- п.1. Понятие арксинуса
- п.2. График и свойства функции y=arcsinx
- п.3. Уравнение sinx=a
- п.4. Примеры
- Арксинус. Решение простейших уравнений с синусом. Часть 2
- Арксинусом числа (a) ((a∈[-1;1])) называют число (x∈[-frac;frac]) синус которого равен (a) т.е.
- Как вычислить арксинус?
- Чтобы вычислить арксинус — нужно ответить на вопрос: синус какого числа (лежащего в пределах от (-frac) до (frac) ) равен аргументу арксинуса?
- Зачем нужен арксинус? Решение уравнения (sin x=a)
- Если (sin x) равен не табличному значению между (1) и (-1), то решения будут выглядеть как: ( left[ beginx= arcsin a +2πn, n∈Z\ x=π- arcsin a +2πl, l∈Zendright.)
- Арксинус отрицательного числа
- Арксинус и решение уравнения sin x = a
- План-конспект урока в 10-м классе по теме «Арксинус. Решение уравнения sin x = a»
- Ход урока
- Провести анализ урока:
- 🔥 Видео
п.1. Понятие арксинуса
В записи (y=sinx) аргумент x — это значение угла (в градусах или радианах), функция y – синус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному синусy найти угол. Но одному значению синусa соответствует бесконечное количество углов. Например, если (sinx=1), то (x=fracpi2+2pi k, kinmathbb); если (sinx=0), то (x=pi k, kinmathbb) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором синус принимает все значения из [-1;1], но только один раз: (-fracpi2 leq xleq fracpi2) (правая половина числовой окружности).
(arcsinfrac12=fracpi6, arcsinleft(-frac<sqrt>right)=-frac)
(arcsin2) – не существует, т.к. 2> 1
п.2. График и свойства функции y=arcsinx
1. Область определения (-1leq xleq1) .
2. Функция ограничена сверху и снизу (-fracpi2leq arcsinxleq fracpi2) . Область значений (yin[-fracpi2; fracpi2])
3. Максимальное значение (y_=fracpi2) достигается в точке x=1
Минимальное значение (y_=-fracpi2) достигается в точке x =-1
4. Функция возрастает на области определения.
5. Функция непрерывна на области определения.
6. Функция нечётная: (arcsin(-x)=-arcsin(x)) .
п.3. Уравнение sinx=a
Значениями арксинуса могут быть только углы от (-fracpi2) до (fracpi2) (от -90° до 90°). А как выразить другие углы через арксинус? |
Углы в левой части числовой окружности записывают как разность π и арксинуса (угла справа). А остальные углы, которые превышают π по модулю, записывают через сумму арксинуса и величин, которые «не помещаются» в область значений арксинуса.
1) Решим уравнение (sinx=frac12).
Найдем точку (frac12) в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через через эту точку. Он пересечёт числовую окружность в двух точках, соответствующих углам (fracpi6) и (frac) — это базовые корни.
Если взять корень справа (fracpi6) и прибавить к нему полный оборот (fracpi6+2pi=frac), синус полученного угла (sinfrac=frac12), т.е. (frac) также является корнем уравнения. Корнями будут и все другие углы вида (fracpi6+2pi k) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида (frac+2pi k).
Получаем ответ: (x_1=fracpi6+2pi k) и (x_2=frac+2pi k)
Заметим, что (arcsinfrac12=fracpi6). Полученный ответ является записью вида
(x_1=arcsinfrac12+2pi k) и (x_2=pi-arcsinfrac12+2pi k)
А т.к. арксинус для (frac12) точно известен и равен (fracpi6), то мы его просто подставляем и пишем ответ. Но так бывает далеко не всегда.
2) Решим уравнение (sinx=0,8)
Найдем точку 0,8 в числовой окружности на оси синусов (ось OY). Построим горизонталь – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках. По определению правая точка – это угол, равный arcsin0,8. Тогда левая точка – это разность развернутого угла и арксинуса, т.е. (π–arcsin0,8). Добавление или вычитание полных оборотов к каждому из решений даст другие корни. Получаем ответ: (x_1=arcsin0,8+2pi k,) (x_2=pi-arcsin0,8+2pi k) |
Докажем, что семейства решений для корней справа и слева можно записать одним выражением (x=(-1)^k arcsina+pi k).
Действительно, для чётных (k=2n) получаем: $$ x=(-1)^ arcsina+pi cdot 2n=arcsina+2pi n $$ это семейство решений для корня справа (с добавлением и вычитанием полных оборотов).
Для нечётных (k=2n+1):
$$ x=(-1)^ arcsina+pi cdot (2n+1)=-arcsina+2pi n +pi=pi-arcsina+2pi n $$ это семейство решений для корня слева (с добавлением и вычитанием полных оборотов).
Обратное преобразование двух семейств решений в общую запись аналогично.
Следовательно: $$ x=(-1)^k arcsina+pi kLeftrightarrow left[ begin x=arcsina+2pi n\ x=pi-arcsina+2pi n end right. $$ Что и требовалось доказать.
Для примеров, решённых выше, можем записать: $$ 1) left[ begin x_1=fracpi6+2pi k\ x_2=frac+2pi k end right. Leftrightarrow x=(-1)^kfracpi6 +pi k $$
$$ 2) left[ begin x_1=arcsin0,8+2pi k\ x_2=pi-arcsin0,8+2pi k end right. Leftrightarrow x=(-1)^karcsin0,8 +pi k $$ Выбор общей или раздельной записи решения зависит от задачи.
Как правило, если ответ еще не найден, и нужны дальнейшие преобразования, решение записывают как два раздельных семейства.
Если же просто нужно записать ответ, то пишут общее выражение.
п.4. Примеры
Пример 1. Найдите функцию, обратную арксинусу. Постройте графики арксинуса и найденной функции в одной системе координат.
Для (y=arcsinx) область определения (-1leq xleq 1), область значений (-fracpi2leq yleq fracpi2).
Обратная функция (y=sinx) должна иметь ограниченную область определения (-fracpi2leq xleq fracpi2) и область значений (-1leq yleq 1).
Строим графики:
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.
Пример 2. Решите уравнения:
a) (sin x=-1) (x=-fracpi2+2pi k) | б) (sin x=frac<sqrt>) $$ left[ begin x_1=fracpi4+2pi k\ x_2=frac+2pi k end right. Leftrightarrow x=(-1)^frac +pi k $$ |
в) (sin x=0) (x=pi k) | г) (sin x=sqrt) (sqrtgt 1, xinvarnothing) Решений нет |
д) (sin x=0,7) begin left[ begin x_1=arcsin(0,7)+2pi k\ x_2=pi-arcsin(0,7)+2pi k end right. Leftrightarrow\ Leftrightarrow x=(-1)^k arcsin(0,7) +pi k end | e) (sin x=-0,2) Арксинус нечетный, поэтому: $$ srcsin(-0,2)=-arcsin(0,2) $$ Получаем: begin left[ begin x_1=-arcsin(0,2)+2pi k\ x_2=pi+arcsin(0,7)+2pi k end right. Leftrightarrow\ Leftrightarrow x=(-1)^arcsin(0,2) +pi k end |
Пример 3. Запишите в порядке возрастания: $$ arcsin0,2; arcsin(-0,7); arcsinfracpi4 $$
Способ 1. Решение с помощью числовой окружности |
Отмечаем на оси синусов (ось OY) точки с абсциссами 0,2; -0,7; (fracpi4approx 0,79)
Значения синусов (углы) считываются на правой половине окружности: чем больше синус (от -1 до 1), тем больше угол (от (-fracpi2) до (fracpi2)).
Получаем: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$
Отмечаем на оси OY аргументы 0,2; -0,7; (fracpi4approx 0,79). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арксинусов по возрастанию: $$ arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4 $$
Арксинус – функция возрастающая: чем больше аргумент, тем больше функция.
Поэтому располагаем данные в условии аргументы по возрастанию: -0,7; 0,2; (fracpi4).
И записываем арксинусы по возрастанию: (arcsin(-0,7)lt arcsin0,2lt arcsinfracpi4)
Пример 4*. Решите уравнения:
(a) arcsin(x^2-3x+3)=fracpi2) begin x^2-3x+3=sinfracpi2=1\ x^2-3x+2=0\ (x-2)(x-1)=0\ x_1=1, x_2=2 end Ответ:
(б) arcsin^2x-arcsinx-2=0)
( text -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: $$ t^2-t-2=0Rightarrow (t-2)(t+1)=0Rightarrow left[ begin t_1=2gt fracpi2 — text\ t_2=-1 end right. $$ Возвращаемся к исходной переменной: begin arcsinx=-1\ x=sin(-1)=-sin1 end Ответ: -sin1
(в) arcsin^2x-pi arcsinx+frac=0)
( text -1leq xleq 1 )
Замена переменных: (t=arcsin x, -fracpi2leq tleq fracpi2)
Решаем квадратное уравнение: begin t^2-pi t+frac=0\ D=(-pi)^2-4cdot frac=frac, sqrt=fracpi3 Rightarrow left[ begin t_1=frac=fracpi3\ t_2=frac=fracgt fracpi2 — text end right. end Возвращаемся к исходной переменной:
begin arcsinx=fracpi3\ x=sinfracpi3=frac<sqrt> end Ответ: (frac<sqrt>)
Видео:Арксинус. Решение уравнения sin t = a | Алгебра 10 класс #27 | ИнфоурокСкачать
Арксинус. Решение простейших уравнений с синусом. Часть 2
Арксинусом числа (a) ((a∈[-1;1])) называют число (x∈[-frac;frac]) синус которого равен (a) т.е.
Проще говоря, арксинус обратен синусу.
На круге это выглядит так:
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Как вычислить арксинус?
Чтобы вычислить арксинус — нужно ответить на вопрос: синус какого числа (лежащего в пределах от (-frac) до (frac) ) равен аргументу арксинуса?
Например, вычислите значение арксинуса:
а) Синус какого числа равен (-frac)? Или в более точной формулировке можно спросить так: если (sin x=-frac), то чему равен (x)? Причем, обратите внимание, нам нужно такое значение, которое лежит между (-frac) и (frac). Ответ очевиден:
б) Синус какого числа равен (frac<sqrt>)? Кто-то вспоминает тригонометрический круг, кто-то таблицу, но в любом случае ответ (frac).
в) Синус от чего равен (-1)?
Иначе говоря, (sin x=-1), (x=) ?
Тригонометрический круг со всеми стандартными арксинусами:
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Зачем нужен арксинус? Решение уравнения (sin x=a)
Чтобы понять зачем придумали арксинус, давайте решим уравнение: (sin x=frac).
Это не вызывает затруднений:
Внимание! Если вдруг затруднения всё же были, то почитайте здесь о решении простейших уравнений с синусом.
А теперь решите уравнение: (sin x=frac).
Что тут будет ответом? Не (frac), не (frac), даже не (frac) — вообще никакие привычные числа не подходят, однако при этом очевидно, что решения есть. Но как их записать?
Вот тут-то на помощь и приходит арксинус! Значение правой точки равно (arcsinfrac), потому что известно, что синус равен (frac). Длина дуги от (0) до правой точки тогда тоже будет равна (arcsinfrac). Тогда чему равно значение второй точки? С учетом того, что правая точка находится на расстоянии равному (arcsinfrac) от (π), то её значение составляет (π- arcsinfrac).
Ок, значение этих двух точек нашли. Теперь запишем полный ответ: ( left[ beginx=arcsin frac+2πn, n∈Z\ x=π-arcsin frac+2πl, l∈Zendright.) Без арксинусов решить уравнение (sin x=frac) не получилось бы. Как и уравнение (sin x=0,125), (sin x=-frac), (sin x=frac<sqrt>) и многие другие. Фактически без арксинуса мы можем решать только (9) простейших уравнений с синусом:
С арксинусом – бесконечное количество.
Пример. Решите тригонометрическое уравнение: (sin x=frac<sqrt>).
Решение:
Пример. Решите тригонометрическое уравнение: (sin x=frac<sqrt>).
Решение:
Кто поторопился написать ответ ( left[ beginx=arcsin frac<sqrt>+2πn, n∈Z\ x=π-arcsin frac<sqrt>+2πl, l∈Zendright.), тот на ЕГЭ потеряет 2 балла. Дело в том, что в отличии от прошлых примеров (arcsin frac<sqrt>) — вычислимое значение, но чтобы это стало очевидно нужно избавиться от иррациональности в знаменателе аргумента. Для этого умножим и числитель и знаменатель дробь на корень из двух (frac<sqrt> = frac<1 cdot sqrt> <sqrtcdot sqrt>= frac<sqrt>). Таким образом, получаем:
Значит в ответе вместо арксинусов нужно написать (frac).
Пример. Решите тригонометрическое уравнение: (sin x=frac).
Решение:
И вновь тот, кто поторопился написать ( left[ beginx= arcsin frac+2πn, n∈Z\ x=π- arcsinfrac+2πl, l∈Zendright.) на ЕГЭ потеряет (2) балла. Что не так? – спросите вы. Ведь точно не табличное значение, почему нельзя написать (arcsinfrac)? Пролистайте до самого верха, туда, где было определение арксинуса. Там написана маленькая, но очень важная деталь – аргумент арксинуса должен быть меньше или равен (1) и больше или равен (-1). Ведь синус не может выходить за эти пределы! И если решить уравнение с помощью круга, а не бездумно пользоваться готовыми формулами, то станет очевидно, что у такого уравнения решений нет.
Думаю, вы уловили закономерность.
Если (sin x) равен не табличному значению между (1) и (-1), то решения будут выглядеть как: ( left[ beginx= arcsin a +2πn, n∈Z\ x=π- arcsin a +2πl, l∈Zendright.)
Видео:10 класс - Алгебра - Арксинус. Решение уравнения sin t = aСкачать
Арксинус отрицательного числа
Прежде чем научиться решать тригонометрические уравнения с отрицательным синусом советую запомнить формулу:
Если хотите понять логику этой формулы, внимательно рассмотрите картинку ниже:
Удивил последний пример? Почему в нем формула не работает? Потому что запись (arcsin(-frac<sqrt>)) в принципе неверна, ведь (-frac<sqrt> Синус
Тригонометрические уравнения
Видео:Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
Арксинус и решение уравнения sin x = a
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На уроке по теме «Арксинус и решение уравнения sin x=a» рассматривается понятие арксинуса числа, который можно вычислять по графику и на единичной окружности, и решается уравнение sin x=a.
Видео:10 класс. Решение уравнений sin x = aСкачать
План-конспект урока в 10-м классе по теме «Арксинус. Решение уравнения sin x = a»
Разделы: Математика
Цели урока:
- вывести общую формулу решений уравнения ;
- сформировать навык решения уравнения
- дать определение арксинуса.
Задачи урока:
- формирование умения решать данные уравнения;
- создание условий, способствующих воспитанию у учащихся внимательности и аккуратности в решении уравнения.
Тип урока: модульный урок.
Формы контроля: самопроверка самостоятельно решённых задач, проверка самостоятельной работы учителем на оценку.
Оборудование: ноутбук, мультимедийный проектор, экран.
План урока:
- мотивационная беседа, завершающаяся постановкой интегрирующей цели урока;
- входной контроль (повторение изученного ранее материала);
- работа с новым материалом;
- закрепление изученного материала;
- завершающий контроль (проверка усвоенного на уроке материала);
- рефлексия.
Видео:Уравнение sinx=aСкачать
Ход урока
В тригонометрии важное место уделено решению тригонометрических уравнений. Методов решения тригонометрических уравнений несколько, но невозможно будет их решить, не умея решать простейшие. Уравнения с косинусом учащиеся уже умеют решать, на данном уроке познакомить их с уравнениями, содержащими синус. Для решения простейших тригонометрических уравнений используется трёхшаговый алгоритм:
- составить общую формулу;
- вычислить значение арксинуса (арккосинуса);
- подставить найденное значение в общую формулу.
Вспомнить формулу для решения уравнения с косинусом и предложить учащимся выполнить самостоятельную работу (7-8 минут).
На экран, с помощью ноутбука, выводится задание:
I вариант | II вариант |
Решите уравнения: | |
1. 2. 3. 4. 5. | 1. 2. 3. 4. 5. |
После выполнения данной работы на экран вывести решение, учащиеся сверяют своё решение с решением на экране. При необходимости провести необходимую коррекцию, учителю ответить на вопросы, которые возможно возникнут у учащихся по решению уравнений. Учащиеся выставляют себе оценку (по количеству верно решённых уравнений).
Рассмотрим простейшее тригонометрическое уравнение: где -1
Определение: Если то arcsin a (арксинус а) – это такое число из отрезка синус которого равен а. Итак:
если то
arcsin a = х
Теперь сделаем общий вывод о решении уравнения
Если то уравнение имеет две серии решений: х1=
В трёх случаях предпочитают пользоваться не полученной общей формулой, а более простыми соотношениями:
=1 , x =
= 0 , x =
= -1, x = —
Объяснить учащимся, что означает в формуле запись (+ 2, почему в одном случае 2.
Есть формула в сокращённом виде, она выглядит так х = (-1) k arcsin a + Но об этом мы поговорим позже, когда научимся пользоваться основной формулой, т.к. сейчас в задании С1 в тестах ЕГЭ предпочтительнее пользоваться не этой сокращённой формулой, а формулой записанной в виде двух.
Рассмотрим решение простейших уравнений:
(оформление решений на доске, 1, 6, 8 – объяснение учителя, остальные – учащиеся)
- Sin x =
- Sin x =
- Sin x = 1
- Sin x =
- Sin x =
- Sin 2x =
- Sin
- 2Sin (3x —
- 2Sin (
Для решения уравнений учащиеся (особенно слабоуспевающие учащиеся) пользуются таблицей тригонометрических значений (таблица на демонстрационном стенде и на столах учащихся).
Но лучше при нахождении корней уравнения пользоваться единичной окружностью:
(научить учащихся находить значения по числовой окружности).
Проконтролировать умения учащихся решать простейшие тригонометрические уравнения можно с помощью предложенной ниже самостоятельной работы:
(Задание выводится на экран, заранее текст набрать на ноутбуке и вывести на экран):
I вариант | II вариант | ||
1 | Вычислите: arcsin | 1 | Вычислите: arcsin |
2 | Решите уравнения: sin x = 0 | 2 | Решите уравнения: sin x = -1 |
3 | Sin x = | 3 | Sin x = 0,5 |
4 | Sin x = — | 4 | Sin x = |
5 | 2sin x = | 5 | 2 sin x = — |
6 | Sin (2x — | 6 | Sin ( |
Учащиеся сдают тетради с выполненной самостоятельной работой учителю на проверку. Учитель объявляет, что за любые пять заданий выставляется отметка «5», за четыре – «4», за три «3», отметка «2» выставляться не будет, нужна будет дополнительная работа с учащимися, не справившимся с работой (если такие будут). И далее повторное выполнение работы, идентичной данной.
После этого учитель показывает на экране решение самостоятельной работы.
Провести рефлексию. Дать учащимся возможность проанализировать свои ошибки (а такие учащиеся найдутся, т.к. в общеобразовательной школе на базовом уровне математику изучают все учащиеся и слабоуспевающие в том числе).
Подвести итоги урока.
Учащимся записать домашнее задание: выучить формулу, изученную на уроке; прочитать теоретический материал по учебнику и выполнить упражнения из учебника по данной теме (с указанием №№).
Провести анализ урока:
Урок проведён в 10 «б» классе.
Количество учащихся – 26. Данный материал оказался доступным и интересным для учащихся. В самостоятельной работе учащиеся показали уровень сформированности навыков решения простейших тригонометрических уравнений (приведён в таблице). Тема урока актуальна тем, что в ЕГЭ (часть В, задание С1) включены в основном простейшие уравнения и у учащихся по данной теме должны быть сформированы устойчивые знания и умения.
Результаты самостоятельных работ:
Из таблицы видно, что в основном все учащиеся справились с уравнениями, хотя есть над, чем поработать ещё на следующем уроке. В уравнениях с косинусом нужна коррекция знаний учащихся, с синусом – выполнять тренировочные упражнения для ликвидации пробелов. В основном учащиеся допускают ошибки при нахождении корней уравнения по единичной окружности или таблице. Минус работы с таблицей – слабые учащиеся не смогут её выучить, а значит на ЕГЭ, возможно, не смогут правильно записать ответ. На первых этапах изучения темы ею можно пользоваться, но на последующих уроках нужно развивать навык работы с единичной окружностью до автоматизма. Тема эта была изучена до решения уравнений, с применением методов.
🔥 Видео
Тригонометрические уравнения (Частные случаи)Скачать
Алгебра 10 класс 29 неделя Уравнение sin x=aСкачать
Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать
Алгебра 10 класс (Урок№42 - Уравнение sin x = a.)Скачать
Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.Скачать
Алгебра 10 класс. Тригонометрия. Уравнения: sinx=a.Скачать
Решение уравнений вида tg x = a и ctg x = aСкачать
10 класс, 23 урок, Методы решения тригонометрических уравненийСкачать
КАК РЕШАТЬ ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ? // УРАВНЕНИЕ COSX=AСкачать
Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать
Тригонометрические уравнения. Как запомнить частные случаи.Скачать
Простейшее тригонометрическое уравнение sin x = aСкачать