Предположим, вам попался график функции (y=ax^2+bx+c) и нужно по этому графику определить коэффициенты (a), (b) и (c). В этой статье я расскажу 3 простых способа сделать это.
Видео:Определение знаков коэффициентов квадратного уравнения (параболы) по рисунку/ЗНО 2010 #25Скачать
1 способ – ищем коэффициенты на графике
Данный способ хорош, когда координаты вершины и точка пересечения параболы с осью (y) – целые числа. Если это не так, советую использовать способ 2.
Коэффициент (a) можно найти с помощью следующих фактов:
— Если (a>0), то ветви параболы направленных вверх, если (a 1), то график вытянут вверх в (a) раз по сравнению с «базовым» графиком (у которого (a=1)). Вершина при этом остается на месте. Это наглядно видно по выделенным точкам.
Ищем 3 точки с целыми координатами, принадлежащие параболе.
Пример:
Выписываем координаты этих точек и подставляем в формулу квадратичной функции: (y=ax^2+bx+c). Получится система с тремя уравнениями.
Решаем систему.
Пример:
Вычтем из второго уравнения первое:
Подставим (9a) вместо (b):
Первое и второе уравнения совпали (это нормально для точек, симметричных относительно прямой проходящей через вершину – как точки (A) и (B) в нашем случае), но нас это не остановит – мы вычтем из второго уравнение третье:
Подставим в первое уравнение (a):
Получается квадратичная функция: (y=-x^2-9x-15).
Сразу заметим, что по графику можно сразу определить, что (c=4). Это сильно облегчит нашу систему – нам хватит 2 точек. Выберем их на параболе: (C(-1;8)), (D(1;2)) (на самом деле, если присмотреться, то можно заметить, что эти точки выделены жирно на изначальной картинке – это вам подсказка от авторов задачи).
Таким образом имеем систему:
Сложим 2 уравнения:
Подставим во второе уравнение:
Теперь найдем точки пересечения двух функций:
Теперь можно найти ординату второй точки пересечения:
Видео:Парабола / квадратичная функция / влияние коэффициентовСкачать
3 способ – используем преобразование графиков функций
Этот способ быстрее первого и более универсальный, в частности он может пригодится и в задачах на другие функции.
Главный недостаток этого способа — вершина должна иметь целые координаты.
Сам способ базируется на следующих идеях:
График (y=-x^2) симметричен относительно оси (x) графику (y=x^2).
– Если (a>1) график (y=ax^2) получается растяжением графика (y=x^2) вдоль оси (y) в (a) раз.
– Если (a∈(0;1)) график (y=ax^2) получается сжатием графика (y=x^2) вдоль оси (y) в (a) раз.
– График (y=a(x+d)^2) получается сдвигом графика (y=ax^2) влево на (d) единиц.
— График (y=a(x-d)^2) получается сдвигом графика (y=ax^2) вправо на (d) единиц.
График (y=a(x+d)^2+e) получается переносом графика (y=a(x+d)^2) на (e) единиц вверх.
График (y=a(x+d)^2-e) получается переносом графика (y=a(x+d)^2) на (e) единиц вниз.
У вас наверно остался вопрос — как этим пользоваться? Предположим, мы видим такую параболу:
Сначала смотрим на её форму и направленность её ветвей. Видим, что форма стандартная, базовая и ветви направлены вверх, поэтому (a=1). То есть она получена перемещениями графика базовой параболы (y=x^2).
А как надо было перемещать зеленый график чтоб получить оранжевый? Надо сдвинуться вправо на пять единиц и вниз на (4).
То есть наша функция выглядит так: (y=(x-5)^2-4).
После раскрытия скобок и приведения подобных получаем искомую формулу:
Чтобы найти (f(6)), надо сначала узнать формулу функции (f(x)). Найдем её:
Парабола растянута на (2) и ветви направлены вниз, поэтому (a=-2). Иными словами, первоначальной, перемещаемой функцией является функция (y=-2x^2).
Парабола смещена на 2 клеточки вправо, поэтому (y=-2(x-2)^2).
Парабола поднята на 4 клеточки вверх, поэтому (y=-2(x-2)^2+4).
Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
Квадратичная функция и ее график
В этой статье мы поговорим о том, что такое квадратичная функция, научимся строить ее график и определять вид графика в зависимости от знака дискриминанта и знака старшего коэффициента.
Итак.
Функция вида , где
0″ title=»a0″/>
называется квадратичной функцией.
В уравнении квадратичной функции:
a — старший коэффициент
b — второй коэффициент
с — свободный член.
Графиком квадратичной функции является квадратичная парабола, которая для функции имеет вид:
Обратите внимание на точки, обозначенные зелеными кружками — это, так называемые «базовые точки». Чтобы найти координаты этих точек для функции , составим таблицу:
Внимание! Если в уравнении квадратичной функции старший коэффициент , то график квадратичной функции имеет ровно такую же форму, как график функции
при любых значениях остальных коэффициентов.
График функции имеет вид:
Для нахождения координат базовых точек составим таблицу:
Обратите внимание, что график функции симметричен графику функции
относительно оси ОХ.
Итак, мы заметили:
Если старший коэффициент a>0 , то ветви параболы напрaвлены вверх .
Если старший коэффициент a , то ветви параболы напрaвлены вниз .
Второй параметр для построения графика функции — значения х, в которых функция равна нулю, или нули функции. На графике нули функции — это точки пересечения графика функции
с осью ОХ.
Поскольку ордината (у) любой точки, лежащей на оси ОХ равна нулю, чтобы найти координаты точек пересечения графика функции с осью ОХ, нужно решить уравнение
.
В случае квадратичной функции нужно решить квадратное уравнение
.
В процессе решения квадратного уравнения мы находим дискриминант: , который определяет число корней квадратного уравнения.
И здесь возможны три случая:
1. Если ,то уравнение
не имеет решений, и, следовательно, квадратичная парабола
не имеет точек пересечения с осью ОХ. Если
0″ title=»a>0″/>
,то график функции выглядит как-то так:
2. Если ,то уравнение
имеет одно решение, и, следовательно, квадратичная парабола
имеет одну точку пересечения с осью ОХ. Если
0″ title=»a>0″/>
,то график функции выглядит примерно так:
3 . Если 0″ title=»D>0″/>
,то уравнение
имеет два решения, и, следовательно, квадратичная парабола
имеет две точки пересечения с осью ОХ:
,
Если 0″ title=»a>0″/>
,то график функции выглядит примерно так:
Следовательно, зная направление ветвей параболы и знак дискриминанта, мы уже можем в общих чертах определить, как выглядит график нашей функции.
Следующий важный параметр графика квадратичной функции — координаты вершины параболы:
Прямая, проходящая через вершину параболы параллельно оси OY является осью симметрии параболы.
И еще один параметр, полезный при построении графика функции — точка пересечения параболы с осью OY.
Поскольку абсцисса любой точки, лежащей на оси OY равна нулю, чтобы найти точку пересечения параболы с осью OY, нужно в уравнение параболы вместо х подставить ноль:
.
То есть точка пересечения параболы с осью OY имеет координаты (0;c).
Итак, основные параметры графика квадратичной функции показаны на рисунке:
Рассмотрим несколько способов построения квадратичной параболы. В зависимости от того, каким образом задана квадратичная функция, можно выбрать наиболее удобный.
1. Функция задана формулой .
Рассмотрим общий алгоритм построения графика квадратичной параболы на примере построения графика функции
1. Направление ветвей параболы.
Так как 0″ title=»a=2>0″/>
,ветви параболы направлены вверх.
2. Найдем дискриминант квадратного трехчлена
0″ title=»D=b^2-4ac=9-4*2*(-5)=49>0″/>
Дискриминант квадратного трехчлена больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ.
Для того, чтобы найти их координаты, решим уравнение:
,
3. Координаты вершины параболы:
4. Точка пересечения параболы с осью OY: (0;-5),и ей симметричная относительно оси симметрии параболы.
Нанесем эти точки на координатную плоскость, и соединим их плавной кривой:
Этот способ можно несколько упростить.
1. Найдем координаты вершины параболы.
2. Найдем координаты точек, стоящих справа и слева от вершины.
Воспользуемся результатами построения графика функции
Кррдинаты вершины параболы
Ближайшие к вершине точки, расположенные слева от вершины имеют абсциссы соответственно -1;-2;-3
Ближайшие к вершине точки, расположенные справа имеют абсциссы соответственно 0;1;2
Подставим значения х в уравнение функции, найдем ординаты этих точек и занесем их в таблицу:
Нанесем эти точки на координатную плоскость и соединим плавной линией:
2 . Уравнение квадратичной функции имеет вид — в этом уравнении
— координаты вершины параболы
или в уравнении квадратичной функции , и второй коэффициент — четное число.
Построим для примера график функции .
Вспомним линейные преобразования графиков функций. Чтобы построить график функции , нужно
- сначала построить график функции
,
- затем одинаты всех точек графика умножить на 2,
- затем сдвинуть его вдоль оси ОХ на 1 единицу вправо,
- а затем вдоль оси OY на 4 единицы вверх:
Теперь рассмотрим построение графика функции . В уравнении этой функции
, и второй коэффициент — четное число.
Выделим в уравнении функции полный квадрат:
Следовательно, координаты вершины параболы: . Старший коэффициент равен 1, поэтому построим по шаблону параболу с вершиной в точке (-2;1):
3 . Уравнение квадратичной функции имеет вид y=(x+a)(x+b)
Построим для примера график функции y=(x-2)(x+1)
1. Вид уравнения функции позволяет легко найти нули функции — точки пересечения графика функции с осью ОХ:
(х-2)(х+1)=0, отсюда
2. Координаты вершины параболы:
3. Точка пересечения с осью OY: с=ab=(-2)(1)=-2 и ей симметричная.
Нанесем эти точки на координатную плоскость и построим график:
График квадратичной функции.
Перед вами график квадратичной функции вида .
Кликните по чертежу.
Подвигайте движки.
Исследуйте зависимость
— ширины графика функции от значения коэффициента
,
— сдвига графика функции вдоль оси
от значения
,
— сдвига графика функции вдоль оси
от значения
— направления ветвей параболы от знака коэффициента
— координат вершины параболы от значений
и
:
И.В. Фельдман, репетитор по математике.
Видео:Зависимость графика квадратичной функции от ее коэффициентов а, b и сСкачать
ВЛИЯНИЕ КОЭФФИЦИЕНТОВ а, b и с НА РАСПОЛОЖЕНИЕ ГРАФИКА КВАДРАТИЧНОЙ ФУНКЦИИ
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
«Актуальность создания школьных служб примирения/медиации в образовательных организациях»
Свидетельство и скидка на обучение каждому участнику
У р о к 15.
Влияние коэффициентов а, b и с на расположение
графика квадратичной функции
Цели: продолжить формирование умения строить график квадратичной функции и перечислять ее свойства; выявить влияние коэффициентов а, b и с на расположение графика квадратичной функции.
I. Организационный момент.
II. Устная работа.
Определите, график какой функции изображен на рисунке:
б)
у = х 2 – 2х;
у = – х 2 + 4х + 1;
у = – х 2 + 2х – 1.
III. Формирование умений и навыков.
Прямая у = 6х + b касается параболы у = х 2 + 8, то есть имеет с ней только одну общую точку в том случае, когда уравнение 6х + b = х 2 + 8 будет иметь единственное решение.
Это уравнение является квадратным, найдем его дискриминант:
3. Выявить влияние коэффициентов а, b и с на расположение графика функции у = ах 2 + bх + с.
Учащиеся обладают достаточными знаниями, чтобы выполнить это задание самостоятельно. Следует предложить им все полученные выводы занести в тетрадь, при этом выделив «основную» роль каждого из коэффициентов.
1) Коэффициент а влияет на направление ветвей параболы: при а > 0 – ветви направлены вверх, при а , так как а 0.
4. Определите, график какой функции изображен на рисунке, опираясь на значение коэффициентов а, b и с.
у = х 2 + 2х + 2;
По изображенному графику делаем следующие выводы о коэффициентах а, b и с:
а > 0, так как ветви параболы направлены вверх;
b ≠ 0, так как вершина параболы не лежит на оси ОУ;
с = –2, так как парабола пересекает ось ординат в точке (0; –2).
Всем этим условиям удовлетворяет только функция у = 2х 2 – 3х – 2.
По изображенному графику делаем следующие выводы о коэффициентах а, b и с:
5. По графику функции у = ах 2 + bх + с определите знаки коэффициентов а, b и с:
а) б)
а) Ветви параболы направлены вверх, поэтому а > 0.
Парабола пересекает ось ординат в нижней полуплоскости, поэтому с . По графику видно, что т 0. Поэтому b > 0.
б) Аналогично определяем знаки коэффициентов а, b и с:
а) По теореме Виета, известно, что если х1 и х2 – корни уравнения х 2 +
+ рх + q = 0 (то есть нули данной функции), то х1 · х2 = q и х1 + х2 = –р. Получаем, что q = 3 · 4 = 12 и р = –(3 + 4) = –7.
б) Точка пересечения параболы с осью ОУ даст значение параметра q, то есть q = 6. Если график функции пересекает ось ОХ в точке (2; 0), то число 2 является корнем уравнения х 2 + рх + q = 0. Подставляя значение х = 2 в это уравнение, получим, что р = –5.
в) Своего наименьшего значения данная квадратичная функция достигает в вершине параболы, поэтому , откуда р = –12. По условию значение функции у = х 2 – 12х + q в точке x = 6 равно 24. Подставляя x = 6 и у = 24 в данную функцию, находим, что q = 60.
IV. Проверочная работа.
В а р и а н т 1
1. Постройте график функции у = 2х 2 + 4х – 6 и найдите, используя график:
б) промежутки, в которых у > 0 и y 2 + 4х, найдите:
б) промежутки возрастания и убывания функции;
в) область значения функции.
3. По графику функции у = ах 2 + bх + с определите знаки коэффициентов а, b и с:
В а р и а н т 2
1. Постройте график функции у = –х 2 + 2х + 3 и найдите, используя график:
б) промежутки, в которых у > 0 и y 2 + 8х, найдите:
б) промежутки возрастания и убывания функции;
в) область значения функции.
3. По графику функции у = ах 2 + bх + с определите знаки коэффициентов а, b и с:
В о п р о с ы у ч а щ и м с я:
– Опишите алгоритм построения квадратичной функции.
– Перечислите свойства функции у = ах 2 + bх + с при а > 0 и при а
💡 Видео
Как легко составить уравнение параболы из графикаСкачать
ОГЭ. Задание 10. Графики. Парабола. Определить знаки коэффициентов.Скачать
Как найти все коэффициенты параболы по графику? Большой ответ на этот вопрос.Скачать
Задание 10 Квадратичная функция Знаки коэффициентов а и сСкачать
ОГЭ Задание 11 Нахождение коэффициента а по графику Два способаСкачать
Алгебра. Функции и графики. Парабола. Поиск коэффициентов. Тренажёр ОГЭ.Скачать
Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать
СУММА КОЭФФИЦИЕНТОВ: Как решать Квадратные Уравнения по МАТЕМАТИКЕ 8 классСкачать
Коэффициент B квадратного трёхчлена и вид параболыСкачать
Квадратичная функция и ее график. 8 класс.Скачать
КОЭФФИЦИЕНТ ПО ГРАФИКУ ФУНКЦИИ ЧАСТЬ I 😉 #shorts #математика #егэ #огэ #профильныйегэСкачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
Как запомнить графики функцийСкачать
Как влияет на график коэффициент кСкачать
Алгебра 8 класс (Урок№14 - Функция y = k/x и её график.)Скачать
Как построить график функции без таблицыСкачать