Решение линейных уравнений с одним неизвестным
Математические термины
Стандартный вид
Корень уравнения
Корни уравнения
Корень уравнения
Необходимо запомнить
При переносе из одной части уравнения в другую член уравнения меняет свой знак на противоположный.
В любом уравнении можно разделить левую и правую часть на одно и то же число.
Но нельзя делить на неизвестное!
Схема решения линейного уравнения:
Как узнать линейное уравнение по внешнему виду? Линейными уравнениями называются не только уравнения вида $ax+b=0$, но и любые уравнения, которые преобразованиями и упрощениями сводятся к этому виду.
Чётко распознать линейное уравнение можно в некоторых случаях. Скажем, если перед нами уравнение, в которых есть только неизвестные в первой степени, да числа. Причём в уравнении нет дробей с делением на неизвестное, это важно! А деление на число, или дробь числовую – это пожалуйста!
Пары для подстановки
Уравнение вида: $ax=b$, где коэффициент $a$ и свободный член $b$ неизвестены, нужно найти такие значения $a$ и $b$, при которых корень равен $13$.
Подберите не менее трех пар таких постановок с обоснованием своего выбора.
Для того, чтобы подобрать такие пары постановок, необходимо выполнение равенства частей уравнения, а это возможно в том случае, если в разложение на множители числа $b$ будет входить число $13$. Отсюда следует, что второй множитель в разложении числа будет искомое число $a$.
Число $39=13cdot3$, значит $a=3$, $b=39$. Уравнение примет вид: $3x=39$.
Число $169=13cdot13$, значит $a=13$, $b=169$. Уравнение примет вид: $13x=169$.
Число $1313=13cdot101$, значит $a=101$, $b=1313$. Уравнение примет вид: $101x=1313$.
Видео:Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать
Решение простых линейных уравнений
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Видео:Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.
Видео:Линейное уравнение с одним неизвестным.Скачать
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.
Приведем подобные и завершим решение.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
- Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | : (−4)
x = −3
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.
Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
- Перенести 1 из левой части в правую со знаком минус.
Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.
Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.
5х − 15 + 2 = 3х − 12 + 2х − 1
Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.
5х − 3х − 2х = −12 − 1 + 15 − 2
Приведем подобные члены.
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
- Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.
Пример 4. Решить: 4(х + 2) = 6 − 7х.
- 4х + 8 = 6 − 7х
- 4х + 7х = 6 − 8
- 11х = −2
- х = −2 : 11
- х = −2/11
Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.
Пример 5. Решить:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
5х — 15 + 2 = 3х — 2 + 2х — 1
Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
Приведем подобные члены.
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 − 7х.
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Урок 43 Бесплатно Решение уравнений
Сегодня на уроке вспомним, что такое уравнение и что называют корнем уравнения. Рассмотрим один из видов уравнений: линейное уравнение с одним неизвестным, определим его общий вид и узнаем, как называются составные части такого равенства.
Разберем способы и приемы решения линейных уравнений с одним неизвестным.
Рассмотрим алгоритм и пример решения задач с помощью линейных уравнений.
Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Линейное уравнение
В реальной жизни нам часто приходится решать множество различных примеров и задач.
Связать реальную жизнь и математическое описание любой ситуации нам позволяет математическая модель.
Составив математическую модель жизненной задачи, мы можем превратить слова в формулы, неравенства, равенства, уравнения и т.п.
Математическая модель задачи в виде уравнения позволяет установить связи между всеми данными задачи, а также применить эту модель-уравнение для решения огромного множества подобного типа задач.
Вам уже хорошо известно, что уравнение — это математическое равенство, содержащее неизвестное число, которое необходимо определить.
Неизвестное число, входящее в уравнение, называют неизвестным членом данного уравнения.
Принято обозначать неизвестный член уравнения маленькими латинскими буквами.
Чаще всего в математике используют буквы x, y, z.
Найти неизвестное число, при котором из уравнения получается верное равенство, — это значит решить уравнение, т.е. найти корни уравнения или убедиться, что корней нет.
Корень уравнения — это значение неизвестного числа в уравнении, при котором уравнение обращается в верное равенство.
Уравнения могут иметь разное количество корней.
Существуют уравнения, имеющие один единственный корень, и уравнения, вообще не имеющие корней.
Встречаются уравнения, решением которых являются несколько значений (два, три и более), а в некоторых случаях уравнение может иметь бесконечное множество решений.
Уравнение, в котором находится одна неизвестная, называют уравнением с одной неизвестной.
х + 3 = 6 (уравнение с одной неизвестной х)
3 ∙ у = 15 (уравнение с одной неизвестной y).
Существуют уравнения с большим количеством неизвестных: с двумя, тремя и т. д.
Рассмотрим, что представляют собой линейные уравнения с одной неизвестной.
Линейные уравнения с одной неизвестной называют уравнения вида a ∙ x = b, где a ≠ 0
х— неизвестное число
a и b— некоторые числа:
а— это коэффициент уравнения.
b— это свободный член уравнения.
Линейное уравнение с одной неизвестной может быть представлено в виде a ∙ x + b = 0, оно является равнозначным уравнению вида a ∙ x = ax = b.
У меня есть дополнительная информация к этой части урока!
Уравнения с одним неизвестным умели решать в Древнем Вавилоне и в Древнем Египте более четырех тысяч лет назад.
Дошедшие до нас источники свидетельствуют, что знания о неизвестных величинах и методах их вычисления, которыми тогда владели ученые, были образными.
Одним из древнейших задачников по математике (примерно 1700 г до н.э.) является древнеегипетский папирус Ахмеса (также известный, как папирус Ринда (Райнда) по имени его первого владельца).
Папирус Ахмеса содержит условия и решения 84 задач. Он является наиболее полным старейшим математическим сборником задач, дошедшим до наших дней.
Все задачи, описанные и решенные в нем, имели практическое значение и могли применяться в строительстве, в межевании земельных наделов и т.д.
Папирус содержит множество задач, которые сводятся к решению различных видов уравнений, в том числе и к линейным уравнениям.
Папирус был обнаружен в 1858 г. Сейчас большая часть рукописи хранится в Британском музее.
В III веке н.э. древнегреческий математик Диофант Александрийский в своей рукописи «Арифметика» изложил 130 задач, которые решались с помощью определенных (имеющих одно решение) и неопределенных уравнений.
Уравнения, изложенные в книге, сейчас называются «Диофантовыми уравнениями».
Также Диофант Александрийский впервые ввел буквенную символику в математику.
Однако первым руководством по решению задач стал научный труд багдадского ученого IX века Мухамеда Бен Мусы аль-Хорезми «Книга о восстановлении и противопоставлении».
Данная научная работа стала началом становления науки о решении уравнений.
Мухамед Бен Муса аль-Хорезми впервые представил алгебру (раздел математики) как самостоятельную науку об общих методах решения уравнений, предложил классификацию уравнений.
Но его математические сочинения в большей степени выражались словесно, в связи с чем казались очень громоздкими и сложными.
Значительно упростить и облегчить описание и решение уравнений удалось великому французскому ученому XVI века Франсуа Виету.
Он был первым, кто ввел буквенное обозначение коэффициентам уравнений и неизвестным величинам.
Установил связь между корнями и коэффициентами уравнения.
Франсуа Виет внедрил в науку мысль о том, что преобразования можно производить не только над величинами, но и над символами, таким образом, решать любую задачу в общем виде, т.е., по сути, он ввел понятие математической формулы.
До сих пор многие идеи Виета являются актуальными и востребованными
Пройти тест и получить оценку можно после входа или регистрации
🔥 Видео
Линейное уравнение с одной переменной. 6 класс.Скачать
Алгебра 7 Линейное уравнение с одной переменнойСкачать
Решение уравнений с одним неизвестным, сводящихся к линейным. Алгебра. 7 класс.Скачать
Решение линейных уравнений с одним неизвестнымСкачать
7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать
Алгебра.7 класс (Урок№42 - Уравнения первой степени с одним неизвестным.)Скачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Уравнения первой степени с одним неизвестным. Линейные уравнения с одним неизвестнымСкачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Как решать линейные уравнения (первой степени) с одним неизвестнымСкачать
7 класс, 8 урок, Линейное уравнение с двумя переменными и его графикСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать