Алгебра 8 класс системы уравнений решение систем способом сложения

Содержание
  1. Как решать систему уравнений
  2. Основные понятия
  3. Линейное уравнение с двумя переменными
  4. Система двух линейных уравнений с двумя переменными
  5. Метод подстановки
  6. Пример 1
  7. Пример 2
  8. Пример 3
  9. Метод сложения
  10. Система линейных уравнений с тремя переменными
  11. Решение задач
  12. Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?
  13. Задание 2. Как решать систему уравнений способом подстановки
  14. Задание 3. Как решать систему уравнений методом сложения
  15. Задание 4. Решить систему уравнений
  16. Задание 5. Как решить систему уравнений с двумя неизвестными
  17. Урок алгебры по теме: «Решение систем линейных уравнений способом сложения»
  18. Ход урока
  19. 1. Организационный момент
  20. 2. Проверка домашнего задания
  21. 3. Математический софизм
  22. 4. Повторение изученного материала
  23. 5. Изучение нового материала
  24. 6. Закрепление материала
  25. 7. Задание повышенного уровня сложности
  26. 8. Домашнее задание
  27. Решение задач по математике онлайн
  28. Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
  29. Немного теории.
  30. Решение систем линейных уравнений. Способ подстановки
  31. Решение систем линейных уравнений способом сложения
  32. 📹 Видео

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Как решать систему уравнений

Алгебра 8 класс системы уравнений решение систем способом сложения

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Видео:Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Видео:Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Решим систему уравнений методом подстановки

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Видео:Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод СложенияСкачать

Как ЛЕГКО РЕШАТЬ Систему Линейный Уравнений — Метод Сложения

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Пример.

Домножим первое уравнение системы на -2, второе оставим без изменений. Система примет вид:

Сложим уравнения, получим

Отсюда y = -3, а, значит, x = 2

Ответ: (2; -3).

Видео:Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Видео:7 класс, 39 урок, Метод алгебраического сложенияСкачать

7 класс, 39 урок, Метод алгебраического сложения

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

Видео:ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод ПодстановкиСкачать

ПОСМОТРИ это видео, если хочешь решить систему линейных уравнений! Метод Подстановки

Урок алгебры по теме: «Решение систем линейных уравнений способом сложения»

Разделы: Математика

Цели урока:

  • формировать умение решать системы линейных уравнений способом сложения;
  • развивать и совершенствовать имеющиеся знания в новых ситуациях;
  • воспитание навыков контроля и самоконтроля, развитие самостоятельности.
  • Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

    Ход урока

    1. Организационный момент

    Приветствие и отчет дежурных.

    2. Проверка домашнего задания

    Записать систему, чтобы найти уравнения прямой, проходящей через точки (2;3) и (-3; -2).

    Алгебра 8 класс системы уравнений решение систем способом сложения

    3. Математический софизм

    Докажем, что 8 = 6.

    Алгебра 8 класс системы уравнений решение систем способом сложения

    Ошибка заключается в том, что данная система не имеет решения, т. к. система несовместна. Графически это означает, что прямые y = 3 – 1/2 x и y = 4 – 1/2 x параллельны и не совпадают.

    4. Повторение изученного материала

    На предыдущих уроках мы рассмотрели следующие методы решения систем линейных уравнений: графический способ и способ подстановки.

    Алгебра 8 класс системы уравнений решение систем способом сложения

    2 ученика выходят к доске, остальные решают в тетрадях. (1 вариант – способом подстановки, 2 вариант – графически).

    Алгебра 8 класс системы уравнений решение систем способом сложения

    Алгебра 8 класс системы уравнений решение систем способом сложения

    Алгебра 8 класс системы уравнений решение систем способом сложения

    В чем заключается способ подстановки и графический способ? (Сформулировать правила). Учащиеся проверяют собственные решения в тетрадях с решениями на доске, за верные решения ставят в тетрадь оценку “5”.

    5. Изучение нового материала

    На сегодняшнем уроке мы изучим еще один способ решения систем – способ сложения. Как вы думаете, какие цели нашего урока? (Вывести алгоритм метода сложения и научиться применять его к решению систем).

    Вернемся к нашей системе:

    Алгебра 8 класс системы уравнений решение систем способом сложения

    Если сложить первое уравнение со вторым, то получим уравнение 3x – y = 11.

    Система не упростилась, но можно заметить, что пара (3; -2) – решение системы и решение этого уравнения, т.е. мы можем заменить любое уравнение системы на получившееся (3x-y = 11) уравнение. Получаем систему, равносильную первоначальной.

    Алгебра 8 класс системы уравнений решение систем способом сложения

    Мы получили важный вывод:

    Если одно из уравнений системы заменить уравнением, полученным почленным сложением данных уравнений, то данная система будет равносильна первоначальной.

    Обратите внимание, что, как и в способе подстановки, мы получили одно уравнение с одним неизвестным. Как сделать так, что бы такое уравнение получилось сразу? (Нужно домножить первое уравнение на 2 и сложить со вторым уравнением).

    Алгебра 8 класс системы уравнений решение систем способом сложения

    Итак, что мы сделали:

    • уравняли модули коэффициентов при одной переменной;
    • сложили уравнения, из получившегося уравнения нашли одну из переменных;
    • подставили найденное значение в одно из уравнений системы и нашли второе неизвестное.

    6. Закрепление материала

    Алгебра 8 класс системы уравнений решение систем способом сложения

    Ответы:1) a = 4, b = -2. 2) z = 2, t = 2. 3) y = 4, x = 3.

    Письменно в тетрадях: №635 (2, 4), 636 (2, 4) из учебника.

    7. Задание повышенного уровня сложности

    Алгебра 8 класс системы уравнений решение систем способом сложения

    Запишем новую систему, у которой первое уравнение – сумма данных уравнений, а второе уравнение – разность.

    Алгебра 8 класс системы уравнений решение систем способом сложения

    8. Домашнее задание

    №635 (3), 634 (1, 3), 636 (3), правило на стр. 152.

    Видео:Алгебра 7 класс. 28 октября. Решаем систему уравнений методом сложения #2Скачать

    Алгебра 7 класс. 28 октября. Решаем систему уравнений методом сложения #2

    Решение задач по математике онлайн

    //mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

    Видео:Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом сложения. 6 класс.

    Калькулятор онлайн.
    Решение системы двух линейных уравнений с двумя переменными.
    Метод подстановки и сложения.

    С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.

    Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.

    Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

    Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

    В качестве переменной может выступать любая латинсая буква.
    Например: ( x, y, z, a, b, c, o, p, q ) и т.д.

    При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
    Например: 6x+1 = 5(x+y)+2

    В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.

    Правила ввода десятичных дробей.
    Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
    Например: 2.1n + 3,5m = 55

    Правила ввода обыкновенных дробей.
    В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
    Знаменатель не может быть отрицательным.
    При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
    Целая часть отделяется от дроби знаком амперсанд: &

    Примеры.
    -1&2/3y + 5/3x = 55
    2.1p + 55 = -2/7(3,5p — 2&1/8q)

    Решить систему уравнений

    Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать

    Решение систем уравнений. Методом подстановки. Выразить Y

    Немного теории.

    Видео:Решение системы линейных уравнений методом подстановки.Скачать

    Решение системы линейных уравнений методом подстановки.

    Решение систем линейных уравнений. Способ подстановки

    Последовательность действий при решении системы линейных уравнений способом подстановки:
    1) выражают из какого-нибудь уравнения системы одну переменную через другую;
    2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
    3) решают получившееся уравнение с одной переменной;
    4) находят соответствующее значение второй переменной.

    Пример. Решим систему уравнений:
    $$ left< begin 3x+y=7 \ -5x+2y=3 end right. $$

    Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
    $$ left< begin y = 7—3x \ -5x+2(7-3x)=3 end right. $$

    Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
    $$ -5x+2(7-3x)=3 Rightarrow -5x+14-6x=3 Rightarrow -11x=-11 Rightarrow x=1 $$

    Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
    $$ y=7-3 cdot 1 Rightarrow y=4 $$

    Пара (1;4) — решение системы

    Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.

    Видео:Решение систем линейных уравнений методом сложения - 7 класс. Как решать систему уравненийСкачать

    Решение систем линейных уравнений методом сложения - 7 класс. Как решать систему уравнений

    Решение систем линейных уравнений способом сложения

    Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

    Последовательность действий при решении системы линейных уравнений способом сложения:
    1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
    2) складывают почленно левые и правые части уравнений системы;
    3) решают получившееся уравнение с одной переменной;
    4) находят соответствующее значение второй переменной.

    Пример. Решим систему уравнений:
    $$ left< begin 2x+3y=-5 \ x-3y=38 end right. $$

    В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
    $$ left< begin 3x=33 \ x-3y=38 end right. $$

    Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение ( x-3y=38 ) получим уравнение с переменной y: ( 11-3y=38 ). Решим это уравнение:
    ( -3y=27 Rightarrow y=-9 )

    Таким образом мы нашли решение системмы уравнений способом сложения: ( x=11; y=-9 ) или ( (11; -9) )

    Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.

    📹 Видео

    Алгебра 7. Урок 8 - Системы линейных уравненийСкачать

    Алгебра 7. Урок 8 - Системы линейных уравнений

    Решение систем уравнений способом сложенияСкачать

    Решение систем уравнений способом сложения

    Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

    Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)

    Видеоурок СПОСОБ СЛОЖЕНИЯ 7 КЛАСС.Скачать

    Видеоурок СПОСОБ СЛОЖЕНИЯ 7 КЛАСС.

    Как решать системы уравнений методом математического сложенияСкачать

    Как решать системы уравнений методом математического сложения
    Поделиться или сохранить к себе: