Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теорема Виета. Формула Виета.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

По теореме Виета решают квадратные уравнения
Пусть x1 и x2 — корни квадратного уравнения
ax^2+bx+c=0 ,то

В случае, если (приведенная форма x^2+bx+c=0 , где a=1), то
x1+x2=-b
x1*x2= c

Кубическое уравнение
Пусть — корни кубического уравнения
p(x)=ax^3+bx^2+cx+d=0 , то

ПРАКТИЧЕСКАЯ ЧАСТЬ

Общая формула квадратного уравнения: ax^2+bx+c=0
Отсюда видно что, коэффициенты уравнения равны:
a=1; b=3; c=2;

Применим теорему Виета:
x1+x2=-3/1
x1*x2=2/1

Легко подобрать корни уравнения:
x1=−1
x2=−2

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

Квадратное уравнение. Дискриминант. Теорема Виета.

теория по математике 📈 уравнения

Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

Видео:ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫСкачать

ТЕОРЕМА ВИЕТА ЗА 2 МИНУТЫ

Дискриминант

Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

Нахождение корней квадратного уравнения

Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

D=b 2 –4ac

    Если D>0, то уравнение имеет два различных

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cПример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Теорема Виета

Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

Данное уравнение является квадратным. Но в его условии присутствует квадратный

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0

Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

х 2 − 2 х − 24 = 0

Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.

Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .

pазбирался: Даниил Романович | обсудить разбор | оценить

Видео:Как решать квадратные уравнения без дискриминантаСкачать

Как решать квадратные уравнения без дискриминанта

Теорема Виета

Видео:Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)Скачать

Алгебра 8 класс (Урок№28 - Решение квадратных уравнений вида ax2 + bx + c = 0.Формула корней кв.ур.)

Что называют теоремой?

Если человек обнаружил в математике какую-нибудь закономерность, позволяющую быстро решить ту или иную задачу, то ему не следует говорить о том, что он сделал открытие. Потому что может случиться так, что эта закономерность работает только для определённых случаев, а для других не работает или вовсе решает задачу неправильно.

Чтобы поделиться своим открытием с другими людьми, найденную закономерность следует сформулировать в виде утверждения, а затем доказать это утверждение, приводя неоспоримые факты.

Сформулированное утверждение называют теоремой. А доказательство теоремы состоит из фактов, логических рассуждений и вычислений, которые не оспариваются.

Например, теоремой можно назвать следующее утверждение:

«Если числитель и знаменатель обыкновенной дроби умнóжить на какое-нибудь число, то значение данной дроби не измéнится».

А затем привести такое доказательство:

Пусть, имеется дробь Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c. Умнóжим числитель и знаменатель этой дроби на число с . Тогда полýчится дробь Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c. Докáжем, что дроби Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cи Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cравны. То есть докажем, что равенство Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cявляется верным.

Для доказательства этого равенства воспользуемся основным свойством пропорции:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

От перестановки мест сомножителей произведение не меняется. Поэтому в получившемся равенстве можно упорядочить правую часть по алфавиту:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Поскольку равенство Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cявляется пропорцией, а пропорция это равенство двух отношений, то дроби Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cи Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cравны. Теорема доказана.

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Теорема Виета

Французский математик Франсуа Виет выявил интересную взаимосвязь между коэффициентами приведённого квадратного уравнения и корнями этого же уравнения. Эта взаимосвязь представлена в виде теоремы и формулируется так:

Сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком, а произведение корней равно свободному члену.

То есть, если имеется приведённое квадратное уравнение x 2 + bx + c = 0 , а его корнями являются числа x1 и x2 , то справедливы следующие два равенства:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Знак системы (фигурная скобка) говорит о том, что значения x1 и x2 удовлетворяют обоим равенствам.

Покажем теорему Виета на примере приведённого квадратного уравнения x 2 + 4x + 3 = 0 .

Мы пока не знаем какие корни имеет уравнение x 2 + 4x + 3 = 0 . Но по теореме Виета можно записать, что сумма этих корней равна второму коэффициенту 4 , взятому с противоположным знáком. Если коэффициент 4 взять с противоположным знáком, то получим −4 . Тогда:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

А произведение корней по теореме Виета будет равно свободному члену. В уравнении x 2 + 4x + 3 = 0 свободным членом является 3 . Тогда:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь проверим действительно ли сумма корней равна −4 , и равно ли произведение 3 . Для этого найдём корни уравнения x 2 + 4x + 3 = 0 . А для удобства воспользуемся формулами для чётного второго коэффициента:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Корнями уравнения являются числа −1 и −3 . По теореме Виета их сумма должна была равняться второму коэффициенту уравнения x 2 + 4x + 3 = 0 , взятому с противоположным знаком. Действительно, так оно и есть. Вторым коэффициентов в уравнении x 2 + 4x + 3 = 0 является 4 . Если взять его с противоположным знаком и приравнять сумму корней x1 + x2 к этому коэффициенту, то получается верное равенство:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

А произведение корней −1 и −3 по теореме Виета должно было равняться свободному члену уравнения x 2 + 4x + 3 = 0 , то есть числу 3 . Видим, что это условие тоже выполняется:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Значит выражение Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cявляется справедливым.

Рассмотрим квадратное уравнение x 2 − 8x + 15 = 0 . По теореме Виета сумма корней этого уравнения равна второму коэффициенту, взятому с противоположным знаком. Второй коэффициент равен −8 . Если взять его с противоположным знаком, то получим 8 . Тогда:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

А произведение корней равно свободному члену. В уравнении x 2 − 8x + 15 = 0 свободным членом является 15 . Тогда:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь проверим действительно ли сумма корней равна 8 , и равно ли произведение 15 . Для этого найдём корни данного уравнения. А для удобства воспользуемся формулами для чётного второго коэффициента. В этот раз пропустим нéкоторые подробные записи:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Видим, что корнями уравнения x 2 − 8x + 15 = 0 являются числа 5 и 3 . Их сумма равна 8 . То есть сумма корней равна второму коэффициенту уравнения x 2 − 8x + 15 = 0 , взятому с противоположным знаком.

А произведение чисел 5 и 3 равно 15 . То есть равно свободному члену уравнения x 2 − 8x + 15 = 0 .

Значит выражение Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cявляется справедливым.

Замечание. Чтобы теорема Виета выполнялась, квадратное уравнение обязательно должно быть приведённым и иметь корни.

Например, рассмотрим квадратное уравнение x 2 − 2x + 4 = 0 . Напишем сумму и произведение корней этого уравнения:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Но уравнение x 2 − 2x + 4 = 0 не имеет корней, сумма которых равна 2, а произведение которых равно 4 . Убедиться в этом можно, вычислив дискриминант:

А значит записывать выражение Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cне имеет смысла.

Теорема Виета полезна тем, что позволяет до начала решения узнать знаки корней уравнения.

Например, запишем для уравнения x 2 − 5x + 6 = 0 сумму и произведение его корней. Сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Посмотрев на эти два равенства можно сразу понять, что оба корня должны быть положительными. Потому что произведение x1 × x2 = 6 будет выполняться только в двух случаях: если значения x1 и x2 положительны либо они оба отрицательны. Если эти значения будут отрицательными, то не будет выполняться равенство x1 + x2 = 5 , поскольку его правая часть равна положительному числу. А значения x1 и x2 должны удовлетворять как равенству x1 + x2 = 5 , так и равенству x1 × x2 = 6.

Ещё одна польза от теоремы Виета в том, что корни можно найти методом подбора. В данном примере корни должны быть такими, чтобы они удовлетворяли как равенству x1 + x2 = 5 так и равенству x1 × x2 = 6 . Очевидно, что таковыми являются корни 3 и 2

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Доказательство теоремы Виета

Пусть дано приведённое квадратное уравнение x 2 + bx + c = 0 . Если его дискриминант больше нуля, то оно имеет два корня, сумма которых равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Вспомним формулы корней квадратного уравнения:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Найдём сумму корней x1 и x2 . Для этого подставим в выражение x1 + x2 вместо x1 и x2 соответствующие выражения из правой части формул корней квадратного уравнения. Не забываем, что в приведённом квадратном уравнении x 2 + bx + c = 0 старший коэффициент a равен единице. Тогда в процессе подстановки знаменатель станет равен просто 2

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Запишем правую часть в виде дроби с одним знаменателем:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Раскроем скобки в числителе и приведём подобные члены:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Сократим дробь Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cна 2 , тогда получим −b

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь аналогично докажем, что произведение x1 × x2 равно свободному члену c .

Подставим вместо x1 и x2 соответствующие выражения из формул корней квадратного уравнения. Не забываем, что коэффициент a всё ещё равен единице:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Чтобы перемнóжить дроби, нужно перемнóжить их числители и знаменатели:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

В числителе теперь содержится произведение суммы двух выражений и разности этих же выражений. Воспользуемся тождеством (a + b)(a − b) = a 2 − b 2 . Тогда в числителе полýчится Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cА знаменатель будет равен 4

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь в числителе выражение (−b) 2 станет равно b 2 , а выражение Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cстанет равно просто D

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Но D равно b 2 − 4ac . Подстáвим это выражение вместо D , не забывая что a = 1 . То есть вместо b 2 − 4ac надо подставить b 2 − 4c

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

В получившемся выражении раскроем скобки в числителе и приведём подобные члены:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Сократим получившуюся дробь на 4

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Таким образом, сумма корней приведённого квадратного уравнения x 2 + bx + c = 0 равна второму коэффициенту, взятому с противоположным знáком ( x1 + x2 = −b ), а произведение корней равно свободному члену ( x1 × x2 = c ). Теорема доказана.

Видео:Квадратные уравнения #shorts Как решать квадратные уравненияСкачать

Квадратные уравнения #shorts  Как решать квадратные уравнения

Теорема, обратная теореме Виета

Когда записана сумма и произведение корней приведённого квадратного уравнения, обычно начинается подбор подходящих корней к этому уравнению. В этот момент в работу включается так называемая теорема, обратная теореме Виета. Она формулируется так:

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел x1 и x2 равно свободному члену уравнения x 2 + bx + c = 0, то числа x1 и x2 являются корнями уравнения x 2 + bx + c = 0.

Обратные теоремы бывают поставлены так, что их утверждением является заключение первой теоремы.

Так, доказывая теорему Виета мы пришли к заключению, что сумма x1 и x2 равна −b , а произведение x1 и x2 равно c . В обратной же теореме это заключение служит утверждением.

Ранее мы решили уравнение x 2 − 5x + 6 = 0 и написали для него такую сумму и произведение корней:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

А затем подобрали корни 3 и 2 . По сути мы применили теорему, обратную теореме Виета. Числа 3 и 2 таковы, что их сумма равна второму коэффициенту уравнения x 2 − 5x + 6 = 0 , взятому с противоположным знаком (числу 5 ), а произведение чисел 3 и 2 равно свободному члену (числу 6 ). Значит числа 3 и 2 являются корнями уравнения x 2 − 5x + 6 = 0 .

Пример 2. Решить квадратное уравнение x 2 − 6x + 8 = 0 по теореме, обратной теореме Виета.

В данном уравнении a = 1 . Значит квадратное уравнение является приведённым. Его можно решить по теореме, обратной теореме Виета.

Сначала запишем сумму и произведение корней уравнения. Сумма корней будет равна 6 , поскольку второй коэффициент исходного уравнения равен −6 . А произведение корней будет равно 8

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь имея эти два равенства можно подобрать подходящие корни. Они должны удовлетворять как равенству x1 + x2 = 6 , так и равенству x1 × x2 = 8

Подбор корней удобнее выполнять с помощью их произведения. Используя равенство x1 × x2 = 8 нужно найти такие x1 и x2 , произведение которых равно 8.

Число 8 можно получить если перемножить числа 4 и 2 либо 1 и 8.

4 × 2 = 8
1 × 8 = 8

Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли не только равенству x1 × x2 = 8 , но и равенству x1 + x2 = 6 .

Сразу делаем вывод, что значения 1 и 8 не годятся, поскольку они хоть и удовлетворяют равенству x1 × x2 = 8 , но не удовлетворяют равенству x1 + x2 = 6 .

Зато значения 4 и 2 подходят как равенству x1 × x2 = 8 , так и равенству x1 + x2 = 6 , поскольку эти значения удовлетворяют обоим равенствам:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Значит корнями уравнения x 2 − 6x + 8 = 0 являются числа 4 и 2 .

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Обратная теорема, как и любая теорема нуждается в доказательстве. Докажем теорему, обратную теореме Виета. Для удобства корни x1 и x2 обозначим как m и n . Тогда утверждение теоремы, обратной теореме Виета примет следующий вид:

Если числа m и n таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знáком, а произведение чисел m и n равно свободному члену уравнения x 2 + bx + c = 0, то числа m и n являются корнями уравнения x 2 + bx + c = 0

Для начала запишем, что сумма m и n равна −b , а произведение mn равно c

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Чтобы доказать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 , нужно поочередно подстáвить буквы m и n в это уравнение вместо x , затем выполнить возможные тождественные преобразования. Если в результате преобразований левая часть станет равна нулю, то это будет означать, что числа m и n являются корнями уравнения x 2 + bx + c = 0 .

Помимо букв m и n нам нужно знать чему равен параметр b . Выразим его из равенства m + n = −b . Легче всего это сделать, умножив обе части этого равенства на −1

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь всё готово для подстановок. Подстáвим m в уравнение x 2 + bx + c = 0 вместо x , а выражение −m − n подставим вместо b

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Видим, что при x = m получается верное равенство. Значит число m является корнем уравнения x 2 + bx + c = 0 .

Аналогично докажем, что число n является корнем уравнения x 2 + bx + c = 0 . Подставим вместо x букву n , а вместо c подставим mn , поскольку c = mn .

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Видим, что при x = n тоже получается верное равенство. Значит число n является корнем уравнения.

Следовательно, числа m и n являются корнями уравнения x 2 + bx + c = 0 .

Видео:Формула корней квадратного уравнения. Алгебра, 8 классСкачать

Формула корней квадратного уравнения. Алгебра, 8 класс

Примеры решения уравнений по теореме, обратной теореме Виета

Пример 1. Решить квадратное уравнение x 2 − 4x + 4 = 0 по теореме, обратной теореме Виета.

Запишем сумму корней x1 и x2 и приравняем её к второму коэффициенту, взятому с противоположным знаком. Также запишем произведение корней x1 и x2 и приравняем его к свободному члену :

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

В данном примере очевидно, что корнями являются числа 2 и 2 . Потому что их сумма равна 4 и произведение равно 4

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Значение x1 совпадает с x2 . Это тот случай, когда квадратное уравнение имеет только один корень. Если мы попробуем решить данное уравнение с помощью формул корней квадратного уравнения, то обнаружим что дискриминант равен нулю, и корень вычисляется по формуле Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Данный пример показывает, что теорема обратная теореме Виета, работает и для уравнений, имеющих только один корень. Признаком того, что квадратное уравнение имеет только один корень является то, что значения x1 и x2 совпадают.

Пример 2. Решить уравнение x 2 + 3x + 2 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь подберём значения x1 и x2 . Здесь начинается самое интересное. Произведение корней равно 2 . Число 2 можно получить перемножив 1 и 2 . Но сумма корней x1 + x2 равна отрицательному числу −3 . Значит значения 1 и 2 не подходят.

Сумма бывает отрицательной если оба слагаемых отрицательны либо отрицательным является одно слагаемое, модуль которого больше.

Если подберём корни с разными знаками, то не будет выполняться равенство x1 × x2 = 2 .

Если подберем положительные корни, то будет выполняться равенство x1 × x2 = 2 , но не будет выполняться равенство x1 + x2 = −3 .

Очевидно, что корнями являются два отрицательных числа. Произведение отрицательных чисел есть положительное число. А сумма отрицательных чисел есть отрицательное число.

Тогда равенствам будут удовлетворять числа −1 и −2 .

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Итак, корнями являются числа −1 и −2

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Пример 3. Решить уравнение x 2 + 16x + 15 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Как и в прошлом примере сумма корней равна отрицательному числу, а произведение корней — положительному числу.

Произведение бывает положительным если оба сомножителя положительны либо оба сомножителя отрицательны. Первый вариант отпадает сразу, поскольку сумма корней равна отрицательному числу. Тогда получается, что оба корня будут отрицательными. Попробуем подобрать их.

Число 15 можно получить, если перемножить числа −1 и −15 или (−3) и (−5) . В данном случае подходит первый вариант, поскольку сумма чисел −1 и −15 равна −16 , а их произведение равно 15 . Значит корнями уравнения x 2 + 16x + 15 = 0 являются числа −1 и −15

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Пример 4. Решить уравнение x 2 − 10x − 39 = 0 по теореме, обратной теореме Виета.

Запишем сумму и произведение корней данного уравнения:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Произведение корней равно отрицательному числу. Значит один из корней является отрицательным. Число −39 можно получить если перемножить числа −3 и 13 либо −13 и 3 . Из этих комбинаций больше годится комбинация −3 и 13 , поскольку при перемножении этих чисел получается −39 , а при сложении 10

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Значит корнями уравнения x 2 − 10x − 39 = 0 являются числа −3 и 13

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Пример 5. Первый корень уравнения x 2 + bx + 45 = 0 равен 15 . Найти второй корень этого уравнения, а также значение коэффициента b .

По теореме Виета произведение корней приведённого квадратного уравнения равно свободному члену. В данном случае это произведение равно 45

При этом один из корней уже известен — это корень 15 .

Тогда второй корень будет равен 3 , потому что число 45 получается, если 15 умножить на 3

Этот второй корень также можно было бы получить, выразив из равенства 15 × x2 = 45 переменную x2

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь определим значение коэффициента b . Для этого напишем сумму корней уравнения:

По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней равна 18, а 18 это положительное число, то в самóм уравнении этот коэффициент будет отрицательным:

Обычно решение к такой задаче записывают так. Сначала записывают основную теорему Виета в виде суммы и произведения корней:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Затем в это выражение подставляют имеющиеся известные значения. В нашем случае известно, что первый корень равен 15 , а свободный член уравнения x 2 + bx + 45 = 0 равен 45

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Из этой системы следует найти x2 и b . Выразим эти параметры:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Из этой системы мы видим, что x2 равно 3. Подставим его в первое равенство:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь из первого равенства мы видим, что −b равно 18

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Но нас интересует b , а не −b . Следует помнить, что −b это −1b . Чтобы найти b нужно 18 разделить на −1 . Тогда b станет равно −18

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Этот же результат можно получить если в выражении Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cумножить первое равенство на −1

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь возвращаемся к исходному уравнению x 2 + bx + 45 = 0 и подставляем найденное значение b

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Выполним умножение −18 на x . Получим −18x

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Пример 6. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа 2 и 8 .

В этом задании корни уже известны. То есть x1 = 2 , x2 = 8 . По ним надо составить квадратное уравнение вида x 2 + bx + c = 0 .

Запишем сумму и произведение корней:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

По теореме Виета сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком. Если сумма корней 2 и 8 равна 10 , то в самóм уравнении число 10 должно быть с противоположным знаком. Значит b = −10 .

Произведение корней по теореме Виета равно свободному члену. У нас это произведение равно 16 .

Значит b = −10 , c = 16 . Отсюда:

Пример 7. Используя теорему Виета, написать приведённое квадратное уравнение, корнями которых являются числа Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx cи Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c.

Запишем сумму и произведение корней:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Сумма корней равна 2. Тогда в уравнении второй коэффициент будет равен −2. А произведение корней равно −1. Значит свободный член будет равен −1. Тогда:

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Когда квадратное уравнение неприведённое

Теорема Виета выполняется только тогда, когда квадратное уравнение является приведённым.

Если квадратное уравнение не является приведённым, но всё равно возникла необходимость применить теорему Виета, то обе части неприведённого квадратного уравнения следует разделить на коэффициент, который располагается перед x 2 .

Если к примеру в квадратном уравнении a x 2 + bx + c = 0 коэффициент a не равен единице, то данное уравнение является неприведённым. Чтобы сделать его приведённым, надо разделить обе его части на коэффициент, который располагается перед x 2 , то есть на a

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Получилось уравнение Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c, которое является приведённым. В нём второй коэффициент равен Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c, а свободный член равен Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c. Тогда сумма и произведение корней будут выглядеть так:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Например, решим квадратное уравнение 4x 2 + 5x + 1 = 0 . Это уравнение не является приведённым. Приведённым оно станет, если разделить обе его части на коэффициент, который располагается перед x 2 , то есть на 4

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Получили приведённое квадратное уравнение. В нём второй коэффициент равен Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c, а свободный член Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c. Тогда по теореме Виета имеем:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Отсюда методом подбора находим корни −1 и

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Возможно этот метод вы редко будете использовать при решении квадратных уравнений. Но знать о нём не помешает.

Пример 2. Решить квадратное уравнение 3x 2 − 7x + 2 = 0

Данное уравнение не является приведённым, а значит его пока нельзя решить по теореме, обратной теореме Виета.

Сделаем данное уравнение приведенным. Разделим обе части на коэффициент, который располагается перед x 2

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Получили уравнение Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c. Запишем сумму и произведение корней этого уравнения:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Отсюда методом подбора находим корни 2 и Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Пример 3. Решить квадратное уравнение 2x 2 − 3x − 2 = 0

Это неприведённое квадратное уравнение. Чтобы сделать его приведённым, нужно разделить обе его части на 2 . Сделать это можно в уме. Если 2x 2 разделить на 2 , то полýчится x 2

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Далее если −3x разделить на 2 , то полýчится Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c. Чтобы видеть где коэффициент, а где переменная, такое выражение записывают в виде Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Далее если −2 разделить на 2 , то полýчится −1

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Прирáвниваем получившееся выражение к нулю:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Теперь применяем теорему Виета. Сумма корней будет равна второму коэффициенту, взятому с противоположным знáком, а произведение корней свободному члену:

Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

Отсюда методом подбора находим корни 2 и Если х1 и х2 корни приведенного квадратного уравнения вида х2 bx c

📹 Видео

Теорема Виета. 8 класс.Скачать

Теорема Виета. 8 класс.

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Быстрый способ решения квадратного уравненияСкачать

Быстрый способ решения квадратного уравнения

Свойства квадратного корня. Уравнение х2=а, 8 классСкачать

Свойства квадратного корня. Уравнение х2=а, 8 класс

ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 классСкачать

ТЕОРЕМА ВИЕТА // Как решать Квадратные Уравнения по АЛГЕБРЕ 8 класс

Почему a(x-x1)(x-x2)=ax2+bx+cСкачать

Почему a(x-x1)(x-x2)=ax2+bx+c

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминантСкачать

РАЗБИРАЕМ ДИСКРИМИНАНТ ЧАСТЬ I #shorts #математика #егэ #огэ #дискриминант

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

Решение квадратных неравенств | МатематикаСкачать

Решение квадратных неравенств | Математика
Поделиться или сохранить к себе: