегид (СН3СОН), анилин (С6Н62), уротропин и многие другие.

Видео:Гальванические элементы. Практическая часть. 10 класс.Скачать

Гальванические элементы. Практическая часть. 10 класс.

Как рассчитать ЭДС гальванического элемента

Видео:Уравнение Нернста. Задачи на расчет потенциалов. Продукты в ОВР. Ч.5-2.Скачать

Уравнение Нернста. Задачи на расчет потенциалов. Продукты в ОВР. Ч.5-2.

Решение задач на составление схемы гальванического элемента

Задание 251.
При каком условии будет работать гальванический элемент, электроды которого сделаны из одного и того же металла? Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, в котором один никелевый электрод находится в 0,001 М растворе, а другой такой же электрод — в 0,01 М растворе сульфата никеля. Ответ: 0,0295 В.
Решение:
Гальванический элемент, электроды которого сделаны из одного и того же металла будет работать при условии, что электроды будут опущены в растворы солей с разной концентрацией. Схема гальванического элемента, в котором один никелевый электрод находится в 0,001М растворе, а другой – в 0,01М растворе сульфата никеля имеет вид:

Гальванический элемент цинк серебро уравнение

Электродный потенциал металла (Е) зависит от концентрации его ионов в растворе. Эта зависимость выражается уравнением Нернста:

Гальванический элемент цинк серебро уравнение

Е 0 – стандартный электродный потенциал металла; n – число электронов, принимающих участие в процессе; с – концентрация ионов металла в растворе его соли (при точных вычислениях – активность).

Определим электродные потенциалы никелевых электродов при разных концентрациях ионов серебра Ni 2+ , получим:

Гальванический элемент цинк серебро уравнение

Для определения ЭДС гальванического элемента из потенциала катода следует вычесть потенциал анода, получим:

Гальванический элемент цинк серебро уравнение

Ответ: 0,0295 В.

Задание 252.
Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из свинцовой и магниевой пластин, опущенных в растворы своих солей с концентрацией [Рb 2+ ] = [Мg 2+ ] = 0,01 моль/л. Изменится ли ЭДС этого элемента, если концентрацию каждого из ионов увеличить в одинаковое число раз? Ответ: 2,244 В.
Решение:
Схема гальванического элемента

Гальванический элемент цинк серебро уравнение

Вертикальная линейка обозначает поверхность раздела между металлом и раствором, а две линейки — границу раздела двух жидких фаз — пористую перегородку (или соединительную трубку, заполненную раствором электролита). Магний имеет меньший потенциал (—2,37 В) и является анодом, на котором протекает окислительный процесс:

Мg 0 — 2 Гальванический элемент цинк серебро уравнение= Mg 2+ (1)

Свинец, потенциал которой -0,127 В — катод, т.е. электрод, на котором протекает восстановительный процесс:

Pb 2+ + 2 Гальванический элемент цинк серебро уравнение= Pb 0 (2)

Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного (1) и катодного (2) процессов:

Mg 0 + Pb 2+ = Mg 2+ + Pb 0

Электродный потенциал металла (Е) зависит от концентрации его ионов в растворе. Эта зависимость выражается уравнением Нернста:

Гальванический элемент цинк серебро уравнение

Е 0 – стандартный электродный потенциал металла; n – число электронов, принимающих участие в процессе; с – концентрация ионов металла в растворе его соли (при точных вычислениях – активность). Определим электродные потенциалы кадмия и меди при заданных концентрациях:

Гальванический элемент цинк серебро уравнение

Для определения ЭДС гальванического элемента из потенциала катода следует вычесть потенциал анода, получим:

Гальванический элемент цинк серебро уравнение

Если концентрацию каждого из ионов Mg 2+ и Pb 2+ увеличить в одинаковое число раз, то ЭДС гальванического элемента не изменится, так как при этом соответственно будут уменьшаться численные значения потенциалов металлов, а разница между значениями их не изменится. Например, при увеличении концентрации ионов в 100 раз концентрация их примет значения 1 моль/л, а потенциалы электродов станут равными стандартным потенциалам металлов, то ЭДС = -0,127 – (-2,37) = 2,243 В.

Ответ: 2,243 В.

Задание 253.
Составьте схемы двух гальванических элементов, в одном из которых никель является катодом, а в другом — анодом. Напишите для каждого из этих элементов электронные уравнения реакций, протекающих на катоде и на аноде.
Решение:
а) Схема гальванического элемента, в котором никель является катодом:

Гальванический элемент цинк серебро уравнение

Вертикальная линейка обозначает поверхность раздела между металлом и раствором, а две линейки — границу раздела двух жидких фаз — пористую перегородку (или соединительную трубку, заполненную раствором электролита). Магний имеет меньший потенциал (-2,37 В) и является анодом, на котором протекает окислительный процесс:

Mg 0 — 2 Гальванический элемент цинк серебро уравнение= Mg 2+ (1)

Никель, потенциал которой -0,25 В — катод, т.е. электрод, на котором протекает восстановительный процесс:

Ni 2+ + 2 Гальванический элемент цинк серебро уравнение= Ni 0 (2)

Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного (1) и катодного (2) процессов:

Mg 0 + Ni 2+ = Mg 2+ + Ni 0

б) Схема гальванического элемента, в котором никель является анодом:

Гальванический элемент цинк серебро уравнение

Никель имеет меньший потенциал (-0,25 В) и является анодом, на котором протекает окислительный процесс:

Ni 0 — 2 Гальванический элемент цинк серебро уравнение= Ni 2+ (1)

Медь, потенциал которой (+0,34 В) — катод, т.е. электрод, на котором протекает восстановительный процесс:

Сu 2+ + 2 Гальванический элемент цинк серебро уравнение= Сu 0 (2)

Уравнение окислительно-восстановительной реакции, характеризующее работу данного гальванического элемента, можно получить, сложив электронные уравнения анодного (1) и катодного (2) процессов:

Ni 0 + Cu 2+ = Ni 2+ + Cu 0

Задание 254.
Железная и серебряная пластины соединены внешним проводником и погружены в раствор серной кислоты. Составьте схему данного гальванического элемента и напишите электронные уравнения процессов, происходящих на аноде и на катоде.
Решение:
Стандартные электродные потенциалы железа и серебра соответственно равны -0,44 В и +0,80 В. Исходя из того, что железо имеет более электроотрицательный потенциал, чем водород 0,00 В, то между железом и раствором серной кислоты проходит реакция (железо вытесняет водород из кислоты), и железная пластинка при этом будет уменьшаться по массе:

Исходя из того, что серебро имеет более электроположительный потенциал, чем водород, то между серебром и раствором серной кислоты реакция не проходит. Но так как железная и серебряная пластины соединены внешним проводником и погружены в раствор серной кислоты, то между ними будет проходить окислительно-восстановительный процесс, в котором железная пластина будет анодом, а серебряная – катодом.

На аноде протекает процесс:

Fe 0 → Fe 2+ + 2 Гальванический элемент цинк серебро уравнение

На катоде серебряной пластинке будут разряжаться ионы водорода:

2Н + + 2 Гальванический элемент цинк серебро уравнение→ Н20

(-) Fe | Fe 2+ || 2H + | H2, Ag ( + )

Задание 255.
Составьте схему, напишите электронные уравнения электродных процессов и вычислите ЭДС гальванического элемента, состоящего из пластин кадмия и магния, опущенных в растворы своих солей с концентрацией [Мg 2+ ] = [Cd 2+ ] = 1 моль/л. Изменится ли значение ЭДС, если концентрацию каждого из ионов понизить до 0,01 моль/л? Ответ: 1,967 В.
Решение:
Магний имеет меньший потенциал (-2,37 В) и является анодом, на котором протекает окислительный процесс:

Mg 0 — 2 Гальванический элемент цинк серебро уравнение= Mg 2+ (1)

Кадмий, потенциал которой (-0,403 В) — катод, т.е. электрод, на котором протекает восстановительный процесс:

Cd 2+ + 2 Гальванический элемент цинк серебро уравнение= Cd 0 (2)

Гальванический элемент цинк серебро уравнение

Электродный потенциал металла (Е) зависит от концентрации его ионов в растворе. Эта зависимость выражается уравнением Нернста:

Гальванический элемент цинк серебро уравнение

Е 0 – стандартный электродный потенциал металла; n – число электронов, принимающих участие в процессе; с – концентрация ионов металла в растворе его соли (при точных вычислениях – активность). Определим электродные потенциалы кадмия и меди при заданных концентрациях:

Гальванический элемент цинк серебро уравнение

Для определения ЭДС гальванического элемента из потенциала катода следует вычесть потенциал анода, получим:

Гальванический элемент цинк серебро уравнение

Рассчитаем электродные потенциалы магния и кадмия при концентрации их ионов в растворе равной 0,01 моль/л:

Гальванический элемент цинк серебро уравнение

Гальванический элемент цинк серебро уравнение

Таким образом, ЭДС гальванического элемента при равном уменьшении концентрации ионов металлов в их растворах не изменяется.

🎥 Видео

Гальванический элементСкачать

Гальванический элемент

Гальванические элементыСкачать

Гальванические элементы

Гальванические элементы. 2 часть. 10 класс.Скачать

Гальванические элементы. 2 часть. 10 класс.

Коррозия металловСкачать

Коррозия металлов

Продукты в ОВР. Ч.2-3. Гальванический элемент.Скачать

Продукты в ОВР. Ч.2-3. Гальванический элемент.

Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Покрытие серебром - простой метод гальванического серебрения (Electroplating with silver)Скачать

Покрытие серебром - простой метод гальванического серебрения (Electroplating with silver)

Гальванический карандаш Нанесение слоя золота и серебраСкачать

Гальванический карандаш Нанесение слоя золота и серебра

Строение атома. Как составить электронную и электронно-графическую формулы?Скачать

Строение атома. Как составить электронную и электронно-графическую формулы?

Гальванический элементСкачать

Гальванический элемент

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТСкачать

ГАЛЬВАНИЧЕСКИЙ ЭЛЕМЕНТ

Электрохимическая коррозияСкачать

Электрохимическая коррозия
Поделиться или сохранить к себе: