Чему равен косинус отрицательного числа уравнение

Косинус
Содержание
  1. Коcинус – одна из тригонометрических функций. Значение косинуса определяется для угла или для числа (в этом случае используют числовую окружность).
  2. Аргумент и значение
  3. Косинус острого угла
  4. Косинус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к гипотенузе.
  5. Косинус острого угла больше (0) и меньше (1)
  6. Косинус числа
  7. Косинус числа можно определить с помощью числовой окружности – косинус числа равен абсциссе соответствующей точки на ней.
  8. Значение косинуса всегда лежит в пределах от (-1) до (1). При этом вычислен косинус может быть для абсолютно любого угла и числа.
  9. Косинус любого угла
  10. Косинус прямого угла равен нулю. Косинус тупого угла — отрицателен.
  11. Знаки косинуса по четвертям
  12. Связь с другими тригонометрическими функциями:
  13. Функция (y=cos)
  14. Арккосинус. Решение уравнения cos x=a
  15. п.1. Понятие арккосинуса
  16. п.2. График и свойства функции y=arccosx
  17. п.3. Уравнение cos⁡x=a
  18. п.4. Формула арккосинуса отрицательного аргумента
  19. п.5. Примеры
  20. Тригонометрические уравнения — формулы, решения, примеры
  21. Простейшие тригонометрические уравнения
  22. Формулы корней тригонометрических уравнений в таблице
  23. Методы решения тригонометрических уравнений
  24. Алгебраический метод.
  25. Разложение на множители.
  26. Приведение к однородному уравнению
  27. Переход к половинному углу
  28. Введение вспомогательного угла
  29. Дробно-рациональные тригонометрические уравнения
  30. 🌟 Видео

Коcинус – одна из тригонометрических функций. Значение косинуса определяется для угла или для числа (в этом случае используют числовую окружность).

Видео:Тригонометрическое уравнение: cos(z)=2, а при чём тут формула Эйлера?Скачать

Тригонометрическое уравнение: cos(z)=2, а при чём тут формула Эйлера?

Аргумент и значение

Чему равен косинус отрицательного числа уравнение

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Косинус острого угла

Косинус острого угла можно определить с помощью прямоугольного треугольника — он равен отношению прилежащего катета к гипотенузе.

1) Пусть дан угол и нужно определить косинус этого угла.

Чему равен косинус отрицательного числа уравнение

2) Достроим на этом угле любой прямоугольный треугольник.

Чему равен косинус отрицательного числа уравнение

3) Измерив, нужные стороны, можем вычислить косинус.

Чему равен косинус отрицательного числа уравнение

Косинус острого угла больше (0) и меньше (1)

Если при решении задачи косинус острого угла получился больше 1 или отрицательным, то значит где-то в решении есть ошибка.

Видео:Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Косинус числа

Косинус числа можно определить с помощью числовой окружности – косинус числа равен абсциссе соответствующей точки на ней.

Числовая окружность позволяет определить косинус любого числа, но обычно находят косинус чисел как-то связанных с Пи : (frac) , (frac) , (-2π).

Например, для числа (frac) — косинус будет равен (frac<sqrt>) . А для числа (-) (frac) он будет равен (-) (frac<sqrt>) (приблизительно (-0,71)).

Чему равен косинус отрицательного числа уравнение

Косинус для других часто встречающихся в практике чисел смотри в тригонометрической таблице .

Значение косинуса всегда лежит в пределах от (-1) до (1). При этом вычислен косинус может быть для абсолютно любого угла и числа.

Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Косинус любого угла

Благодаря числовой окружности можно определять косинус не только острого угла, но и тупого, отрицательного, и даже большего, чем (360°) (полный оборот). Как это делать — проще один раз увидеть, чем (100) раз услышать, поэтому смотрите картинку.

Чему равен косинус отрицательного числа уравнение

Теперь пояснение: пусть нужно определить косинус угла КОА с градусной мерой в (150°). Совмещаем точку О с центром окружности, а сторону ОК – с осью (x). После этого откладываем (150°) против часовой стрелки. Тогда ордината точки А покажет нам косинус этого угла.

Если же нас интересует угол с градусной мерой, например, в (-60°) (угол КОВ), делаем также, но (60°) откладываем по часовой стрелке.

Чему равен косинус отрицательного числа уравнение

И, наконец, угол больше (360°) (угол КОС) — всё аналогично тупому, только пройдя по часовой стрелке полный оборот, отправляемся на второй круг и «добираем нехватку градусов». Конкретно в нашем случае угол (405°) отложен как (360° + 45°).

Чему равен косинус отрицательного числа уравнение

Несложно догадаться, что для откладывания угла, например, в (960°), надо сделать уже два оборота ((360°+360°+240°)), а для угла в (2640°) — целых семь.

Стоит запомнить, что:

Косинус прямого угла равен нулю. Косинус тупого угла — отрицателен.

Видео:Отрицательный аргумент у тригонометрических функций [понять нельзя заучивать]Скачать

Отрицательный аргумент у тригонометрических функций [понять нельзя заучивать]

Знаки косинуса по четвертям

С помощью оси косинусов (то есть, оси абсцисс, выделенной на рисунке красным цветом) легко определить знаки косинусов по четвертям числовой (тригонометрической) окружности:

— там, где значения на оси от (0) до (1), косинус будет иметь знак плюс (I и IV четверти – зеленая область),
— там, где значения на оси от (0) до (-1), косинус будет иметь знак минус (II и III четверти – фиолетовая область).

Чему равен косинус отрицательного числа уравнение

Пример. Определите знак (cos 1).
Решение: Найдем (1) на тригонометрическом круге. Будем отталкиваться от того, что (π=3,14). Значит единица, примерно, в три раза ближе к нулю (точке «старта»).

Чему равен косинус отрицательного числа уравнение

Если провести перпендикуляр к оси косинусов, то станет очевидно, что (cos⁡1) – положителен.
Ответ: плюс.

Видео:Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэСкачать

Как просто запомнить, что такое sin, cos, tg?! #косинус #синус #тангенс #математика #огэ #егэ

Связь с другими тригонометрическими функциями:

синусом того же угла (или числа): основным тригонометрическим тождеством (sin^2⁡x+cos^2⁡x=1)
тангенсом того же угла (или числа): формулой (1+tg^2⁡x=) (frac)
котангенсом и синусом того же угла (или числа): формулой (ctgx=) (frac<cos>)
Другие наиболее часто применяемые формулы смотри здесь .

Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Функция (y=cos)

Если отложить по оси (x) углы в радианах, а по оси (y) — соответствующие этим углам значения косинуса, мы получим следующий график:

Чему равен косинус отрицательного числа уравнение

График данной функции называется косинусоида и обладает следующими свойствами:

— область определения – любое значение икса: (D(cos )=R)
— область значений – от (-1) до (1) включительно: (E(cos )=[-1;1])
— четная: (cos⁡(-x)=cos)
— периодическая с периодом (2π): (cos⁡(x+2π)=cos)
— точки пересечения с осями координат:
ось абсцисс: (() (frac) (+πn),(;0)), где (n ϵ Z)
ось ординат: ((0;1))
— промежутки знакопостоянства:
функция положительна на интервалах: ((-) (frac) (+2πn;) (frac) (+2πn)), где (n ϵ Z)
функция отрицательна на интервалах: (() (frac) (+2πn;) (frac) (+2πn)), где (n ϵ Z)
— промежутки возрастания и убывания:
функция возрастает на интервалах: ((π+2πn;2π+2πn)), где (n ϵ Z)
функция убывает на интервалах: ((2πn;π+2πn)), где (n ϵ Z)
— максимумы и минимумы функции:
функция имеет максимальное значение (y=1) в точках (x=2πn), где (n ϵ Z)
функция имеет минимальное значение (y=-1) в точках (x=π+2πn), где (n ϵ Z).

Видео:ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, КотангенсСкачать

ТРИГОНОМЕТРИЯ | Синус, Косинус, Тангенс, Котангенс

Арккосинус. Решение уравнения cos x=a

п.1. Понятие арккосинуса

В записи (y=cosx) аргумент x — это значение угла (в градусах или радианах), функция y – косинус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному косинусу найти угол. Но одному значению косинуса соответствует бесконечное количество углов. Например, если (cosx=1), то (x=2pi k, kinmathbb); (cosx=0), то (x=fracpi2+pi k, kinmathbb) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором косинус принимает все значения из [-1;1], но только один раз: (0leq xleq pi) (верхняя половина числовой окружности).

(arccosfrac12=fracpi3, arccosleft(-frac<sqrt>right)=frac)
(arccos2) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arccosx

Чему равен косинус отрицательного числа уравнение
1. Область определения (-1leq xleq1) .
2. Функция ограничена сверху и снизу (0leq arccosxleq pi) . Область значений (yin[0;pi])
3. Максимальное значение (y_=pi) достигается в точке x =-1
Минимальное значение (y_=0) достигается в точке x =1
4. Функция убывает на области определения.
5. Функция непрерывна на области определения.

п.3. Уравнение cos⁡x=a

Чему равен косинус отрицательного числа уравнениеЗначениями арккосинуса могут быть только углы от 0 до π (180°). А как выразить другие углы через арккосинус?

Углы в нижней части числовой окружности записывают через отрицательный арккосинус. А углы, которые превышают π по модулю, записывают через сумму арккосинуса и величины, которая ‘не помещается» в область значений арккосинуса.

1) Решим уравнение (cosx=frac12).
Найдем точку (frac12) в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках, соответствующих углам (pmfracpi3) — это базовые корни.
Если взять верхний корень (fracpi3) и прибавить к нему полный оборот (fracpi3+2pi=frac), косинус полученного угла (cosfrac=frac12), т.е. (frac) также является корнем уравнения. Корнями будут и все другие углы вида (fracpi3+2pi k) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида (-fracpi3+2pi k).
Получаем ответ: (x=pmfracpi3+2pi k)

Заметим, что полученный ответ является записью вида
(x=pm arccosfrac12+2pi k)
А т.к. арккосинус для (frac12) точно известен и равен (fracpi3), то мы его и пишем в ответе.
Но так бывает далеко не всегда.

2) Решим уравнение (cosx=0,8)

Чему равен косинус отрицательного числа уравнениеНайдем точку 0,8 в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению верхняя точка – это угол, равный arccos⁡0,8.
Тогда нижняя точка – это тот же угол, но отложенный в отрицательном направлении обхода числовой окружности, т.е. (–arccos⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
(x=pm arccos0,8+2pi k)

п.4. Формула арккосинуса отрицательного аргумента

Докажем полезную на практике формулу для (arccos(-a)).

Чему равен косинус отрицательного числа уравнениеПо построению: $$ begin angle DA’O=angle BAO=angle CAO=90^\ OD=OB=OC=1\ OA’=OA=a end Rightarrow $$ (по катету и гипотенузе) begin Delta DA’O=Delta BAO=Delta CAORightarrow\ Rightarrow angle DOC=angle A’OA-alpha+alpha=angle A’OA=180^=pi\ -arccosa+pi=arccos(-a) end

п.5. Примеры

Пример 1. Найдите функцию, обратную арккосинусу. Постройте графики арккосинуса и найденной функции в одной системе координат.

Для (y=arccosx) область определения (-1leq xleq 1), область значений (0leq yleq pi).
Обратная функция (y=cosx) должна иметь ограниченную область определения (0leq xleq pi) и область значений (-1leq yleq 1).
Строим графики:
Чему равен косинус отрицательного числа уравнение
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) (cos x=-1)
Чему равен косинус отрицательного числа уравнение
(x=pi+2pi k)
б) (cos x=frac<sqrt>)
Чему равен косинус отрицательного числа уравнение
(x=pmfracpi4+2pi k)
в) (cos x=0)
Чему равен косинус отрицательного числа уравнение
(x=pmfracpi2+2pi k=fracpi2+pi k)
г) (cos x=sqrt)
Чему равен косинус отрицательного числа уравнение
(sqrtgt 1, xinvarnothing)
Решений нет
д) (cos x=0,7)
Чему равен косинус отрицательного числа уравнение
(x=pm arccos(0,7)+2pi k)
e) (cos x=-0,2)
Чему равен косинус отрицательного числа уравнение
(x=pm arccos(-0,2)+2pi k)

Пример 3. Запишите в порядке возрастания: $$ arccos0,8; arccos(-0,5); arccosfracpi7 $$

Чему равен косинус отрицательного числа уравнениеСпособ 1. Решение с помощью числовой окружности

Отмечаем на оси косинусов (ось OX) точки с абсциссами 0,8; -0,5; (fracpi7approx 0,45)
Значения арккосинусов (углы) считываются на верхней половине окружности: чем меньше косинус (от 1 до -1), тем больше угол (от 0 до π).
Получаем: (angle A_1OAltangle A_2OAangle A_3OA)
$$ arccos0,8lt arccosfracpi7lt arccos(-0,5) $$Чему равен косинус отрицательного числа уравнениеСпособ 2. Решение с помощью графика (y=arccosx)

Отмечаем на оси OX аргументы 0,8; -0,5; (fracpi7approx 0,45). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арккосинусов по возрастанию: $$ arccos0,8lt arccosfracpi7lt arccos(-0,5) $$Способ 3. Аналитический
Арккосинус – функция убывающая: чем больше аргумент, тем меньше функция.
Поэтому располагаем данные в условии аргументы по убыванию: 0,8; (fracpi7); -0,5.
И записываем арккосинусы по возрастанию: (arccos0,8lt arccosfracpi7lt arccos(-0,5))

Пример 4*. Решите уравнения:
(a) arccos(x^2-3x+3)=0) begin x^2-3x+3=cos0=1\ x^2-3x+2=0\ (x-2)(x-1)=0\ x_1=1, x_2=2 end Ответ:

(б) arccos^2x-arccosx-6=0)
( text -1leq xleq 1 )
Замена переменных: (t=arccos x, 0leq tleq pi)
Решаем квадратное уравнение: $$ t^2-t-6=0Rightarrow (t-3)(t+2)=0Rightarrow left[ begin t_1=3\ t_2=-2lt 0 — text end right. $$ Возвращаемся к исходной переменной: begin arccosx=3\ x=cos3 end Ответ: cos3

(в) arccos^2x-pi arccosx+frac=0)
( text -1leq xleq 1 )
Замена переменных: (t=arccos x, 0leq tleq pi)
Решаем квадратное уравнение: begin t^2-pi t+frac=0\ D=(pi^2)-4cdot frac=frac, sqrt=fracpi3\ left[ begin t_1=frac=fracpi3\ t_2=frac=frac end right. Rightarrow left[ begin arccosx_1=fracpi3\ arccosx_2=frac end right. Rightarrow left[ begin x_1=cosleft(fracpi3right)=frac12\ x_2=cosleft(fracright)=-frac12 end right. end Ответ: (left)

Видео:Интенсив "Физтех за месяц" | Колебательный контурСкачать

Интенсив "Физтех за месяц" | Колебательный контур

Тригонометрические уравнения — формулы, решения, примеры

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Видео:Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)Скачать

Алгебра 10 класс (Урок№41 - Уравнение cos x = a.)

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + pi n, n in Z`

Чему равен косинус отрицательного числа уравнение

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| leq 1` имеет бесконечное множество решений.

Формула корней: `x=pm arccos a + 2pi n, n in Z`

Чему равен косинус отрицательного числа уравнение

Частные случаи для синуса и косинуса в графиках.Чему равен косинус отрицательного числа уравнение

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + pi n, n in Z`

Чему равен косинус отрицательного числа уравнение

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + pi n, n in Z`

Чему равен косинус отрицательного числа уравнение

Видео:Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.Скачать

Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.

Формулы корней тригонометрических уравнений в таблице

Для синуса:Чему равен косинус отрицательного числа уравнениеДля косинуса:Чему равен косинус отрицательного числа уравнениеДля тангенса и котангенса:Чему равен косинус отрицательного числа уравнениеФормулы решения уравнений, содержащих обратные тригонометрические функции:

Чему равен косинус отрицательного числа уравнение

Видео:Решите уравнение ★ cos⁡x+sin⁡x=1 ★ Как решать простые уравнения?Скачать

Решите уравнение ★ cos⁡x+sin⁡x=1 ★ Как решать простые уравнения?

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+frac pi 6)-3sin(frac pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+frac pi 6)-3cos(x+frac pi 6)+1=0`,

делаем замену: `cos(x+frac pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+frac pi 6)=1`, `x+frac pi 6=2pi n`, `x_1=-frac pi 6+2pi n`.

2. `cos(x+frac pi 6)=1/2`, `x+frac pi 6=pm arccos 1/2+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.

Ответ: `x_1=-frac pi 6+2pi n`, `x_2=pm frac pi 3-frac pi 6+2pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =pi n`, `x_1=2pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ pi n`, `x/2=pi/4+ pi n`, `x_2=pi/2+ 2pi n`.

Ответ: `x_1=2pi n`, `x_2=pi/2+ 2pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x ne 0` — для первого случая, и на `cos^2 x ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x ne 0`, получим:

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+pi n`, `n in Z`
  2. `tg x=1`, `x=arctg 1+pi n`, `x_2=pi/4+pi n`, ` n in Z`.

Ответ. `x_1=arctg (-2)+pi n`, `n in Z`, `x_2=pi/4+pi n`, `n in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2pi n`, `n in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2pi n`, `n in Z`.

Ответ. `x_1=2 arctg 2+2pi n, n in Z`, `x_2=arctg 3/4+2pi n`, `n in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `frac a<sqrt >=cos varphi`, ` frac b<sqrt > =sin varphi`, `frac c<sqrt >=C`, тогда:

`cos varphi sin x + sin varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt `, получим:

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos varphi` , `4/5=sin varphi`. Так как `sin varphi>0`, `cos varphi>0`, то в качестве вспомогательного угла возьмем `varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos varphi sin x+sin varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`x+varphi=(-1)^n arcsin 2/5+ pi n`, `n in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ pi n`, `n in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `frac =1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x ne 0`, `cos x ne -1`, ` x ne pi+2pi n, n in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=pi n`, `n in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=pi /2+2pi n, n in Z`.

Учитывая, что ` x ne pi+2pi n, n in Z`, решениями будут `x=2pi n, n in Z` и `x=pi /2+2pi n`, `n in Z`.

Ответ. `x=2pi n`, `n in Z`, `x=pi /2+2pi n`, `n in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

🌟 Видео

27 1 Уравнение cos x = aСкачать

27 1 Уравнение cos x = a

Уравнение косинус. Арккосинус. Видеоурок 28. Алгебра 10 классСкачать

Уравнение косинус. Арккосинус. Видеоурок 28. Алгебра 10 класс

ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИСкачать

ЗНАЧЕНИЯ СИНУСА И КОСИНУСА НА ОКРУЖНОСТИ

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать

КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=A

Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решенияСкачать

Решите уравнение ➜ sin⁡x+cos⁡x=1 ➜ 2 способа решения

Как запомнить значения синусов и косинусов?! #математика #синус #косинус #геометрия #егэ #shortsСкачать

Как запомнить значения синусов и косинусов?! #математика #синус #косинус #геометрия #егэ #shorts

Теорема косинусов из ОГЭСкачать

Теорема косинусов из ОГЭ
Поделиться или сохранить к себе: