РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ
Простейшими тригонометрическими уравнениями называют уравнения
Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.
19.1. Уравнение cos x = a
Объяснение и обоснование
- Корни уравненияcosx=a.
При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n ∈ Z (3)
2.Частые случаи решения уравнения sin x = a.
Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).
Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда
Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,
Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,
Примеры решения задач
Замечание. Ответ к задаче 1 часто записывают в виде:
19.3. Уравнения tg x = a и ctg x = a
Объяснение и обоснование
1.Корни уравнений tg x = a и ctg x = a
Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.
Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения tg x = a:
При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n ∈ Z).
Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.
Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n ∈ Z). Получаем следующую формулу корней уравнения ctg x = a:
таким образом, уравнение ctg x = 0 имеет корни
Примеры решения задач
Вопросы для контроля
- Какие уравнения называют простейшими тригонометрическими?
- Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
- Выведите формулы решения простейших тригонометрических уравнений.
- Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.
Упражнения
Решите уравнение (1-11)
Найдите корни уравнения на заданном промежутке (12-13)
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Узнать ещё
Знание — сила. Познавательная информация
Видео:18+ Математика без Ху!ни. Формулы ПриведенияСкачать
Формулы тригонометрических уравнений
Для удобной работы все формулы для решения простейших тригонометрических уравнений, включая частные случаи, а также таблицы арксинусов, арккосинусов, арктангенсов и арккотангенсов собраны на одной странице.
I. sin x =a
При │a│>1 это уравнение решений не имеет.
При │a│не превосходящем 1 уравнение имеет бесконечное множество решений:
Таблица арксинусов
II. cos x=a
При │a│>1 это уравнение решений не имеет.
При │a│не превосходящем 1 уравнение имеет бесконечное множество решений:
Таблица арккосинусов
Частные случаи синуса и косинуса:
III. tg x=a
Уравнение имеет бесконечное множество решений при любых значениях a.
Таблица арктангенсов
IV. ctg x = a
Уравнение имеет бесконечное множество решений при любых значениях a.
Таблица арккотангенсов
21 комментарий на «Формулы тригонометрических уравнений»
Отличный сайт, спасибо, помог.
Спасибо за отличную оценку!
Я рада, что сайт Вам помог.
Пожалуйста!) Успехов Вам в учебе!
Сайт действительно хороший =)
Интересно, просто, ясно.
Спасибо Вам, Светлана Иванова!
Ариша, спасибо за теплый отзыв!
Опечатка в таблице арккотангенсов )
А так все отлично, хорошая статья
Опечатку исправила. Спасибо!
Не силен в этих науках и школу прогуливал всегда!Жалею теперь об этом!Но вот беда ума не могу приложить что может значить arccos0,932 что это?с чем его едят ?И как его посчитать!Смотрю на выше написанное и не пойму как мне это применить!Помгите убогому!
Антон, разобраться в математике можно в любом возрасте, было бы желание. Но придется потрудиться (а где без этого?).
arccos 0,932 — это такое число из промежутка [0;П], косинус которого равен 0,932.
Можно открыть таблицу Брадиса и найти угол, косинус которого равен этому числу: [0,932 approx cos ]Далее, если требуется ответ представить в радианах, градусы переводим в радианы. [pi = , Rightarrow = frac<>,][ = 21 cdot frac<> = frac<><>.]Отсюда [arccos 0,932 approx frac<><>.]
Если же arccos 0,932 появился в ходе решения тригонометрического уравнения — оставляйте его в таком виде.
Например:[cos x = 0,932][x = pm arccos 0,932 + 2pi n,n in Z.]Все, дальше ничего считать не надо (запись в таком виде — точное решение, а при нахождении арккосинуса ответ станет не точным, а приближенным. Поэтому его и не принято упрощать).
Светлана спасибо вам большое за помощь)Есть еще один вопросик я весь google перекопал. Какова единица измерения числа которое получается в результате вычисления cos или sin угла например sin47.376 градусов =0,735??какая единица измерения Arccos0,735=42.692. что это за величина и какая ее единица измерения?Голова дымит, а надо знать это,а то на работу не возьмут!
Косинус угла и синус угла — это просто число (в пределах от -1 до 1). Неважно, задан угол в градусах или в радианах.
Теперь — об арксинусах и арккосинусах. Если использовать таблицу Брадиса, arccos0,735 ищем как угол, косинус которого равен 0,735. [cos approx 0,735]То есть Ваши 42.692, насколько я понимаю, градусы. Но в градусах значения арккосинуса и арксинуса не оставляют. Нужно перевести в радианы. [ = 42 cdot frac<> = frac<><>.]7П/30 радиан, радианы не пишут. Радианная мера позволяет от градусной меры угла перейти к числам, чтобы потом графики тригонометрических функций в декартовой системе координат строить можно было, например.
Спасибо вы целиком и полностью удовлетворили мой интерес!
Спасибо за шпору =), пошел сдавать
Ещё о таблицах. Точнее их отсутствии…
на калькуляторе мы получаем cos, затем arccos. Верно ли я понимаю, что значения arccos вычисляются в радианной мере, и после этого следует обязательно перевести в градусную меру? (Таблицы Брадиса, также как и любые другие, идут уже (!) с перерасчетом радианов в градусы. ) …но таблиц нет, к примеру. Некоторые on-line–научные калькуляторы имеют опцию переключения с градусов в радианы и/или наоборот; при этом по умолчанию может стоять опция (галочка) как радианной меры, так и градусной.
Вопрос: в каких случаях надобно переходить с радианов в градусы?
(функции MS Office Excel, например, предусматривают именно трёхстадийный процесс вычисления: cos, arccos, затем перевод радианов в градусы).
И ещё вопросик: Таблицы содержат значения синусов/косинусов только для острых углов в ПРЯМОУГОЛЬНОМ треугольнике?
Пример, имеется равносторонний треугольник (все стороны и углы равны), нам надо найти угол (мы его не знаем). Сторона (все три стороны равны) = 60 см. Т.е. поделив все [равные] стороны получим
sin = cos = tg = ctg = sec = cosec = 1
но по этому значению угол [каковой реально 60°] найти в таблицах невозможно. Спасибо!
Nick, прошу прощения, что затянула с ответом. Меня мучает совесть(
С калькулятором я практически не работаю, предпочитаю считать либо устно, либо письменно. Если нужно, пользуюсь таблицами Брадиса. Над нюансами вычислений с калькулятором не задумывалась.
Значения синуса и косинуса зависят только от угла, но не от вида треугольника. Мы вводим определение синуса в прямоугольном треугольнике как отношение противолежащего катета к гипотенузе, потом расширяем определение, называя синусом угла альфа ординату точки единичной окружности, полученной из точки (1;0) поворотом на угол альфа.
Синус угла в произвольном треугольнике можно найти посредством через теорему синусов, через площадь треугольника (из формулы S=1/2 ab sin α), или провести высоту и рассмотреть прямоугольный треугольник.
В таблице Брадиса значения тригонометрических функций даны только для острых углов. Для тупых углов значения находят с помошью формул приведения.
Объясните мне, пожалуйста, если п принадлежит Z, где п — , Z — .я не могу понять когда п четное, п — нечетное и что такое Z?
Тамара, семейство решений для общего случая уравнений sinx=a
можно разбить на два семейства решений:
1) при n=2k (то есть для чётных)
2) при n=2m+1 (то есть для нечётных)
Z — множество целых чисел, то есть 0; ±1; ±2; ±3; …
Страница интересная,но я не нашла частные случаи для тангенса и котангенса.Помогите пожалуйста(очень нужно
Евгения, формул частных случаем для тангенса и котангенса нет. Иногда частными случаями называют уравнения вида tgx=1; tgx=-1; ctgx=1; ctgx=-1, но общая формула верна и для каждого из этих случаев.
Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Тригонометрические формулы. Их вывод
Наиболее часто встречающиеся тригонометрические формулы:
(blacktriangleright) Основные тождества: [begin hline sin^2 alpha+cos^2 alpha =1& mathrm, alpha cdot mathrm, alpha =1 \ &(sinalphane 0, cosalphane 0)\[0.5ex] hline &\ mathrm, alpha=dfrac &mathrm, alpha =dfrac \&\ 1+mathrm^2, alpha =dfrac1 & 1+mathrm^2, alpha=dfrac1\&\ (cosalphane 0)& (sinalphane 0) \ hline end]
(blacktriangleright) Формулы сложения углов: [begin hline &\ sin=sinalphacdot cosbetapm sinbetacdot cosalpha & cos=cosalphacdot cosbeta mp sinalphacdot sinbeta\ &\ hline &\ mathrm, (alphapm beta)=dfrac<mathrm, alphapm mathrm, beta><1 mp mathrm, alphacdot mathrm, beta> & mathrm, (alphapmbeta)=-dfrac<1mp mathrm, alphacdot mathrm, beta><mathrm, alphapm mathrm, beta>\&\ cosalphacosbetane 0&sinalphasinbetane 0\ hline end]
(blacktriangleright) Формулы двойного и тройного углов: [begin hline sin =2sin alphacos alpha & qquad &qquad & cos=cos^2alpha -sin^2alpha\ sin alphacos alpha =dfrac12sin && & cos=2cos^2alpha -1\ & & & cos=1-2sin^2 alpha\ hline &&&\ mathrm, 2alpha = dfrac<2mathrm, alpha><1-mathrm^2, alpha> && & mathrm, 2alpha = dfrac<mathrm^2, alpha-1><2mathrm, alpha>\&&&\ cosalphane 0, cos2alphane 0 &&& sinalphane 0, sin2alphane 0\ hline &&&\ sin =3sin alpha -4sin^3alpha && & cos=4cos^3alpha -3cos alpha\&&&\ hline end]
(blacktriangleright) Формулы понижения степени: [begin hline &&&\ sin^2alpha=dfrac<1-cos>2 &&& cos^2alpha=dfrac<1+cos>2\&&&\ hline end]
(blacktriangleright) Формулы произведения функций: [begin hline \ sinalphasinbeta=dfrac12bigg(cos-cosbigg)\\ cosalphacosbeta=dfrac12bigg(cos+cosbigg)\\ sinalphacosbeta=dfrac12bigg(sin+sinbigg)\\ hline end]
(blacktriangleright) Выражение синуса и косинуса через тангенс половинного угла: [begin hline &\ sin=dfrac<2mathrm, alpha><1+mathrm^2, alpha> & cos=dfrac<1-mathrm^2, alpha><1+mathrm^2, alpha>\&\ cosalphane 0 & sinalphane 0\ hline end]
(blacktriangleright) Формула вспомогательного аргумента: [begin hline text\ hline \ sinalphapm cosalpha=sqrt2cdot sin<left(alphapm dfrac4right)>\\ sqrt3sinalphapm cosalpha=2sin<left(alphapm dfrac6right)>\\ sinalphapm sqrt3cosalpha=2sin<left(xpm dfrac3right)>\\ hline text\ hline\ asinalphapm bcosalpha=sqrtcdot sin, cosphi=dfrac a<sqrt>, sinphi=dfrac b<sqrt>\\ hline end]
Зная идею вывода формул, вы можете запомнить лишь несколько из них. Тогда остальные формулы вы всегда сможете быстро вывести.
Вывод всех основных тождеств был рассказан в предыдущем разделе “Введение в тригонометрию”.
(blacktriangleright) Вывод формулы косинуса разности углов (cos=cosalphacosbeta+sinalphasinbeta)
Рассмотрим тригонометрическую окружность и на ней углы (alpha) и (beta) . Пусть этим углам соответствуют точки (A) и (B) соответственно. Тогда координаты этих точек: (A(cosalpha;sinalpha), B(cosbeta;sinbeta)) .
Рассмотрим (triangle AOB: angle AOB=alpha-beta) . По теореме косинусов:
(AB^2=AO^2+BO^2-2AOcdot BOcdot cos(alpha-beta)=1+1-2cos(alpha-beta) (1)) (т.к. (AO=BO=R) – радиус окружности)
По формуле расстояния между двумя точками на плоскости:
Таким образом, сравнивая равенства ((1)) и ((2)) :
Отсюда и получается наша формула.
(blacktriangleright) Вывод остальных формул суммы/разности углов:
Остальные формулы с легкостью выводятся с помощью предыдущей формулы, свойств четности/нечетности косинуса/синуса и формул приведения (sin x=cos(90^circ-x)) и (cos x=sin (90^circ-x)) :
разделим числитель и знаменатель дроби на (cosalphacosbetane 0)
(при (cosalpha=0 Rightarrow mathrm,(alphapmbeta)=mp mathrm,beta) , при (cosbeta=0 Rightarrow mathrm,(alphapmbeta)=pm mathrm,alpha) ):
Таким образом, данная формула верна только при (cosalphacosbetane 0) .
5) Аналогично, только делением на (sinalphasinbetane 0) , выводится формула котангенса суммы/разности двух углов.
(blacktriangleright) Вывод формул двойного и тройного углов:
Данные формулы выводятся с помощью предыдущих формул:
1) (sin 2alpha=sin(alpha+alpha)=sinalphacosalpha+sinalphacosalpha=2sinalphacosalpha)
Используя основное тригонометрическое тождество (sin^2alpha+cos^2alpha=1) , получим еще две формулы для косинуса двойного угла:
разделим числитель и знаменатель дроби на (cos^2alphane 0) (при (cosalpha=0 Rightarrow mathrm,2alpha=0) ):
Таким образом, эта формула верна только при (cosalphane 0) , а также при (cos2alphane 0) (чтобы существовал сам (mathrm,2alpha) ).
По тем же причинам при (sinalphane 0, sin2alphane 0) .
5) (sin3alpha=sin(alpha+2alpha)=sinalphacos2alpha+cosalphasin2alpha=sinalpha(1-2sin^2alpha)+cosalphacdot 2sinalphacosalpha=)
6) Аналогично выводится, что (cos3alpha=cos(alpha+2alpha)=4cos^3alpha-3cosalpha)
(blacktriangleright) Вывод формул понижения степени:
Данные формулы — просто по-другому записанные формулы двойного угла для косинуса:
1) (cos2alpha=2cos^2alpha-1 Rightarrow cos^2alpha=dfrac2)
2) (cos2alpha=1-2sin^2alpha Rightarrow sin^2alpha=dfrac2)
Заметим, что в данных формулах степень синуса/косинуса равна (2) в левой части, а в правой части степень косинуса равна (1) .
(blacktriangleright) Вывод формул произведения функций:
1) Сложим формулы косинуса суммы и косинуса разности двух углов:
Получим: (cos(alpha+beta)+cos(alpha-beta)=2cosalphacosbeta Rightarrow cosalphacosbeta=dfrac12Big(cos(alpha-beta)+cos(alpha+beta)Big))
2) Если вычесть из формулы косинуса суммы косинус разности, то получим:
3) Сложим формулы синуса суммы и синуса разности двух углов:
(blacktriangleright) Вывод формул суммы/разности функций:
Обозначим (alpha+beta=x, alpha-beta=y) . Тогда: (alpha=dfrac2, beta=dfrac2) . Подставим эти значения в предыдущие три формулы:
Получили формулу суммы косинусов.
Получили формулу разности косинусов.
Получили формулу суммы синусов.
4) Формулу разности синусов можно вывести из формулы суммы синусов:
Аналогично выводится формула суммы котангенсов.
(blacktriangleright) Вывод формул выражения синуса и косинуса через тангенс половинного угла:
(разделим числитель и знаменатель дроби на (cos^2alphane 0) (при (cosalpha=0) и (sin2alpha=0) ):)
2) Так же, только делением на (sin^2alpha) , выводится формула для косинуса.
(blacktriangleright) Вывод формул вспомогательного угла:
Данные формулы выводятся с помощью формул синуса/косинуса суммы/разности углов.
Рассмотрим выражение (asin x+bcos x) . Домножим и разделим это выражение на (sqrt,) :
(asin x+bcos x=sqrtleft(dfrac a<sqrt>sin x+ dfrac b<sqrt>cos x right)=sqrtbig(a_1sin x+b_1cos xbig))
Заметим, что таким образом мы добились того, что (a_1^2+b_1^2=1) , т.к. (left(dfrac a<sqrt>right)^2+left(dfrac b<sqrt>right)^2=dfrac=1)
Таким образом, можно утверждать, что существует такой угол (phi) , для которого, например, (cos phi=a_1, sin phi=b_1) . Тогда наше выражение примет вид:
(sqrt,big(cos phi sin x+sin phicos xbig)=sqrt,sin (x+phi)) (по формуле синуса суммы двух углов)
Значит, формула выглядит следующим образом: [<large<asin x+bcos x=sqrt,sin (x+phi),>> quad text cos phi=dfrac a<sqrt>] Заметим, что мы могли бы, например, принять за (cos phi=b_1, sin phi=a_1) и тогда формула выглядела бы как [asin x+bcos x=sqrt,cos (x-phi)]
(blacktriangleright) Рассмотрим некоторые частные случаи формул вспомогательного угла:
(a) sin xpmcos x=sqrt2,left(dfrac1sin xpmdfrac1cos xright)=sqrt2, sin left(xpmdfrac4right))
(b) sqrt3sin xpmcos x=2left(dfrac2sin xpm dfrac12cos xright)=2, sin left(xpmdfrac6right))
(c) sin xpmsqrt3cos x=2left(dfrac12sin xpmdfrac2cos xright)=2,sinleft(xpmdfrac3right))
🔍 Видео
3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
Отбор корней по окружностиСкачать
Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать
✓ Тригонометрические формулы | Борис ТрушинСкачать
СЕКРЕТНЫЙ ЛАЙФХАК С ТРИГОНОМЕТРИЕЙ НА ЕГЭ #shorts #математика #егэ #огэ #тригонометрияСкачать
Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать
Тригонометрия в ЕГЭ может быть простойСкачать
Симметрия корней и оптимизация ответов в тригонометрии: часть 1Скачать
Отбор корней по окружностиСкачать
Тригонометрическая окружность. Как выучить?Скачать
Уравнение sinx=aСкачать
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать
Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 классСкачать