- Страницы работы
- Содержание работы
- Похожие материалы
- Информация о работе
- Содержание
- Введение.
- Глава I. Общие сведения об интегральных уравнениях.
- Глава II. Вычисление определенных интегралов на Mathcad
- 2.1. Метод Ромберга
- 2.2. Использование пакетов MathCAD для решения дифференциальных уравнений.
- 2.3. Метод Эйлера для дифференциальных уравнений первого порядка
- 2.4. Решение дифференциальных уравнений второго порядка
- Глава III Численные методы решения интегральных уравнений.
- 3.1. Квадратурный метод решения интегральных уравнений Фредгольма.
- 3.2. Квадратурный метод решения интегральных уравнений Вольтерры.
- Глава IV. Прикладные задачи, использующие решение интегральных уравнений.
- 4.1. Расчет теплоизоляции.
- Листинг№1 Численное интегрирование
- 1. Функция, возвращающая значение интеграла функции помощью метода Симпсона
- 🎦 Видео
Страницы работы
Содержание работы
Министерство образования и науки Украины
Национальный аэрокосмический университет им. Н.Е. Жуковского «Харьковский авиационный институт»
По курсу «Численные методы»
По теме: «Решение интегральных уравнений»
студент 325 группы
Цель. Решить численно интегральное уравнение Фредгольма, Вольтера методом конечных сумм.
Программная реализация в MathCad.
Исходные данные для уравнения вида ϕ(x) -λ =f(x)
1. Блок формирования весовых коэффициентов.
1. Формула Симпсона.
2. Формула трапеций.
3. Формула правых прямоугольников.
4. Формула левых прямоугольников.
2. Формирование матрицы коэффициентов для уравнения Фредгольма, Вольтера.
3. Вычисление значений f(х) (правой части уравнения) в узловых точках.
Значения источника в узловых точках:
Вычисляем значения искомой функции в узловых точках: ϕ(vx(i))
Искомую функцию ɸ(х) запишем в виде :
Проверка результатов вычислений.
function res = Integral_equation(a,b,n,N,str);
lambda = 8; % параметр
%1. Табулирование значений
%2. Формируем весовые коэффициенты для формулы N
A = zeros(n,1);%матрица весовых коэффициентов
switch (N) %формула Симпсона
case 2 %формула трапеций
case %формулы правых и левых прямоугольников
otherwise error(‘This is impossible value’)
%3. Формирование матрицы коэффициентов
case ‘Fredgolm’% для уравнения Фредгольма
if (i == j) D(i,j) = 1-lambda*A(j)*k(vx(i),vx(j));
else D(i,j) = -lambda*A(j)*k(vx(i),vx(j));
case ‘Volter’% Вольтера
% 4. Вычисление значений искомой функции в узловых точках
% 5. Построение графика искомой функции fi(х) на интервале [a,b];
plot(X,VR,’-k’),hold on,plot(vx,y,’*r’),hold on;
% 6. Проверка вычислений. left side of equation
G = fi(x,lambda,y,vx,A) — lambda*int(k(x,t)*fi(t,lambda,y,vx,A),t,a,b)
function res = F(x);
% источник интегрального уравнения
function res = fi(x,lambda,y,vx,A);
Int = Int + A(i)*k(x,vx(i))*y(i);
res = F(x)+ lambda*Int;
function res = k(x,t);
% ядро интегрального уравнения
Похожие материалы
Информация о работе
- АлтГТУ 419
- АлтГУ 113
- АмПГУ 296
- АГТУ 267
- БИТТУ 794
- БГТУ «Военмех» 1191
- БГМУ 172
- БГТУ 603
- БГУ 155
- БГУИР 391
- БелГУТ 4908
- БГЭУ 963
- БНТУ 1070
- БТЭУ ПК 689
- БрГУ 179
- ВНТУ 120
- ВГУЭС 426
- ВлГУ 645
- ВМедА 611
- ВолгГТУ 235
- ВНУ им. Даля 166
- ВЗФЭИ 245
- ВятГСХА 101
- ВятГГУ 139
- ВятГУ 559
- ГГДСК 171
- ГомГМК 501
- ГГМУ 1966
- ГГТУ им. Сухого 4467
- ГГУ им. Скорины 1590
- ГМА им. Макарова 299
- ДГПУ 159
- ДальГАУ 279
- ДВГГУ 134
- ДВГМУ 408
- ДВГТУ 936
- ДВГУПС 305
- ДВФУ 949
- ДонГТУ 498
- ДИТМ МНТУ 109
- ИвГМА 488
- ИГХТУ 131
- ИжГТУ 145
- КемГППК 171
- КемГУ 508
- КГМТУ 270
- КировАТ 147
- КГКСЭП 407
- КГТА им. Дегтярева 174
- КнАГТУ 2910
- КрасГАУ 345
- КрасГМУ 629
- КГПУ им. Астафьева 133
- КГТУ (СФУ) 567
- КГТЭИ (СФУ) 112
- КПК №2 177
- КубГТУ 138
- КубГУ 109
- КузГПА 182
- КузГТУ 789
- МГТУ им. Носова 369
- МГЭУ им. Сахарова 232
- МГЭК 249
- МГПУ 165
- МАИ 144
- МАДИ 151
- МГИУ 1179
- МГОУ 121
- МГСУ 331
- МГУ 273
- МГУКИ 101
- МГУПИ 225
- МГУПС (МИИТ) 637
- МГУТУ 122
- МТУСИ 179
- ХАИ 656
- ТПУ 455
- НИУ МЭИ 640
- НМСУ «Горный» 1701
- ХПИ 1534
- НТУУ «КПИ» 213
- НУК им. Макарова 543
- НВ 1001
- НГАВТ 362
- НГАУ 411
- НГАСУ 817
- НГМУ 665
- НГПУ 214
- НГТУ 4610
- НГУ 1993
- НГУЭУ 499
- НИИ 201
- ОмГТУ 302
- ОмГУПС 230
- СПбПК №4 115
- ПГУПС 2489
- ПГПУ им. Короленко 296
- ПНТУ им. Кондратюка 120
- РАНХиГС 190
- РОАТ МИИТ 608
- РТА 245
- РГГМУ 117
- РГПУ им. Герцена 123
- РГППУ 142
- РГСУ 162
- «МАТИ» — РГТУ 121
- РГУНиГ 260
- РЭУ им. Плеханова 123
- РГАТУ им. Соловьёва 219
- РязГМУ 125
- РГРТУ 666
- СамГТУ 131
- СПбГАСУ 315
- ИНЖЭКОН 328
- СПбГИПСР 136
- СПбГЛТУ им. Кирова 227
- СПбГМТУ 143
- СПбГПМУ 146
- СПбГПУ 1599
- СПбГТИ (ТУ) 293
- СПбГТУРП 236
- СПбГУ 578
- ГУАП 524
- СПбГУНиПТ 291
- СПбГУПТД 438
- СПбГУСЭ 226
- СПбГУТ 194
- СПГУТД 151
- СПбГУЭФ 145
- СПбГЭТУ «ЛЭТИ» 379
- ПИМаш 247
- НИУ ИТМО 531
- СГТУ им. Гагарина 114
- СахГУ 278
- СЗТУ 484
- СибАГС 249
- СибГАУ 462
- СибГИУ 1654
- СибГТУ 946
- СГУПС 1473
- СибГУТИ 2083
- СибУПК 377
- СФУ 2424
- СНАУ 567
- СумГУ 768
- ТРТУ 149
- ТОГУ 551
- ТГЭУ 325
- ТГУ (Томск) 276
- ТГПУ 181
- ТулГУ 553
- УкрГАЖТ 234
- УлГТУ 536
- УИПКПРО 123
- УрГПУ 195
- УГТУ-УПИ 758
- УГНТУ 570
- УГТУ 134
- ХГАЭП 138
- ХГАФК 110
- ХНАГХ 407
- ХНУВД 512
- ХНУ им. Каразина 305
- ХНУРЭ 325
- ХНЭУ 495
- ЦПУ 157
- ЧитГУ 220
- ЮУрГУ 309
Полный список ВУЗов
Чтобы распечатать файл, скачайте его (в формате Word).
Видео:Курс по ИДУ: Численное решение интегральных уравнений | Занятие 14Скачать
Содержание
Глава I. Общие сведения об интегральных уравнениях. 7
Глава II. Вычисление определенных интегралов на Mathcad. 11
2.1. Метод Ромберга. 11
2.2. Использование пакетов MathCAD для решения дифференциальных уравнений. 14
2.3. Метод Эйлера для дифференциальных уравнений первого порядка 16
2.4. Решение дифференциальных уравнений второго порядка. 17
Глава III Численные методы решения интегральных уравнений. 20
3.1. Квадратурный метод решения интегральных уравнений Фредгольма. 24
3.2. Квадратурный метод решения интегральных уравнений Вольтерры. 27
Глава IV. Прикладные задачи, использующие решение интегральных уравнений. 29
4.1. Расчет теплоизоляции. 29
4.2. Фильтр Калмана. 33
Листинг№1 Численное интегрирование. 39
1. Функция, возвращающая значение интеграла функции помощью метода Симпсона 39
2. Функция, возвращающая значение интеграла с помощью формулы трапеции 39
3. Функция, возвращающая значение интеграла, найденного по формулам треугольников. 40
Листинг № 2 Решение обыкновенных дифференциальных уравнений. 41
1.Функция, возвращающая численное решение ДУ методом Адамса. 41
2. Задание функции возвращающей решение ДУ методом Пикара. 42
3.Метод Эйлера. 42
Листинг №3. Решение линейного интегрального уравнения Вольтерра I-го рода. 43
Листинг №4. Решение линейного интегрального уравнения Вольтера II-го рода. 44
Листинг №6. Фильтр Калмана. 45
Список литературы: 50
Видео:Уравнения Фредгольма - 1Скачать
Введение.
Интегральные уравнения являются одними из наиболее плодотворных средств математического исследования, как в чистом, так и в прикладном анализе. Это относится, в частности, к задачам теории механических колебаний и соответствующих областей техники и теоретической физики, где интегральные уравнения не только полезны, но зачастую даже совершенно необходимы для численных расчетов.
Интегральным уравнением называется уравнение относительно неизвестно функции, содержащейся под знаком интеграла.
К интегральным уравнениям приводят многие задачи, возникающие в математике и математической физике. Исторически, первой задачей, сведенной к интегральному уравнению
cчитается задача Абеля, имеющая следующую формулировку:
Определить вид кривой , по которой в вертикальной плоскости под действием силы тяжести должна скатываться материальная точка, так чтобы, начав свое движение с нулевой начальной скоростью из точки , она диагональна оси за заданное время .
Интегральные уравнения широко используются в моделях, рассматриваемых в теории упругости, газовой динамики, электродинамике, экологии и других областях физики, в которых они являются следствием законов сохранения массы, импульса и энергии. Достоинство данных моделей состоит в том, что интегральные уравнения, в отличие от дифференциальных, не содержат производных искомой функции и, следовательно. Жесткие ограничения на гладкость решения отсутствует.
В данной работе я постаралась отобразить основные возможности применения интегральных уравнений в различных областях жизни, а так же их численное решение с помощью средств компьютерной математики.
Целью данной работы является рассмотрение решения интегральных уравнений с помощью систем компьютерной математики, решение задачи Коши, а так же их практическое применение в задачах физики и механики.
В данной теме важным оказывается выбор базового программного средства.
Пакет Mathematica является сегодня наиболее популярным среди ученых, особенно теоретиков. Пакет предоставляет широкие возможности в проведении символических (аналитических) преобразований, однако требует значительных ресурсов компьютера.
Пакет Maple также весьма популярен. Кроме аналитических преобразований, пакет в состоянии решать задачи численно. Характерной особенностью пакета является то, что он позволяет конвертировать документы в формат LaTeX — стандартный формат подавляющего большинства научных издательств мирового класса. Кроме того, ряд других программных продуктов используют интегрированный символьный процессор Maple. Например, пакет подготовки научных публикаций Scientific WorkPlace позволяет обращаться к символьному процессору Maple, производить аналитические преобразования и встраивать полученные результаты в создаваемый документ[1].
Пакет Matlab фактически представляет собой своеобразный язык программирования высокого уровня, ориентированный на решение научных задач. Характерной особенностью пакета является то, что он позволяет сохранять документы в формате языка программирования С.
Пакет Mathcad более популярен в инженерной, чем в научной, среде. Характерной особенностью является использование привычных стандартных математических обозначений, т. е. вид документа на экране максимально приближен к общепринятой математической нотации.
В отличие от упомянутых выше пакетов, Mathcad является средой визуального программирования, т. е. не требует знаний специфического набора команд. Простота освоения пакета, дружественный интерфейс, относительная непритязательность к возможностям компьютера явились главными причинами того, что именно этот пакет был выбран мной для реализации численного решения интегральных уравнений.
Видео:Интегральные уравнения с вырожденным ядромСкачать
Глава I. Общие сведения об интегральных уравнениях.
Интегральными уравнениями называются функциональные уравнения, содержащие интегральные преобразования над неизвестной функцией . Интегральное уравнение называется однородным, если есть решение уравнения для произвольного . Линейное интегральное уравнение в общем виде может быть представлено:
где — ядро интегрального преобразования, правая часть и являются заданными функциями, — параметр уравнения. Область интегрирования V может быть фиксированной (интегральные уравнения типа фредгольмовых) или переменной (интегральные уравнения типа вольтерровых).
Линейное интегральное уравнение первого рода получается при , и имеет вид:
Однородное линейное интегральное уравнение второго рода получается при и имеет вид:
Неоднородное интегральное уравнение второго рода получается при g(x) = 1 и имеет вид
Уравнения вида являются неоднородными.
Линейное интегральное уравнение Вольтерра первого рода имеет вид:
Если и если функции имеют производные , непрерывные в интервале , заключенном в интервале интегрирования, внутри которого не обращается в нуль, то уравнение Вольтерра первого рода допускает в интервале непрерывное и единственное решение[2].
Представленная процедура решает уравнение методом квадратурных формул. Вычисление интеграла производится по формуле трапеций с постоянным шагом h:
,
где
Aj = 1 при j > 1 и Aj = 0.5 при j = 1
Линейное интегральное уравнение Вольтера второго рода имеет вид:
Причем независимые переменные изменяются на промежутке , ядро непрерывно внутри и на сторонах треугольника, ограниченного прямыми Функция на непрерывна.
Уравнение данного типа решается с помощью метода квадратурных формул, суть которого состоит в замене интегрального уравнения аппроксимирующей системой алгебраических уравнений относительно дискретных значений искомой функции и решении этой системы. В основе такой замены лежит приближение интеграла квадратурными формулами. Применение формулы трапеций с постоянным шагом h приводит к рекуррентной формуле:
· Aj = 1 при j > 1 и Aj = 0.5 при j = 1.
Линейное интегральное неоднородное уравнение Фредгольма второго рода имеет вид:
где ядро определено в квадрате . Кроме того, полагается, что ядро непрерывно в V. При , используя квадратурную формулу трапеций с постоянным шагом h, получим:
· Aj = 1 при j, не равном 1 или n
· Aj = 0.5 при j, равном 1 или n.
Получаем систему линейных уравнений, которую решаем методом Гаусса с частичным выбором ведущего элемента. При решении полученной системы уравнений возможны два случая — система вырождена и нам придется поделить на ноль в ходе решения, или система невырождена. Если система невырождена, то существует одно и только одно решение. Если же система вырождена, то данный алгоритм неприменим. В случае вырожденой матрицы функция возвращает False. Если матрица невырождена, то функция возвращает True, а переменная Y содержит решение системы.
Для сравнения с нолем в алгоритм передается малое число epsilon, и любое число, по модулю меньшее epsilon, считается нолем.
Видео:Численное решение интегральных уравненийСкачать
Глава II. Вычисление определенных интегралов на Mathcad
Видео:Методы численного анализа - Уравнения Фредгольма и ВольтерраСкачать
2.1. Метод Ромберга
Пусть требуется вычислить определенный интеграл на интервале [a;b].
Далеко не всегда задача может быть решена аналитически. В частности, численное решение требуется в том случае, когда подынтегральная функция задана таблично. Для численного интегрирования подынтегральную функцию аппроксимируют какой-либо более простой функцией, интеграл от которой может быть вычислен. Обычно в качестве аппроксимирующей функции используют полином. В случае полинома нулевой степени метод численного интегрирования называют методом прямоугольников, в случае полинома первой степени – методом трапеций, в случае полинома второй степени – методом Симпсона. Все эти методы являются частными случаями квадратурных формул Ньютона-Котеса.
Итак, в методе трапеций подынтегральную функцию аппроксимируют полиномом первой степени, то есть прямой линией. Это значит, что вместо площади криволинейной трапеции мы будем искать площадь прямоугольной трапеции. Приближенное значение интеграла равно
Погрешность этой формулы равна .
Обозначим , где . Смысл введенного обозначения станет, ясен несколько позже.
Оценку значения интеграла можно сделать более точной, если разбить интервал на n частей и применить формулу трапеций для каждого такого интервала
Если разбить интервал на две части, то есть уменьшит шаг в два раза , то оценка для величины интеграла будет иметь вид
В данном случае суммирование включает только один элемент. Обратите внимание, в новую оценку вошла старая оценка. Нам потребовалось определять значение функции только в новых узлах[3].
Если имеется 2n подинтервалов, то
Вообще, справедливо рекуррентное соотношение
Полученное соотношение называют рекурсивной формулой трапеций и часто применяют для вычисления определенных интегралов. Преимущество этой формулы состоит в том, что при увеличении числа подинтервалов функцию нужно вычислять только во вновь добавленных точках. К сожалению, с помощью этой формулы нельзя получить сколь угодно точное значение интеграла. Во-первых, при увеличении числа разбиений объем вычислений стремительно возрастает; во-вторых, на каждом шаге накапливается ошибка округлений. Для дальнейшего уточнения значения интеграла можно сделать следующий шаг – экстраполировать полученную последовательность значений на случай бесконечного числа точек или что то же самое, на случай нулевого шага. Такой подход называется методом Ромберга.
Метод Ромберга заключается в том, что полученные оценки значения интеграла экстраполируют на случай бесконечного числа разбиений (величины шага равной нулю) по рекуррентной формуле
(1)
То есть строится следующий треугольник
R(5,1) R(5,2) R(5,3) R(5,4) R(5,5) ,
в котором первый столбец состоит из значений интеграла, полученных при последовательном удвоении числа интервалов. Второй столбец – результат уточнения значений первого столбца по рекуррентной формуле (1). Третий столбец – уточненные значения интеграла на основе второго столбца и т. д[4].
Формула (1) может быть получена различными способами. Можно, например, воспользоваться методом Невиля. Пусть имеется набор точек . Обозначим полином нулевой степени, проходящий через i-ю точку. Обозначим полином первой степени, проходящий через точки i и i+1. Совершенно аналогично будет означать полином n–1 степени, проходящий через все n точек. Легко убедиться, что
В нашем случае . В качестве выступают . Мы хотим получить значение интеграла в пределе , поэтому .
Видео:Уравнения Фредгольма - 2Скачать
2.2. Использование пакетов MathCAD для решения дифференциальных уравнений.
Пусть необходимо найти решение уравнения
(2)
с начальным условием . Такая задача называется задачей Коши. Разложим искомую функцию в ряд вблизи точки и ограничимся первыми двумя членами разложения Учтя уравнение (2) и обозначив , получаем Эту формулу можно применять многократно, находя значения функции во все новых и новых точках.
(3)
Такой метод решения обыкновенных дифференциальных уравнений называется методом Эйлера. Геометрически метод Эйлера означает, что на каждом шаге мы аппроксимируем решение (интегральную кривую) отрезком касательной, проведенной к графику решения в начале интервала. Точность метода невелика и имеет порядок h. Говорят, что метод Эйлера – метод первого порядка, то есть его точность растет линейно с уменьшением шага h.
Существуют различные модификации метода Эйлера, позволяющие увеличить его точность. Все они основаны на том, что производную, вычисленную в начале интервала, заменяют на среднее значение производной на данном интервале[5]. Среднее значение производной можно получить (конечно же, только приближенно) различными способами. Можно, например, оценить значение производной в середине интервала и использовать его для аппроксимации решения на всем интервале
Можно также оценить среднее значение производной на интервале
Такие модификации метода Эйлера имеет уже точность второго порядка.
Оценку значения производной можно улучшить, увеличивая число вспомогательных шагов. На практике наиболее распространенным методом решения обыкновенных дифференциальных уравнений является метод Рунге-Кутты четвертого порядка. Для оценки значения производной в этом методе используется четыре вспомогательных шага. Формулы метода Рунге-Кутты следующие
Перечисленные методы можно применять и для решения систем дифференциальных уравнений. Поскольку многие дифференциальные уравнения высших порядков могут быть сведены заменой переменных к системе дифференциальных уравнений первого порядка, рассмотренные методы могут быть использованы и для решения дифференциальных уравнений порядка выше первого.
Еще один тип задач, часто встречающихся на практике, – краевые задачи. Пусть имеется дифференциальное уравнение второго порядка . Решение уравнения требуется найти на интервале , причем известно, что . Понятно, что произвольный интервал заменой переменных может быть сведен к единичному. Для решения краевой задачи обычно применяют метод стрельб. Пусть где k – некоторый параметр. Для некоторого пробного значения k может быть решена задача Коши, например, методом Рунге-Кутты. Полученное решение будет зависеть от значения параметра . Мы хотим найти такое значение параметра, чтобы выполнялось условие . Фактически мы свели исходную задачу к задаче решения трансцендентного уравнения с таблично заданной функцией. Если найдены такие значения параметра k1 и k2, что , то дальнейшее уточнение значения параметра можно проводить методом деления отрезка пополам[6].
Видео:Интегральные уравнения Фредгольма второго рода Случай вырожденного ядра Неоднородный случайСкачать
2.3. Метод Эйлера для дифференциальных уравнений первого порядка
Решим задачу Коши для дифференциального уравнения первого порядка методом Эйлера.
Пусть правая часть уравнения равна
Зададим границы изменения x:
Зададим число точек и величину шага:
Зададим начальные условия:
Вычислим x и y по формулам Эйлера
Представим результат графически и сравним его с аналитическим решением
Точное аналитическое решение и решение, полученное численно, отличаются в точке x=1 на
То есть относительная ошибка составляет
Видео:Метод определителей ФредгольмаСкачать
2.4. Решение дифференциальных уравнений второго порядка
В качестве примера решим задачу о гармоническом осцилляторе, для которого известно аналитическое решение, и легко может быть оценена точность вычислений. Дифференциальное уравнение второго порядка
преобразуем к системе из двух дифференциальных уравнений первого порядка
Пусть декремент затухания
Пусть циклическая частота
Зададим начальные условия
y0 соответствует начальной координате, а – начальной скорости. Зададим теперь матрицу D. С учетом того, что искомая величина соответствует нулевому элементу массива , ее первая производная – первому, а вторая – второму, имеем
Представим результаты расчета на графике и сравним их с аналитическим решением
Для контроля точности вычислений нарисуем фазовую траекторию (зависимость смещения от скорости). Для гармонического осциллятора фазовая траектория должна иметь вид эллипса.
Примечание: Mathcad имеет еще две функции для решения задачи Коши. Это функции Rkadapt и Bulstoer. Эти функции имеют те же самые аргументы и возвращают решения в такой же форме, что и функция rkfixed. Первая из этих функций использует метод Рунге–Кутты с переменным шагом, что позволяет повысить точность вычислений и сократить их объем, если искомое решение имеет области, где ее значения меняются быстро, и области плавного изменения. Функция Rkadapt будет варьировать величину шага в зависимости от скорости изменения решения[7].
Функция Bulstoer реализует иной численный метод – метод Булирша–Штёра. Ее следует применять, если известно, что решение является гладкой функцией.
Видео:Дополнительные главы ИДУ: Интегральные уравнения Фредгольма первого рода| Занятие 10Скачать
Глава III Численные методы решения интегральных уравнений.
Интегральное уравнение в достаточно общем виде можно записать в следующей форме:
,
где D — некоторая область n-мерного пространства;
x — неизвестная функция, зависящая от времени;
K — функция относительно x(линейная или нелинейная).
Далее мы ограничим рассмотрение одномерным линейными интегральными уравнениями, в которой функция x(t) является функцией, зависящей от одной переменной, а область D – отрезком конечной длины, в каждой точке которого подъинтегральная функция K(t, s,x(s)) представима в виде Q(t, s)x(s).
Классификация типов линейных интегральных уравнений приводится по виду верхней границы интеграла в : если верхняя граница интегрирования является постоянной, то уравнение называется уравнением Фредгольма, если переменной — уравнением Вольтерры, которые, в свою очередь, подразделяются на уравнения первого и второго рода[8]. На практике наиболее широко применяются линейные интегральные уравнения второго рода:
,
,
где f(t) – неизвестная функция;
x(t)- решение уравнения;
Q(t, s)- ядро интегрального уравнения.
Ядро интегрального уравнения Фредгольма определяется на множестве точек квадрата [a, b]x[a, b],уравнения Вольтерры – в треугольнике .
Отметим, что доопределив ядро Q(t, s) уравнения Вольтерры нулем, в треугольнике уравнение Вольтера можно считать уравнением Фредгольма и применять для его решения методы уравнения Фредгольма. Однако при этом могут быть упущены некоторые специфические особенности уравнения Вольтерры, что определяет необходимость их раздельного рассмотрения[9].
Дополнительный множитель , который может быть отнесен к интегральному ядру, введен для придания уравнениям более общего вида. Существуют теоремы устанавливающие существование решений интегральных уравнений при различных значениях , которые доказываются подобно тому, как это делается в теории линейных ДУ, через рассмотрение соответствующих однородных уравнений .
Значительно более сложной задачей оказывается задача доказательства существования, единственности и непрерывной зависимости решений от функции для интегральных уравнений первого рода:
,
,
относящиеся к классу некорректных задач.
Уравнения первого и второго рода можно записать в общем виде, используя функцию h(t), тождественно равную нулю для уравнений первого рода и единице — для уравнений второго рода:
.
Когда функция h(t) обращается в ноль в некоторых точках прямоугольника интегрирования, уравнение относится к интегральным уравнениям третьего рода. Уравнения данного типа встречаются в приложениях значительно реже, чем уравнения первых двух типов, значительно менее изучены.
Многие используемые на практике интегральные уравнения имеют ядро, зависящее только от разности t-s. Интегральные уравнения с данным типом ядра называются уравнениями с разностным ядром. Примером данного типа является уравнение, полученное в задаче Абеля[10].
Если Q(t, s) и f(t) – непрерывные функции, то при любых значениях параметра непрерывное решение уравнения Вольтерры второго рода существует, и оно единственное. Для уравнения Фредгольма второго рода при тех же требованиях единственное непрерывное решение существует, например, при условии, что
При снижении требований к гладкости возможных решений условие ослабляется. Например, для функций, интегрируемых с квадратом, в роли достаточного условия фигурирует неравенство
Известны формулы (или совокупность формул), позволяющие найти точное решение x(t). Например, решение уравнения Вольтерры, с с мультипликативным ядром
вычисляется по формуле :
Решение уравнения Фредгольма с вырожденным ядром
,
где числа — решения системы линейных алгебраических уравнений
(1)
;
.
Условие существования и единственности решения уравнения Фредгольма с вырожденным ядром, очевидно. Зависит от значения определителя D() системы линейных алгебраических уравнений (1), называемого определителем Фредгольма. Если D()≠0, то решение существует и единственно.
Наличие методов нахождения точного решения интегрального уравнения с вырожденным ядром позволяет построить приближенный метод, в основе которого лежит замена одного уравнения другим, ядро которого вырождено и в некотором смысле близко к ядру исходного уравнения. Данная замена ядра опирается на различные способы локальной аппроксимации функций, зависящих от двух переменных. Помимо упомянутого выше метода замены ядра на вырожденно, известен ряд других приближенно-аналитических методов решения интегральных уравнений, например, метод последовательных приближений, метод моментов и другие.
Далее мы рассмотрим численные методы решения интегральных уравнений, в основе которого лежит замена интеграла в интегральном уравнении конечной суммой, используя какую-либо квадратурную формулу. Это позволяет свести решение исходной задачи к решению системы линейных алгебраических уравнений, число которых определяется числом узлов временной сетки. Методы решения интегральных уравнений, основанные на данном подходе, называются квадратурными методами или методами конечных сумм.
Преимущество данных методов состоит в простоте их реализации. Отметим, что без каких-либо изменений данные методы можно применять для решения нелинейных интегральных уравнений, имея в виду, что в этом случае приходится решать систему нелинейных алгебраических уравнений.
Видео:Курс по ИДУ: Интегральные уравнения Фредгольма с вырожденным ядром | Занятие 7Скачать
3.1. Квадратурный метод решения интегральных уравнений Фредгольма.
Заменим определенный интеграл
,
его приближенным значением, вычисляемым с помощью квадратурной формулы:
,
где j=1,2,…,n – номера узлов временной сетки; — весовые коэффициенты квадратурной формулы.
Подставив правую часть приближенного равенства с вместо интеграла в уравнение Фредгольма второго рода, получим
Данное выражение задает функцию, описывающую приближенное решение интегрального уравнения
,
Введем на отрезке [a, b] дискретную временную сетку узлы которой совпадают с узлами сетки . Для каждого момента времени выполняется равенство
,
И запишем равенство в виде системы n — линейных алгебраических уравнений с n неизвестными:
для решения, которой можно использовать любой из методов решения систем линейных алгебраических уравнений.
Таким образом, нахождение решения уравнения Фредгольма второго рода осуществляется в соответствии со следующим алгоритмом.
1. Задать временную сетку
2. Вычислить значение функции f(x) в узлах временной сетки.
3. Вычислить элементы матрицы, составленной из коэффициентов системы линейных алгебраических уравнений.
4. Решить систему линейных уравнений.
Точность численного решения интегрального уравнения зависит от нескольких факторов: применяемой квадратурной формулы, числа узлов временной сетки, свойств функции Q(t, s). В ряде книг приводятся аналитические выражения, позволяющие оценить максимальную погрешность численного решения при использовании различных вычислительных схем. Однако эти оценки оказываются малопригодными из-за их громоздкости, поэтому на практике используют менее строгий метод контроля точности численного решения — принцип Рунге.
Данный принцип состоит в сравнении численных решений, полученных на временных сетках с шагом 2h и h, в одних и тех же узлах временной сетки. Абсолютное значение разности данных решений характеризует величину погрешности численного решения. Недостаток данного подхода состоит в том, что при данном способе контроля приходится ограничиваться квадратурными формулами, пригодными только для сеток с равномерным шагом[11].
Важно понимать, что необходимо согласовывать выбор конкретной квадратурной формулы (точнее порядок ее точности) со степенью гладкости ядра интегрального уравнения. Если ядро и свободный член оказываются недостаточно гладкими, то для вычисления интеграла не следует применять высокоточные квадратуры, а лучше ограничиться такими формулами, как формулы трапеций и прямоугольников.
Видео:Курс по ИДУ: Интегральные уравнения Фредгольма с симметричным ядром | Занятие 8Скачать
3.2. Квадратурный метод решения интегральных уравнений Вольтерры.
Так как параметр λ в линейных интегральных уравнениях Вольтерры, в отличие от уравнения Фредгольма, не несет такой нагрузки, положим его равным единице и будем численно решать уравнение
,где
Учитывая что уравнение Вольтерры формально можно считать уравнением Фредгольма вида:
,
K(t, s)=
для нахождения решения рассматриваемого уравнения воспользуемся результатами предыдущей главы.
Введем в рассмотрение временную сетку из [a, b], сотоящую из n узлов, и выберем конкретную квадратурную с весами , тогда приближенное решение интегрального уравнения принимает вид
,
Составим систему линейных алгебраических уравнений, аналогичную системе (1), которая в силу свойств ядра интегрального уравнения вырождается в треугольную:
Из данной системы видно, что искомые значения находятся последовательными вычислениями по следующим формулам:
где i=2,…,n.
Видео:Простейшие интегральные уравненияСкачать
Глава IV. Прикладные задачи, использующие решение интегральных уравнений.
Видео:Интегральные уравнения ВольтерраСкачать
4.1. Расчет теплоизоляции.
По стальному горизонтальному трубопроводу () внутренний и наружный диаметр которого , соответственно, движется вода со средней скоростью . Средняя температура воды . Трубопровод покрыт равномерным по толщине слоем теплоизолирующего материала (асбест, ) и охлаждается посредством естественной конвекции сухим воздухом с температурой .
Определить наружный диаметр изоляции , при котором на внешней поверхности изоляции устанавливается температура . Определить: линейный коэффициент теплопередачи от воды к воздуху ; потери теплоты с одного метра длины трубопровода ; температуру наружной поверхности стального трубопровода . Наружный диаметр изоляции должен быть рассчитан с такой точность, чтобы температура отличалась от заданной не более чем на 0.1 K.
Упрощающие предположения: течение воды в трубе является термически стабилизированным; между сталью и асбестом существует идеальный тепловой контакт; теплопроводности стали и асбеста не зависят от температуры[12].
Вывод расчетных соотношений
Расчетная модель — бесконечная цилиндрическая труба, режим стационарный, объемных источников тепла в трубе нет. Уравнение теплопроводности имеет вид:
В цилиндрической системе координат получаем:
Граничные условия (закон Ньютона — Рихмана):
(положительным считается тепловой поток, идущий от центра )
Произведем замену переменных: ( ), (), тогда
()
()
где , ,.
(т. к. ). Тогда:
,
C другой стороны:
Приравнивая выражения для , находим постоянную K:
Тепловой поток, проходящий через стенку трубы на единице длины:
где
т. е. , где — линейный коэффициент теплопередачи
Окончательные расчетные формулы для определения температур (с учетом того, что ) имеют вид:
Для определения коэффициентов теплопередачи используются эмпирические формулы для переходного режима течения ():
, где .
Поскольку , а теплофизические свойства воды меняются с температурой не очень сильно, то и можно взять при температуре и считать, что . Тогда имеем:
Аналогично для естественной конвекции:
, где ,
Теплофизические свойства воды и воздуха берутся из книги [“Задачник по технической термодинамике и теории тепломассообмена” Под. ред. и Петражицкого , “Высшая школа” , 1986].
Задача решается методом последовательных приближений, первое приближение , последующие приближения находятся из соотношения:
на каждом шаге производя уточнение и до тех пор, пока относительная температура , вычисленная по формуле не станет равна заданному значению с точностью .
4.2. Фильтр Калмана.
Представим себе некоторую систему, состояние которой в любой момент времени однозначно характеризуется определенным набором величин (например, координаты, скорости, уровни напряжения и т. д.), как правило, недоступных для непосредственного определения. Говоря терминами векторной алгебры, эти величины являются элементами вектора состояния системы, отнесенного к заданному моменту времени. Кроме того, имеется ряд переменных, некоторым образом связанных с состоянием системы, которые можно измерить с заданной точностью; такие величины составляют вектор измерений, относящихся к определенному моменту времени. Алгоритм фильтра Калмана позволяет в реальном времени построить оптимальную оценку состояния системы, основываясь на измерениях, неизбежно содержащих погрешности; при этом вектор измерений рассматривается в качестве многомерного выходного сигнала системы, отягощенного шумом, а вектор состояния — неизвестный многомерный сигнал, подлежащий определению. Условием оптимальности построенной оценки состояния является минимум ее средней квадратической ошибки[13].
Указанный критерий признан наиболее общим; доказано, что применение множество других подобных условий (например, среднее арифметическое некоторой непрерывно возрастающей, симметричной функции, такой как абсолютная величина) приводит к тому же решению (функция модуля не обладает непрерывной производной, что существенно затрудняет ее применение в алгоритмах минимизации). Фильтр Калмана явился существенным усовершенствованием своего предшественника — алгоритма, позволяющего с помощью метода наименьших квадратов выделять скалярный сигнал из шума с неизменными статистическим характеристиками, предложенного в 40-х годах XX столетия Н. Винером.
Начальными условиями на каждом новом цикле алгоритма служат оценка состояния системы и величина, характеризующая ее погрешность. В случае скалярной переменной такой характеристикой является дисперсия, которая тем больше, чем сильнее разброс индивидуальных значений относительно истинного. Распространенная оценка дисперсии — среднеквадратическое отклонение, то есть квадрат стандартного отклонения, — выражает степень разброса величины относительно среднего. Обобщением дисперсии для вектора, то есть совокупности скалярных величин, служит ковариационная матрица. Ее диагональные элементы являются дисперсиями соответствующих составляющих вектора, а недиагональные — ковариациями, характеризующими взаимосвязь между парой составляющих. Совокупность измерений, отнесенных к каждому из моментов времени, обобщает вектор измерений. Алгоритм последовательно обрабатывает вновь поступающие векторы измерений, учитывая при этом значения, вычисленные на предшествующем цикле. Эта особенность отличает алгоритм фильтра Калмана от нерекуррентных алгоритмов, которым для работы требуется хранить весь массив обрабатываемых данных[14].
На следующем шаге с помощью обрабатываемых на данном цикле измерений уточняются начальные условия. Для этого алгоритм вычисляет вес поправок к ним на основе ковариационных матриц оценки состояния и измерений. Чем меньшей погрешностью характеризуются измерения по сравнению с оценкой состояния системы, тем больший вес они получат. Относительные веса неизвестных, определяющих вектор состояния системы, зависят от степени их влияния на вектор измерений: больший вес получат те переменные, вклад которых в измерения больше.
Уточнение начальных условий на основе поступивших на данном цикле измерений, в общем случае, приводит к уменьшению неопределенности в оценке состояния системы. Исправленные таким образом начальные условия и являются выходными данными фильтра Калмана на каждом цикле. На заключительном этапе работы алгоритма происходит подготовка к поступлению нового вектора измерений. На основе заданного линейного преобразования, связывающего последующий вектор состояния с предыдущим, прогнозируется оценка состояния системы, отнесенная к моменту следующего измерения. При построении ковариационной матрицы прогнозируемого вектора состояния фильтром Калмана учитывается возможность искажения модели, описывающей поведение системы, некоторым случайным процессом с известными статистическими параметрами. Поскольку конкретные значения возмущающего эффекта не могут быть известны, данное обстоятельство способствует повышению неопределенности прогноза[15].
По мере последовательной обработки новых измерений происходит накопление фильтром полезной информации, поэтому если элементы вектора состояния уверенно выражаются через измеренные величины, то суммарная погрешность оценок, как правило, должна снижаться. Однако поскольку вместе с улучшением точности оценок на этапе их уточнения имеет место ее снижение при построении прогноза, то эти тенденции, компенсируя друг друга, в последствии приведут к стабилизации неопределенности, характеризующей оценку состояния системы. В случае отсутствия фактора, вносящего возмущения в процесс перехода системы из одного состояния в другое, погрешность оценок в итоге достигнет нуля. Изменяющаяся в процессе работы алгоритма степень неопределенности оценки состояния системы влечет за собой и изменение весов, вычисляемых на втором шаге; данное обстоятельство выделяет фильтр Калмана как алгоритм с переменными весами.
Если состояние рассматриваемой системы неизменно, то алгоритм фильтра Калмана сводится к последовательной форме классического метода наименьших квадратов, в котором матрица, обратная ковариационной, выступает в качестве весовой. Другими словами, фильтр Калмана является, по существу, рекуррентным способом решения задачи уравнивания по методу наименьших квадратов. Данная задача впервые решена в 1795 году, результаты были опубликованы в работе 1809 года под названием “Теория движения небесных тел”, в которой он применил метод наименьших квадратов к определению элементов орбит небесных тел (см. раздел “Замечания Гаусса”). Все изложенные в этой работе положения, касающиеся эффективности применения данного метода при обработке результатов измерений в равной степени относятся и к фильтру Калмана.
Применение фильтра Калмана в спутниковой навигационной аппаратуре.
Когда применение инерциальной навигационной системы становится нецелесообразным, как, например, в одиночных GPS приёмниках, ее заменяют уравнениями движения объекта, навигационные данные которого подлежат определению, с задействованием петли обратной связи. Статистические параметры погрешностей, характеризующие модели состояния системы и измерений в фильтре Калмана, определяются тщательностью составления уравнений движения. Для статичного объекта они тривиальны и строги, однако в более сложных случаях неизбежны упрощения, которые приводят к накоплению погрешностей и значительному снижению точности по сравнению с опорной траекторией, определяемой инерциальным методом. Преимущество подобной схемы применения фильтра Калмана по сравнению с обычным решением задачи определения координат по методу наименьших квадратов кроется в сглаживании выбросов случайных ошибок спутникового метода, что уменьшает их влияние на результаты навигационных определений.
Разработка навигационной системы, содержащей в своем составе фильтр Калмана, независимо от типа применяемого оборудования (инерциальная или спутниковая аппаратура, прочие устройства) заставляет учитывать ряд особенностей. Часть фильтра, занимающаяся ковариационным анализом, не требует для своей работы ни конкретных значений оценок состояния системы, ни измерений; необходимы только величины, характеризующие их погрешности. Данное свойство используется разработчиком для априорной оценки точности результатов, получаемых посредством того или иного вида аппаратуры, и тем самым позволяет осуществить выбор подходящего оборудования. В некоторых случаях приходится предварительно реализовывать алгоритм на компьютере и проверять его работу с различными начальными условиями. Далее с помощью методов статистического анализа следует убедиться в том, что реализованная в фильтре модель измерений соответствует своему реальному прототипу. Наконец, когда построенный фильтр удовлетворит всем требованиям, необходимо провести серию заключительных испытаний для оценки адекватности выбранного способа линеаризации задачи и локализации возможных ошибок вычислительного характера. В большинстве случаев расширенный вариант алгоритма с замкнутым контуром обратной связи позволяет значительно снизить нежелательные последствия линеаризации. Ошибки в вычислениях обычно вызваны ограниченной длиной машинного слова и наиболее ярко проявляются в ковариационных матрицах, которые становятся либо несимметричными, либо имеют отрицательные диагональные элементы, вследствие чего нарушается правильная работа фильтра Калмана. Влияние этого источника погрешностей можно снизить, удерживая большее число значащих цифр при вычислениях или применив численный алгоритм, менее чувствительный к ошибкам округления.
Алгоритм фильтра Калмана из-за своей кажущейся простоты и легкости реализации до сих пор является основным средством обработки измерений в навигационных системах, использующих спутниковый метод определений. Для установления весов поступающих измерительных данных требуются статистические характеристики их ошибок, а также уравнения, предоставляющие связь переменных, определяющих текущее состояние системы, с измерениями и между собой. Таким образом, фильтр Калмэна является инструментом, позволяющим на основе математической модели системы построить оптимальные оценки системных переменных по выполненным измерениям. К достоинствам алгоритма следует отнести его рекуррентную природу, эффективно проявляющуюся при работе в реальном времени, а также возможность априорной оценки точности получаемых результатов средствами самого алгоритма.
Видео:Резольвента. Как легко решить интегральное уравнениеСкачать
Листинг№1 Численное интегрирование
Видео:Решить интегральное уравнениеСкачать
1. Функция, возвращающая значение интеграла функции помощью метода Симпсона
2. Функция, возвращающая значение интеграла с помощью формулы трапеции.
🎦 Видео
Интегральные уравнения Фредгольма второго рода Случай вырожденного ядря Однородный случайСкачать
Интегральное уравнение ФредгольмаСкачать