Диофантовы уравнения и методы их

Видео:Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»

Линейное диофантово уравнение и 4 способа его решения

Разделы: Математика

Првило 1. Если с не делится на d, то уравнение ах + ву = с не имеет решений в целых числах. Н.О.Д.(а,в) = d.

Правило 2. Чтобы найти решение уравнения ах + ву = с при взаимно-простых а и в, нужно сначала найти решение (Хо ; уо) уравнения ах + ву = 1; числа СХо , Суо составляют решение уравнения ах + ву = с.

Решить в целых числах (х,у) уравнение

Первый способ. Нахождение частного решения методом подбора и запись общего решения.

Знаем, что если Н.О.Д.(а;в) =1, т.е. а и в взаимно-простые числа, то уравнение (1)

имеет решение в целых числах х и у. Н.О.Д.(5;8) =1. Методом подбора находим частное решение: Хо = 7; уо =2.

Итак, пара чисел (7;2) — частное решение уравнения (1).

Значит, выполняется равенство: 5 x 7 – 8 x 2 = 19 … (2)

Вопрос: Как имея одно решение записать все остальные решения?

Вычтем из уравнения (1) равенство (2) и получим: 5(х -7) – 8(у — 2) =0.

Отсюда х – 7 = Диофантовы уравнения и методы их. Из полученного равенства видно, что число (х – 7) будет целым тогда и только тогда, когда (у – 2) делится на 5, т.е. у – 2 = 5n, где n какое-нибудь целое число. Итак, у = 2 + 5n, х = 7 + 8n, где n Диофантовы уравнения и методы ихZ.

Тем самым все целые решения исходного уравнения можно записать в таком виде:

Диофантовы уравнения и методы ихn Диофантовы уравнения и методы ихZ.

Второй способ. Решение уравнения относительно одного неизвестного.

Решаем это уравнение относительно того из неизвестных, при котором наименьший (по модулю) коэффициент. 5х — 8у = 19 Диофантовы уравнения и методы их Диофантовы уравнения и методы ихх = Диофантовы уравнения и методы их.

Остатки при делении на 5: 0,1,2,3,4. Подставим вместо у эти числа.

Если у = 0, то х = Диофантовы уравнения и методы их=Диофантовы уравнения и методы их.

Если у =1, то х = Диофантовы уравнения и методы их=Диофантовы уравнения и методы их.

Если у = 2, то х = Диофантовы уравнения и методы их= Диофантовы уравнения и методы их= 7 Диофантовы уравнения и методы ихZ.

Если у =3, то х = Диофантовы уравнения и методы их=Диофантовы уравнения и методы их.

Если у = 4 то х = Диофантовы уравнения и методы их=Диофантовы уравнения и методы их.

Итак, частным решением является пара (7;2).

Тогда общее решение: Диофантовы уравнения и методы ихn Диофантовы уравнения и методы ихZ.

Третий способ. Универсальный способ поиска частного решения.

Для решения применим алгоритм Евклида. Мы знаем, что для любых двух натуральных чисел а, в, таких, что Н.О.Д.(а,в) = 1 существуют целые числа х,у такие, что ах + ву = 1.

1. Сначала решим уравнение 5m – 8n = 1 используя алгоритм Евклида.

2. Затем найдем частное решение уравнения (1)по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: 1 = 5m – 8n. Для этого используем алгоритм Евклида.

8 = 5 Диофантовы уравнения и методы их1 + 3.

5 = 3 Диофантовы уравнения и методы их

3 = 2 Диофантовы уравнения и методы их.

Из этого равенства выразим 1. 1 = 3 — 2 Диофантовы уравнения и методы их= 3 – (5 — 3 Диофантовы уравнения и методы их) Диофантовы уравнения и методы их=

= 3 — 5 Диофантовы уравнения и методы их= 3 Диофантовы уравнения и методы их= (8 — 5 Диофантовы уравнения и методы их— 5 Диофантовы уравнения и методы их8Диофантовы уравнения и методы их2 -5Диофантовы уравнения и методы их

= 5Диофантовы уравнения и методы их(-2). Итак, m = -3, n = -2.

2. Частное решение уравнения (1): Хо = 19m; уо =19n.

Отсюда получим: Хо =19Диофантовы уравнения и методы их; уо =19 Диофантовы уравнения и методы их.

Пара (-57; -38)- частное решение (1).

3. Общее решение уравнения (1): Диофантовы уравнения и методы ихn Диофантовы уравнения и методы ихZ.

Четвертый способ. Геометрический.

1. Решим уравнение 5х – 8у = 1 геометрически.

2. Запишем частное решение уравнения (1).

3. Запишем общее решение данного уравнения (1).

Диофантовы уравнения и методы их

Отложим на окружности последовательно друг за другом равные дуги, составляющие

Диофантовы уравнения и методы их-ю часть полной окружности. За 8 шагов получим все вершины правильного вписанного в окружность 8-угольника. При этом сделаем 5 полных оборотов.

На 5 – ом шаге получили вершину, соседнюю с начальной, при этом сделали 3 полных оборота и еще прошли Диофантовы уравнения и методы их— ю часть окружности, так что х Диофантовы уравнения и методы их Диофантовы уравнения и методы их= у + Диофантовы уравнения и методы их.

Итак, Хо = 5, уо =3 является частным решением уравнения 5х – 8у = 1.

2. Частное решение уравнения (1): Хо = 19 Диофантовы уравнения и методы ихуо =19 Диофантовы уравнения и методы их

3. Общее решение уравнения (1): Диофантовы уравнения и методы ихn Диофантовы уравнения и методы ихZ.

Видео:Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Диофантовы уравнения

Видео:Классический способ решения Диофантовых уравнений ➜ Решите уравнение в целых числах ➜ 13x-7y=6Скачать

Классический способ решения Диофантовых уравнений ➜ Решите уравнение в целых числах ➜ 13x-7y=6

Диофантовы уравнения и методы ихЧто такое «решение задач подбором», и можно ли их решать иначе?

По отзывам сибмам, настоящим камнем преткновения в школьном курсе математики не только для учеников, но и для родителей становятся диофантовы уравнения. Что это такое и как их правильно решать? Разобраться нам помогли учитель математики образовательного центра «Горностай» Аэлита Бекешева и кандидат физико-математических наук Юрий Шанько.

Видео:Диофантовы уравнения x³-y³=91Скачать

Диофантовы уравнения x³-y³=91

Кто такой Диофант?

Еще древние египтяне для удобства рассуждений придумали специальное слово, обозначавшее неизвестное число, но в то время не было еще знаков действий и знака равенства, поэтому и записывать уравнения они не умели.

Первым, кто придумал, как можно записать уравнение, был замечательный ученый Диофант Александрийский. Александрия была большим культурным, торговым и научным центром древнего мира. Этот город существует и сейчас, он находится на Средиземноморском побережье Египта.

Жил Диофант, по-видимому, в III веке н.э. и был последним великим математиком античности. До нас дошли два его сочинения — «Арифметика» (из тринадцати книг сохранилось шесть) и «О многоугольных числах» (в отрывках). Творчество Диофанта оказало большое влияние на развитие алгебры, математического анализа и теории чисел.

Видео:ПЕРЕЧНЕВЫЕ ОЛИМПИАДЫ. Диофантовы уравненияСкачать

ПЕРЕЧНЕВЫЕ ОЛИМПИАДЫ. Диофантовы уравнения

А ведь вы знаете кое-что о диофантовых уравнениях…

Диофантовы уравнения знают все! Это задачки для учеников младших классов, которые решаются подбором.

” Например, «сколькими различными способами можно расплатиться за мороженое ценой 96 копеек, если у вас есть только копейки и пятикопеечные монеты?»

Если дать диофантовому уравнению общее определение, то можно сказать, что это алгебраическое уравнение с дополнительным условием: все его решения должны быть целыми числами (а в общем случае и рациональными).

” Зачастую мамы (особенно те, кто окончил школу еще при развитом социализме) полагают, что основная цель таких задач – научить детей расплачиваться мелочью за мороженое. И вот, когда они искренне убеждены, что раскладывание мелочи кучками осталось далеко в прошлом, их любимый семиклассник (или восьмиклассник) подходит с неожиданным вопросом: «Мама, как это решать?», и предъявляет уравнение с двумя переменными. Раньше таких задачек в школьном курсе не было (все мы помним, что уравнений должно быть столько же, сколько и переменных), так что мама не-математик нередко впадает в ступор. А ведь это та же самая задача про мелочь и мороженое, только записанная в общем виде!

Кстати, а зачем к ней вдруг возвращаются в седьмом классе? Все просто: цель изучения диофантовых уравнения – дать основы теории целых чисел, которая дальше развивается как в математике, так и в информатике и программировании. Диофантовы уравнения часто встречаются среди задач части «С» единого госэкзамена. Трудность, прежде всего в том, что существует множество методов решения, из которых выпускник должен выбрать один верный. Тем не менее, линейные диофантовы уравнения ax + by = c могут быть решены относительно легко с помощью специальных алгоритмов.

Видео:Алексей Савватеев "Диофантовы уравнения". Лекции 1-2Скачать

Алексей Савватеев "Диофантовы уравнения". Лекции 1-2

Алгоритмы для решения диофантовых уравнений

— Изучение диофантовых уравнения начинается в углубленном курсе алгебры с 7 класса. В учебнике Ю.Н. Макарычева, Н.Г. Миндюка приводятся некоторые задачи и уравнения, которые решают с использованием алгоритма Евклида и метода перебора по остаткам, — рассказывает Аэлита Бекешева. — Позже, в 8 – 9 классе, когда уже рассматриваем уравнения в целых числах более высоких порядков, показываем ученикам метод разложения на множители, и дальнейший анализ решения этого уравнения, оценочный метод. Знакомим с методом выделения полного квадрата. При изучении свойств простых чисел знакомим с малой теоремой Ферма, одной из основополагающих теорем в теории решений уравнений в целых числах. На более высоком уровне это знакомство продолжается в 10 – 11 классах. В это же время мы подводим ребят к изучению и применению теории «сравнений по модулю», отрабатываем алгоритмы, с которыми знакомились в 7 – 9 классах. Очень хорошо это материал прописан в учебнике А.Г. Мордковича «Алгебра и начала анализа, 10 класс» и Г.В. Дорофеева «Математика» за 10 класс.

Видео:Решение диофантовых уравненийСкачать

Решение диофантовых уравнений

Алгоритм Евклида

Сам метод Евклида относится к другой математической задаче – нахождению наибольшего общего делителя: вместо исходной пары чисел записывают новую пару – меньшее число и разность между меньшим и большим числом исходной пары. Это действие продолжают до тех пор, пока числа в паре не уравняются – это и будет наибольший общий делитель . Разновидность алгоритма используется и при решении диофантовых уравнений — сейчас мы вместе с Юрием Шанько покажем на примере, как решать задачи «про монетки».

— Рассматриваем линейное диофантово уравнение ax + by = c, где a, b, c, x и y — целые числа. Как видите, одно уравнение содержит две переменных. Но, как вы помните, нам нужны только целые корни, что упрощает дело — пары чисел, при которых уравнение верно, можно найти.

Впрочем, диофантовы уравнения не всегда имеют решения. Пример: 4x + 14y = 5. Решений нет, т.к. в левой части уравнения при любых целых x и y будет получаться четное число, а 5 — число нечетное. Этот пример можно обобщить. Если в уравнении ax + by = c коэффициенты a и b делятся на какое-то целое d, а число c на это d не делится, то уравнение не имеет решений. С другой стороны, если все коэффициенты (a, b и c) делятся на d, то на это d можно поделить все уравнение.

Например, в уравнении 4x + 14y = 8 все коэффициенты делятся на 2. Делим уравнение на это число и получаем: 2𝑥 + 7𝑦 = 4. Этот прием (деления уравнения на какое-то число) позволяет иногда упростить вычисления.

Зайдем теперь с другой стороны. Предположим, что один из коэффициентов в левой части уравнения (a или b) равен 1. Тогда наше уравнение уже фактически решено. Действительно, пусть, например, a = 1, тогда мы можем в качестве y взять любое целое число, при этом x = c − by. Если научиться сводить исходное уравнение к уравнению, в котором один из коэффициентов равен 1, то мы научимся решать любое линейное диофантово уравнение!

Я покажу это на примере уравнения 2x + 7y = 4.

Его можно переписать в следующем виде: 2(x + 3y) + y = 4.

Введем новую неизвестную z = x + 3y, тогда уравнение запишется так: 2z + y = 4.

Мы получили уравнение с коэффициентом один! Тогда z — любое число, y = 4 − 2z.

Осталось найти x: x = z − 3y = z − 3(4 − 2z) = 7z − 12.

” В этом примере важно понять, как мы перешли от уравнения с коэффициентами 2 и 7 к уравнению с коэффициентами 2 и 1. В данном случае (и всегда!) новый коэффициент (в данном случае — единица) это остаток от деления исходных коэффициентов друг на друга (7 на 2).

В этом примере нам повезло, мы сразу после первой замены получили уравнение с коэффициентом 1. Такое бывает не всегда, но и мы можем повторять предыдущий трюк, вводя новые неизвестные и выписывая новые уравнения. Рано или поздно после таких замен получится уравнение с коэффициентом 1.

Давайте попрообуем решить более сложное уравнение, предлагает Аэлита Бекешева.

Рассмотрим уравнение 13x — 36y = 2.

Шаг №1

36/13=2 (10 в остатке). Таким образом, исходное уравнение можно переписать следующим образом: 13x-13 * 2y-10y=2. Преобразуем его: 13(x-2y)-10y=2. Введем новую переменную z=x-2y. Теперь мы получили уравнение: 13z-10y=2.

Шаг №2

13/10=1 (3 в остатке). Исходное уравнение 13z-10y=2 можно переписать следующим образом: 10z-10y+3z=2. Преобразуем его: 10(z-y)+3z=2. Введем новую переменную m=z-y. Теперь мы получили уравнение: 10m+3z=2.

Шаг №3

10/3=3 (1 в остатке). Исходное уравнение 10m+3z=2 можно переписать следующим образом: 3 * 3m+3z+1m=2. Преобразуем его: 3(3m+z)+1m=2. Введем новую переменную n=3m+z. Теперь мы получили уравнение: 3n+1m=2.

Ура! Мы получили уравнение с коэффициентом единица!

m=2-3n, причем n может быть любым числом. Однако нам нужно найти x и y. Проведем замену переменных в обратном порядке. Помните, мы должны выразить x и y через n, которое может быть любым числом.

y=z-m; z=n-3m, m=2-3n ⇒ z=n-3 * (2-3n), y=n-3*(2-3n)-(2-3n)=13n-8; y=13n-8

x=2y+z ⇒ x=2(13n-8)+(n-3*(2-3n))=36n-22; x=36n-22

Пусть n=5. Тогда y=57, x=158. 13*(158)-36 * (57)=2

Да, разобраться не очень просто, зато теперь вы всегда сможете решить в общем виде задачи, которые решаются подбором!

Видео:Линейные диофантовы уравненияСкачать

Линейные диофантовы уравнения

Решаем задачи на подбор чисел

Примеры задач для учеников младших классов, которые решаются подбором: посоревнуйтесь с ребенком, кто решит их быстрее: вы, используя алгорит Евклида, или школьник — подбором?

Задача про лапы

Условия

В клетке сидят куры и кролики. Всего у них 20 лап. Сколько там может быть кур, а сколько — кроликов?

Решение

Пусть у нас будет x кур и y кроликов. Составим уравнение: 2х+4y=20. Сократим обе части уравнения на два: x+2y=10. Следовательно, x=10-2y, где x и y — это целые положительные числа.

Ответ

Число кроликов и куриц: (1; 8), (2; 6), (3; 4), (4; 2), (5; 0)

Согласитесь, получилось быстрее, чем перебирать «пусть в клетке сидит один кролик. »

Задача про монетки

Условия

У одной продавщицы были только пяти- и двухрублевые монетки. Сколькими способами она может набрать 57 рублей сдачи?

Решение

Пусть у нас будет x двухрублевых и y пятирублевых монеток. Составим уравнение: 2х+5y=57. Преобразуем уравнение: 2(x+2y)+y=57. Пусть z=x+2y. Тогда 2z+y=57. Следовательно, y=57-2z, x=z-2y=z-2(57-2z) ⇒ x=5z-114. Обратите внимание, переменная z не может быть меньше 23 (иначе x, число двухрублевых монеток, будет отрицательным) и больше 28 (иначе y, число пятирублевых монеток, будет отрицательным). Все значения от 23 до 28 нам подходят.

Видео:Дигамма-функция. Часть1. Функциональные уравненияСкачать

Дигамма-функция. Часть1. Функциональные уравнения

Диофантовы уравнения — методы, алгоритмы и примеры решения

Диофантовы уравнения и методы их

Видео:Алгебра 10 класс (Урок№9 - Решение уравнений в целых числах.)Скачать

Алгебра 10 класс (Урок№9 - Решение уравнений в целых числах.)

Основные понятия

Решением линейных уравнений начали заниматься ещё в Древнем Вавилоне и Греции. Особого успеха в их вычислении смог добиться древнегреческий философ и математик правителя Греции — Диофант Александрийский. В третьем веке до нашей эры он издал свой труд под названием «Арифметика», в котором описал возможные решения различных математических задач. Большая часть их была посвящена уравнениям, которые и были позже названы в его честь.

Диофантовыми уравнениями принято называть линейные выражения вида: a1x1 + a2x2 + … + anxn = c. В этих равенствах икс обозначает искомое неизвестное, а коэффициенты a и c являются целыми числами. Греческий учёный предложил несколько способов решения таких уравнений:

Диофантовы уравнения и методы их

  • полный перебор;
  • разложение на множители;
  • выражение одной переменной через другую с выделением целой части при решении системы;
  • поиск частного решения;
  • алгоритм Евклида;
  • геометрический метод.

Методы решения диофантовых уравнений позволяют найти целые или рациональные решения для алгебраических равенств или их систем. Но при этом число переменных в выражении не должно превышать двух. Как правило, такие уравнения имеют несколько решений, поэтому их другое популярное название — неопределённые.

Чтобы воспользоваться способами, предложенными математиком при рассмотрении задач, нужно попробовать проанализировать исходные данные и свести их к линейному равенству или системе уравнений. При этом коэффициенты, как стоящие возле неизвестных, так и свободные, должны быть целыми. Ответом же должно получиться тоже целое число, обычно натуральное.

Чтобы понимать возможности применения уравнений в тех или иных исследовательских вычислениях, необходимо предварительно ответить на два вопроса: могут ли быть у задания целочисленные решения и ограничено ли число действительных ответов. Поэтому использование способов подходит только для простейших уравнений первой и второй степени. Для выражений высших порядков, например, 4x 3 + 6Y 3 — 2z 4 = 23, определить, является ли решением целое число, довольно проблематично.

Видео:Диофантовы уравнения x²+xy-y=2Скачать

Диофантовы уравнения x²+xy-y=2

Методы решения

Для начала следует рассмотреть однородное линейное уравнение вида: ax + by = 0. Это простой многочлен первой степени. Для него характерно то, что если для коэффициентов можно подобрать один делитель, то обе части возможно сократить на его величину не нарушив принципы записи. Наиболее простым способом определить этот делитель является метод разработанный великим математиком своего времени Евклидом.

Диофантовы уравнения и методы их

Решение диофантовых уравнений по алгоритму Евклида заключается в нахождении общего делителя натуральных чисел с использованием деления с остатком. Для этого нужно взять большее число и просто разделить его на наименьшее. Затем полученный остаток нужно снова разделить на меньшее из чисел. Это действие необходимо повторять до тех пор, пока результатом операции не станет единица, то есть выполнится деление без остатка. Последнее полученное число и будет являться наибольшим общим делителем (НОД).

Существует три теоремы, которые используются при решении уравнений первой степени:

  1. В случае, когда НОД равняется единице, выражение будет обязательно иметь хотя бы одну пару целого решения.
  2. Если коэффициенты выражения больше единицы, и при этом свободный член нельзя нацело разделить на них, то корни равенства не имеют целого значения.
  3. Когда коэффициенты равняются единице, все решения, состоящие из целых чисел, находятся с помощью формул: x = x0c + bt и y = y0c — at, где: х0, y0 — целые ответы, t — множество чисел.

Например, пусть есть равенство вида 54x + 37y = 1. Используя то, что a = 54, а b =37, можно записать: 54 — 37 *1 = 17. Теперь можно выполнить следующие вычисления:

  • 37 — 17 * 2 = 3;
  • 71 — 3 * 5 = 2;
  • 3 — 2 * 1 = 1.

Далее нужно выразить значения коэффициентов через остаток:

Диофантовы уравнения и методы их

  • 3 — (17 — 3 * 5) = 1;
  • 1 = 17 — 3 * 4;
  • 1 = 17 — (37- 17 * 2) * 4;
  • 1 = 17 — 37 * 4+17 * 8;
  • 1 = 17 * 9 — 37 * 4;
  • 1 = (54 — 37 * 1) * 9 — 37 * 4;
  • 1 = 54 * 9 — 37 * 9 — 37 * 4;
  • 1 = 54 * 9 — 37 * 13;
  • 1 = 54х + 37у.

Исходя из приведённого следует, что x0 равняется девяти, а игрек нулевой — минус тринадцать. Таким образом, рассматриваемое уравнение будет иметь вид:

Этим же способом можно и определить, что целых решений в выражении быть не может, как, например, для равенства 17x + 36y = 7. В этом случае НОД не делится на два, поэтому и целых решений нет.

Способ подбора и разложения

Метод подбора используется для нахождения корней простых уравнений. Пожалуй, это самый простой способ, но вместе с тем и требующий повышенного внимания и большого количества операций. Его суть заключается в полном переборе всех допустимых значений переменных, входящих в равенство. Например, эта задача которая будет интересна и школьникам, только знакомящимся с уравнениями.

Пусть имеется зоопарк, в котором находятся птицы и млекопитающие. Всего у животных двадцать лап. Определить, какое количество может быть птиц, а какое — млекопитающих. Для нахождения ответа методом перебора следует принять число одних животных, равное x (пусть это будут четырёхпалые), а других — y (птицы). Таким образом, получится уравнение: 2x + 4 y = 20. Для простоты выражение можно упростить, сократив на два: x + 2y = 10.

Диофантовы уравнения и методы их

Полученное выражение нужно преобразовать, разделив неизвестные знаком равно: x = 10 — 2y. Зная, что ответом могут быть только целые числа, вместо y нужно пробовать подставлять возможные варианты: 1 — 8; 2 — 6; 3 — 4; 4 — 2; 5 — 0. Это и есть все возможные ответы на поставленную задачу.

Разложение выражения на множители можно выполнять различными способами. Вот основные из них:

  • вынесение общего множителя: если каждый член многочлена можно разделить на одно и то же число, то его можно вынести за скобку;
  • использование формулы сокращённого умножения: оно выполняется по формуле: an — bn = (a-b) * (an-1 + an-2 * b +… a2bn-3 + abn-2 + bn-1);
  • применение свойства полного квадрата: это самый эффективный способ, заключающийся в вынесении полного квадрата за скобку с последующим использованием формул разности квадратов;
  • группировкой — в его основе лежит вынесение общего множителя таким образом, чтобы появилась возможность перегруппировки выражения, после которой получится значение, присутствующее во всех членах равенства.

Например, пусть имеется нелинейное уравнение вида: 8×4 + 32×2 = 8. Все его члены можно перенести в одну сторону, а равенство приравнять к нулю, при этом сократив каждый член на восемь: x4 + 4×2 — 1 = 0. Для преобразования такого выражения удобнее всего применить метод квадратов. Таким образом, уравнение можно расписать следующим образом: x4 + 2 * 2 * x2 + 4 — 4 — 1 = (x2 + 2)2 — 5 = (x2 + 2 — √5) * (x2 + 2 +√5).

Геометрический подход

Этот метод удобно применять для системы уравнений. Его принцип построен на изображении графиков уравнений и определения их точки пересечения. При этом координаты этой точки и будут являться корнями рассматриваемой системы.

Из этого утверждения можно сделать следующие выводы:

Диофантовы уравнения и методы их

  • если графики уравнений представляют пересекающиеся прямые, то решением будет только одно число;
  • когда графики уравнений не имеют общих точек, то решения у системы уравнений нет;
  • в случае, когда графики совпадают, система будет иметь бесконечное множество корней.

Применять этот метод можно для уравнений, порядок которых не превышает единицы. В равенствах высшего порядка построить график обычно сложно. Например, дана система:

Из первого и второго равенства можно выразить одно неизвестное через другое, используя несколько произвольных чисел. Затем, подставляя их вместо неизвестного, можно построить график. Как только две прямые будут построены, можно будет определить, что точка их пересечения имеет координаты -2; 5. Эти значения и будут искомыми корнями.

Видео:Диофантовы уравнения в задачах на ЕГЭСкачать

Диофантовы уравнения в задачах на ЕГЭ

Занимательная задача

На самом деле примеры диофантовых уравнений можно встретить в повседневной жизни. Например, при покупке чего-либо в магазине. На эту тему математики смогли придумать интересные задачи, обычно предлагающиеся ученикам на дополнительных занятиях.

Диофантовы уравнения и методы их

Вот одна из них, появившаяся из реальной истории. Однажды математик пришёл в магазин приобрести свитер. Его цена составляла 19 рублей. У учёного же были с собой только купюры номиналом три рубля, а у кассира — пятирублёвки. Задача состоит в том, чтобы выяснить, сможет ли состояться сделка. Иными словами, необходимо найти, сколько нужно математику дать купюр, и какое их количество он получит от кассира.

Рассуждать нужно следующим образом. В задачи есть два неизвестных: количество трёхрублёвых и пятирублёвых купюр. Поэтому можно составить уравнение: 3x — 5y = 19. По сути, уравнение с двумя неизвестными может иметь бесчисленное число решений, но не всегда из них может найтись хотя бы одно целое положительное.

Итак, зная, что неизвестные должны быть целыми положительными числами, нужно выразить неизвестное с меньшим коэффициентом через остальные члены. Получится равенство: 3 x = 19 + 5 y. Левую и правую часть можно разделить на три, а после выполнить простейшие преобразования: x = (19 + 5y) / 3 = 6 + y + (1 + 2y) / 3. Учитывая, что неизвестные и свободный член это целые числа, выражение (1 + 2y) / 3 можно заменить буквой r, также являющимся каким-то целым числом.

Тогда уравнение можно переписать как x = 6 + y + t. Отсюда t = (1 + 2y) / 3 или y = t + (t — 1) / 2. Снова можно сделать вывод, что (t — 1) / 2 — какое-то целое число. Если заменить его на t1, выражение примет вид: y = t + t1.

Подставив t = 2t1 + l в равенство можно получить, что x = 8 + 5t1, а y = 1 + 3t1. Таким образом, решением уравнения будут полученные равенства. Исходя из того, что результат должен быть положительным, равенства можно переписать в неравенства вида:8 + 5t1> 0, 1 + 3t1 > 0. Отсюда определить диапазон, ограничивающий t1. Беря во внимание только плюсовую часть диапазона, можно сделать заключение, что возможные варианты решения лежать в пределе от нуля до плюс бесконечности.

Подставляя по очереди числа, можно определить значения x и y. Искомый ряд будет выглядеть следующим образом: 1 = 8, 13, 18, 23, …, n; 1 = 1, 4, 7, 10,…, m. То есть математик, дав восемь купюр, получит одну на сдачу, а если он отдаст 13 купюр, то продавец должен будет ему выдать четыре пятирублёвки. Этот ряд можно продолжать до бесконечности.

Видео:Диофантовы уравнения x+y=xyСкачать

Диофантовы уравнения x+y=xy

Использование онлайн-калькулятора

Существуют сайты, рассчитывающие линейные уравнения в автоматическом режиме. Они называются математическими онлайн-калькуляторами. Пользователю, желающему воспользоваться их услугами, нужно иметь лишь подключение к интернету и любой веб-браузер.

Свои услуги сервисы предоставляют бесплатно. При этом часто на их страницах содержится краткий теоретический материал, посвящённый решению диофантовых уравнений. Кроме того, пользователю предоставляется возможность ознакомиться с решением типовых примеров.

Из нескольких десятков таких сайтов на русском языке можно отметить следующие:

Диофантовы уравнения и методы их

Все приведённые сайты имеют интуитивно понятный интерфейс и бесплатны. После того как пользователь введёт в предложенную форму нужные уравнения и запустит расчётчик, онлайн-сервисы не только выдадут ответ, но и выведут на экран пошаговое решение с объяснениями. Таким образом, эти сервисы помогают не только быстро и верно найти решение, но и дают возможность пользователю понять принципы вычисления, проверить самостоятельно выполненный расчёт.

📸 Видео

РЕШАЕМ ДИОФАНТОВОЕ УРАВНЕНИЕ | ПРОСТЫМИ СЛОВАМИСкачать

РЕШАЕМ ДИОФАНТОВОЕ УРАВНЕНИЕ | ПРОСТЫМИ СЛОВАМИ

#86. Делимость и диофантовы уравнения! ТРУДНАЯ ЗАДАЧА!Скачать

#86. Делимость и диофантовы уравнения! ТРУДНАЯ ЗАДАЧА!

Решите уравнение в целых числах 5x-4y=3 ➜ Как решать Диофантовы уравнения?Скачать

Решите уравнение в целых числах 5x-4y=3 ➜ Как решать Диофантовы уравнения?

Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Решите уравнение в целых числах: y²+1=2^x ➜ Как решать диофантовы уравненияСкачать

Решите уравнение в целых числах: y²+1=2^x ➜ Как решать диофантовы уравнения
Поделиться или сохранить к себе: