Алгебра уравнения решение тождеств за

Тождество. Тождественные преобразования. Примеры.

Тождества в основном применяются для решения линейных уравнений.

Тождеством называется равенство, которое верно при всех значениях переменных.

Или другими словами, тождество — это равенство, которое выполняется на всём множестве значений переменных, входящих в него, например:

В этих выражениях при всех значениях a и b равенство верное.

2 выражения с равными значениями при всех значениях переменных являются тождественно равными.

Равенство x+2=5 может существовать не при всех значениях x, а лишь при x=3. Это равенство не будет тождеством, это будет уравнением. Кроме того, тождеством будет равенство, которое не содержит переменные, например 25 2 =625.

Тождественное равенство обозначают символом «≡» (тройное равенство).

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Примеры тождеств.

— Тождество Эйлера (кватернионы);

— Тождество Эйлера (теория чисел);

— Тождество четырёх квадратов;

— Тождество восьми квадратов;

Видео:Урок 5 ТОЖДЕСТВА. ТОЖДЕСТВЕННЫЕ ПРЕОБРАЗОВАНИЯ ВЫРАЖЕНИЙ 7 КЛАСССкачать

Урок 5 ТОЖДЕСТВА. ТОЖДЕСТВЕННЫЕ ПРЕОБРАЗОВАНИЯ ВЫРАЖЕНИЙ 7 КЛАСС

Тождественные преобразования.

Тождественное преобразование выражения (преобразование выражения) – это подмена одних выражений другими, тождественно равными друг другу.

Для тождественных преобразований используют формулы сокращенного умножения, законы арифметики и другие тождества.

Выполним тождественные преобразования с такой дробью: Алгебра уравнения решение тождеств за.

Алгебра уравнения решение тождеств за

Алгебра уравнения решение тождеств за

Полученное тождество, при х ≠ 0 и х ≠ 1 (недопустимые значения), т.к. знаменатель левой части не может быть равен нулю.

Видео:Тождественно равные выражения. Алгебра 7 класс.Скачать

Тождественно равные выражения. Алгебра 7 класс.

Доказательство тождеств.

Для того, чтоб доказать тождество нужно сделать тождественные преобразования обеих или одной части равенства, и получить слева и справа одинаковые алгебраические выражения.

Например, доказать тождество:

Алгебра уравнения решение тождеств за

Вынесем х за скобки:

Алгебра уравнения решение тождеств за

Алгебра уравнения решение тождеств за

Алгебра уравнения решение тождеств за

Алгебра уравнения решение тождеств за

Это равенство есть тождество, при х≠0 и х≠1.

Чтоб доказать, что равенство не является тождеством, нужно найти 1-но значение переменной (которое допустимо) у которой числовые выражения (которые были получены) станут не равными друг другу.

Алгебра уравнения решение тождеств за

5−1 ≠ 5+1 — подставим, к примеру, 5.

Это равенство не тождество.

Видео:Тождество. Тождественные преобразования. Алгебра, 7 классСкачать

Тождество. Тождественные преобразования. Алгебра, 7 класс

Разница между тождеством и уравнением.

Тождество верно при всех значениях переменных, а уравнение – это равенство, которое верно только при одном либо нескольких значениях переменной.

Это выражение верно лишь при х = 10.

Тождеством будет равенство, которое не содержит переменных.

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Тождественные преобразования

Видео:Тождества. Тождественные преобразования выражений. 6 класс.Скачать

Тождества. Тождественные преобразования выражений. 6 класс.

Что такое тождественные преобразования

Тождество — это равенство, выполняемое на всем множестве значений переменных, которые в него включены.

К примеру, тождествами являются, в том числе, квадратные выражения:

a 2 − b 2 = ( a + b ) ( a − b )

( a + b ) 2 = a 2 + 2 a b + b 2

В рассмотренных выражениях любые значения a и b обращают их в верные равенства, что полезно знать при решении примеров.

Тождественно равными выражениями называют такие два выражения, которые обладают равными значениями при всех значениях переменных.

Данное равенство существует только в том случае, когда:

Рассматриваемое равенство не является тождеством, а представляет собой уравнение. Для обозначения тождественного равенства принято использовать символ тройного равенства: ≡ .

Разница между тождеством и уравнением заключается в том, что тождество является верным при любом из значений переменных. Уравнение же верно лишь в том случае, когда имеется одно или несколько значений переменных.

Это уравнение верное только, когда ответ соответствует х = 10 .

В этом случае тождество не включает в себя переменные.

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Замена чисел и выражений тождественно равными им выражениями

Тождественное преобразование выражения (преобразование выражения) представляет собой замену одних выражений на другие, которые тождественно равны между собой.

Данное объяснение преобразований позволяет значительно упростить решение задач. К примеру, для этого используют законы сокращенного умножения, арифметические свойства и другие тождества.

Рассмотрим конкретный пример:

Выполним работу по тождественным преобразованиям этой дроби:

x 3 – x x 2 – x = x ( x 2 – 1 ) x – 1 = x ( x – 1 ) ( x + 1 ) x ( x – 1 ) = x + 1

x 3 – x x 2 – x = x + 1

В результате получили тождество, которое существует, если х ≠ 0 и х ≠ 1 . То есть необходимо исключить недопустимые значения, так как знаменатель слева не должен принимать нулевые значения:

Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.

Доказательство тождеств

В процессе доказательства тождества необходимо выполнить ряд действий:

  • тождественно преобразовать обе или только одну часть равенства;
  • получить в обеих частях идентичные алгебраические выражения.

В качестве самостоятельного примера для тренировки докажем следующее тождество:

x 3 – x x 2 – x = x 2 + x x

В первую очередь избавимся от х , записав его за скобками:

x ( x 2 – 1 ) x ( x – 1 ) = x ( x + 1 ) x

Заметим, что можно сократить х :

x 2 – 1 x – 1 = x + 1

( x – 1 ) ( x + 1 ) x – 1 = x + 1

Выполним сокращение на х — 1 :

Заключим, что рассмотренное равенство является тождеством, если х ≠ 0 и х ≠ 1

Когда требуется доказать, что равенство не относится к тождеству, следует определить одно допустимое значение переменной, при котором полученные числовые выражения обращаются в неравные друг другу. К примеру:

x 2 – x x = x 2 + x x → x ≠ 0

Упростим вычисления с помощью сокращения х :

Выполним подстановку какого-то числа вместо х , например, числа 5:

Данное равенство не является тождеством.

Видео:ТРИГОНОМЕТРИЧЕСКИЕ ТОЖДЕСТВА 10 класс тригонометрияСкачать

ТРИГОНОМЕТРИЧЕСКИЕ ТОЖДЕСТВА 10 класс тригонометрия

Примеры тождеств

Изучить тождества на практике можно с помощью решения задач на различные тождественные преобразования алгебраических выражений. Ключевой целью таких действий является замена начального выражения на выражение, которое ему тождественно равно.

От перестановки местами слагаемых сумма не меняется:

От перестановки местами сомножителей произведение не меняется:

Согласно данным правилам, можно записать примеры тождественных выражений:

128 × 32 = 32 × 128

При наличии в сумме более двух слагаемых допускается группировать их путем заключения в скобки. Также можно предварительно переставлять эти слагаемые местами:

a + b + c + d = ( a + c ) + ( b + d )

Аналогичным способом группируют сомножители в произведении:

a × b × c × d = ( a × d ) × ( b × c )

Приведем примеры таких тождественных преобразований:

15 + 6 + 5 + 4 = ( 15 + 5 ) + ( 6 + 4 )

6 × 8 × 11 × 4 = ( 6 × 4 × 8 ) × 11

При увеличении или уменьшении обеих частей тождества на одинаковое число, данное тождество остается верным:

( a + b ) ± e = ( c + d ) ± e

Равенство сохраняется также при умножении или делении обеих частей этого равенства на одно и то же число:

( a + b ) × e = ( c + d ) × e

( a + b ) ÷ e = ( c + d ) ÷ e

Запишем несколько примеров:

35 + 10 = 9 + 16 + 20 ⇒ ( 35 + 10 ) + 4 = ( 9 + 16 + 20 ) + 4

42 + 14 = 7 × 8 ⇒ ( 42 + 14 ) × 12 = ( 7 × 8 ) × 12

Какую-либо разность допускается записывать, как сумму слагаемых:

Аналогичным способом можно выполнить замену частного на произведение:

Рассмотрим примеры тождественных преобразований:

76 – 15 – 29 = 76 + ( — 15 ) + ( — 29 )

42 ÷ 3 = 42 × 3 — 1

Заменить математическое выражение на более простое можно с помощью арифметических действий:

Преобразования следует выполнять с соблюдением алгоритма:

  1. В первую очередь выполняют возведение в степень, извлекают корни, вычисляют логарифмы, тригонометрические и прочие функции.
  2. Далее можно приступать к действиям с выражениями, заключенными в скобки.
  3. На последнем этапе, начиная с левой стороны, двигаясь вправо, выполняют действия, которые остались. При этом умножение и деление являются приоритетными, выполняются в первую очередь. Затем можно приступить к сложению и вычитанию. Данное правило распространяется и на выражения, записанные в скобках.

Пример 7

14 + 6 × ( 35 – 16 × 2 ) + 11 × 3 = 14 + 18 + 33 = 65

20 ÷ 4 + 2 × ( 25 × 3 – 15 ) – 9 + 2 × 8 = 5 + 120 – 9 + 16 = 132

В арифметических выражениях можно избавляться от скобок при необходимости. Исходя из знаков в выражении, определяются правила, согласно которым раскрывают скобки.

Рассмотрим несколько примеров преобразований с помощью раскрытия скобок:

117 + ( 90 – 74 – 38 ) = 117 + 90 – 74 – 38

1040 – ( — 218 – 409 + 192 ) = 1040 + 218 + 409 – 192

22 × ( 8 + 14 ) = 22 × 8 + 22 × 14

18 ÷ ( 4 – 6 ) = 18 ÷ 4 – 18 ÷ 6

Другим распространенным действием при упрощении выражений, содержащих скобки, является вынесение за них общего множителя. В результате в скобках остаются слагаемые, поделенные на вынесенный множитель. Данный способ преобразования можно применять в выражениях, которые содержат буквенные переменные.

3 × 5 + 5 × 6 = 5 × ( 3 + 6 )

28 + 56 – 77 = 7 × ( 4 + 8 – 11 )

31 x + 50 x = x × ( 31 + 50 )

В процессе тождественных преобразований часто применяют формулы для сокращенного выражения.

Примеры тождественных преобразований:

( 31 + 4 ) 2 = 31 2 + 2 ⋅ 31 ⋅ 4 + 4 2 = 1225

Видео:ТРИГОНОМЕТРИЯ с нуля за 30 минутСкачать

ТРИГОНОМЕТРИЯ с нуля за 30 минут

Тождественные преобразования выражений

п.1. Соответственные значения

Рассмотрим два выражения с переменными:

$$ f(x)=x^2 — 4x + 20, g(x)=3x^2 — 10 $$

Вычислим их значения при x=2:

$$ f(2)=2^2 — 4 cdot 2 + 20 = 16, g(2)=3 cdot 2^2 — 10 = 2 $$

Числа 16 и 2 называются соответственными значениями выражений f(x)и g(x) при одинаковом значении x=2. В данном случае соответственные значения не равны. Теперь подставим x=3:

$f(3)=3^2 — 4 cdot 3 + 20 = 17, g(3) = 3 cdot 3^2 — 10 = 17$

Соответственные значения равны.

Соответственные значения двух выражений, содержащих одни и те же переменные – это числовые значения этих выражений, полученные при подстановке одинаковых значений переменных.

Соответственные значения могут быть:

  • равны для отдельных значений переменных;
  • равны при всех допустимых значениях переменных;
  • неравны для любого из допустимых значений переменных.

п.2. Область допустимых значений

Значения переменных, при которых алгебраическое выражение имеет смысл, называют допустимыми значениями переменных .

Множество всех допустимых значений переменных называют областью определения алгебраического выражения (или областью допустимых значений переменных , сокращённо ОДЗ ).

Ограничения на ОДЗ определяются видом выражения:

  • Целое выражение имеет смысл при любых значениях входящих в него переменных.
  • Дробное выражение не имеет смысла при тех значениях переменных, которые обращают знаменатель в нуль. Например, выражение $ frac $ не имеет смысла при a=4.
  • Иррациональное выражение не имеет смысла, если выражение под корнем чётной степени или под знаком возведения в дробную степень отрицательно. Например, выражение $ sqrt $ не имеет смысла при всех a Тождественно равные выражения – это выражения, соответственные значения которых равны при всех допустимых значениях переменных.

Тождество – формула, в которой два тождественных выражения соединены знаком равенства.

Согласно определению, тождество – это равенство, которое является истинным при всех допустимых значениях переменных, входящих в него.

Примеры тождеств: $a + b = b + a, frac = a+1, x^2 — 1 = (x — 1)(x + 1)$

Тождествами также принято считать истинные числовые равенства.

Примеры числовых тождеств: $3^2 + 4^2 = 5^2, 1 + 3 + 5 + 7 = 4^2$

Разница между тождеством и уравнением заключается в том, что тождество является истинным при всех допустимых значениях переменных, а уравнения – только для одного или нескольких значений переменных из ОДЗ.

Например: $x + 1 = frac $ — это тождество, которое истинно для всех действительных $x mathbb in R$. Выражение $x^2 + 1 = 2$ — это уравнение, которое истинно только для $x = pm 1$.

Тождественное преобразование выражений – это замена одного выражения другим, тождественно ему равным.

Например, сокращение дроби $ frac = frac ab $ является тождественным преобразованием.

Для доказательства (или опровержения) тождеств используют следующие алгоритмы.

Алгоритм доказательства, что равенство является тождеством

1. Выполнить тождественные преобразования одной или обеих частей равенства.

2. Сравнить полученные слева и справа алгебраические выражения. Если они одинаковы, то равенство является тождеством.

Если выражения неодинаковы, продолжить тождественные преобразования или перейти к доказательству того, что равенство не является тождеством.

Алгоритм доказательства, что равенство не является тождеством

Найти хотя бы одно значение переменной, при котором соответственные значения выражений слева и справа неравны.

п.4. Примеры

Пример 1. Докажите тождество 3(x+1)-2(x-1)-x=5(x+1)-5x

● Тождественные преобразования левой части:

Тождественные преобразования правой части:

Получаем: 5=5. Равенство является тождеством.

Что и требовалось доказать. ○

Пример 2. Тождественны ли выражения 1-(1-(1-b)) и 1-b?

Тождественные преобразования левой части:

Получаем: 1-b=1-b. Выражения тождественны.

Пример 3. Верно ли тождество |x|+1=|x+1|?

Найдем соответственные значения левой и правой части при x=-1.

Равенство не является тождеством.

Пример 4. Является ли тождеством равенство |a+b|=|a|+|b|?

Найдем соответственные значения левой и правой части при a=-1, b=1.

💥 Видео

Как проверяют учеников перед ЕНТСкачать

Как проверяют учеников перед ЕНТ

7 класс, 33 урок, ТождестваСкачать

7 класс, 33 урок, Тождества

✓ Тригонометрические формулы | Борис ТрушинСкачать

✓ Тригонометрические формулы | Борис Трушин

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать

ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ —  Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функции

Алгебра 7 класс с нуля | Математика | УмскулСкачать

Алгебра 7 класс с нуля | Математика | Умскул

18+ Математика без Ху!ни. Формулы ПриведенияСкачать

18+ Математика без Ху!ни. Формулы Приведения

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать

АЛГЕБРА 7 класс : Уравнение и его корни | Видеоурок

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение
Поделиться или сохранить к себе: