Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания

4.2 Затухающие колебания

4.2.1 Дифференциальное уравнение затухающих колебаний

Если кроме возвращающей силы на систему действует ещё и сила сопротивления (например, сила трения в механической системе или сопротивление проводника в контуре), то энергия колебательной системы будет расходоваться на преодоление этого сопротивления. Вследствие этого амплитуда колебаний будет уменьшаться и колебания будут затухать. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

Рассмотрим затухание на примере пружинного маятника с коэффициентом упругости k, массой m, колеблющегося в среде, например, в жидкости, с коэффициентом сопротивления r. Предположим, что колебания малы и что маятник испытывает вязкое трение. В этом случае можно считать, что сила сопротивления пропорциональна скорости:

Знак минус указывает на противоположные напра­вления силы трения и скорости. Закон движения маятника при данных условиях будет иметь вид:

Преобразуем это выражение:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим(51)

Обозначим: w02 = Затухающие колебания уравнение затухающих колебаний и его решение критический режим Затухающие колебания уравнение затухающих колебаний и его решение критический режим= d, где w0 — циклическая частота собственных колебаний пружинного маятника при отсутствии сил сопротивления, d — коэффициент затухания. Дифференциальное уравнение затухающих коле­баний маятника примет вид:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим(52)

Получили однородное дифференциальное уравнение, второго порядка, описывающее малые затухающие колебания в системе с вязким трением. Его решение имеет вид:

где ω — частота затухающих колебаний:

w = Затухающие колебания уравнение затухающих колебаний и его решение критический режим. (54)

Уравнение (52) справедливо для любой системы, как механической, так и немеханической, например, для электромагнитного контура. Действительно, для колебательного контура с сопротивлением R второе правило Кирхгофа имеет вид уравнения (29), которое после преобразований принимает вид:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим.

Из сравнения с уравнением (52) следует:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Таким образом, дифференциальное уравнение затухающих колебаний

любой линейной системы в общем виде задается уравнением:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим+ 2dЗатухающие колебания уравнение затухающих колебаний и его решение критический режим+w02S = 0. (55)

где S — колеблющаяся величина, описывающая тот или иной физический процесс, d = const – коэффициент затухания, w0 — собственная циклическая частота колебательной системы, т. е. частота свободных незатуха­ющих колебаний той же колебательной системы (при отсутствии потерь энергии) Решение уравнения (55) имеет вид:

амплитуда затухающих колебаний; A0 — начальная амплитуда.

Затухающие колебания уравнение затухающих колебаний и его решение критический режимТаким образом, затухающие колебания описываются функцией с экспоненциально убывающей амплитудой, т. е. затухающие колебания не являются гармоническими.

Зависимость (56) показана на рисунке 10 сплошной линией, а зависимость (57) — штриховыми линиями. Если пропорциональность силы трения и скорости не выполняются, то и закон убывания амплитуды будет другим. Например при сухом трении Fтр ≠ ƒ(t), Fтр = const и амплитуда убывает согласно геометрической прогрессии. Во многих измерительных приборах наряду с вязким трением (наличие смазки) присутствует и сухое трение (напр. в подшипниках). Пока амплитуды колебаний велики, в затухании доминирует вязкое трение. При малых амплитудах преобладает влияние сухого трения.

4.2.2 Параметры затухающих колебаний

1) Период затухающих колебаний:

Т = Затухающие колебания уравнение затухающих колебаний и его решение критический режим(58)

При δ β2 , согласно формуле (58) Т → 2π/ ωo. Такой режим затухания называют периодическим или колебательным (рисунок 10). В этом случае для характеристики процессов в системе можно использовать параметры гармонических колебаний.

2) При ωo2 ≈ β2 наступает критический режим колебаний. В формуле (58) ω → 0, Т → ∞. Наличие большого затухания в системе приводит к большим потерям энергии, поэтому, перейдя положение равновесия, система не в состоянии отойти от него на сколь-нибудь заметное расстояние и возвращается к равновесию (рисунок 11). Условие наблюдения критического режима можно получить из соотношений:

а) для механической системы

Затухающие колебания уравнение затухающих колебаний и его решение критический режимrk = 2 Затухающие колебания уравнение затухающих колебаний и его решение критический режим(67)

в) по аналоги для электрической системы

Затухающие колебания уравнение затухающих колебаний и его решение критический режим. (68)

3) При ωo2 wо2) выражение для резонансной частоты становится мнимым. Это означает, что при этих условиях резонанс не наблюдается — с увеличением частоты амплитуда вынужденных колебаний монотонно убывает. Изображенная на рисунке 13 совокупность графиков функции (79), соответствующих различным значениям параметра d, называется резонансными кривыми.

Затухающие колебания уравнение затухающих колебаний и его решение критический режимЗатухающие колебания уравнение затухающих колебаний и его решение критический режимЗатухающие колебания уравнение затухающих колебаний и его решение критический режимЗатухающие колебания уравнение затухающих колебаний и его решение критический режимПо поводу резонансных кривых можно сделать еще следующие замечания. При стремлении wо к нулю все кривые приходят к одному и тому же, отличному от нуля, предельному значению, равному fо/wо2, т. е. Fo/k. Это значение представляет собой смещение из положения равновесия, которое получает система под действием постоянной силы величины Fo. При w → ∞ все кривые асимптотически стремятся к нулю, так как при большой частоте сила так быстро изменяет свое направление, что система не успевает заметно сместиться из положения равновесия. Наконец, отметим, что чем меньше d, тем сильнее изменяется с частотой амплитуда вблизи резонанса, тем «острее» по­лучается максимум. Из формулы (79) вытекает, что при малом зату­хании (т. е. при d > w 0, tgj = -2δ/ω и сдвиг фаз становится равным p. Зависимость j от w при разных значениях d показана графически на рисунке 14.

При слабом затухании wрез» w0, и значение j при резонансе можно считать равным p/2.Сдвиг фаз на p/2 при резонансе означает, что вынуждающая сила опережает смещение на Т/4. При этом условии работа вынуждающей силы всегда положительна и приток энергии к колебательной системе максимален.

С явлением резонанса приходится считаться при конструировании машин и различного рода сооружений. Собственная частота колебаний этих устройств ни в коем случае не должна быть близка к частоте возможных внешних воздействий. В противном случае возникают вибра­ции, которые могут вызвать катастрофу. Известны слу­чаи, когда обрушивались мосты при прохождении по ним марширующих колонн солдат. Это происходило потому, что собственная частота колебаний моста оказывалась близкой к частоте, с которой шагала колонна.

Вместе с тем явление резонанса часто оказывается весьма полезным, особенно в акустике, радиотехнике и т. д.

4.4 Автоколебания

Огромный интерес для техники представляет возможность поддерживать колебания незатухающими. Для этого необходимо восполнять потери энергии реальной колебательной системы. Особенно важны и широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в диссипативной системе за счет постоянного внешнего источника энергии, причем свойства этих колебаний определяются самой системой.

Автоколебания принципиально отличаются от свободных незатухающих колебаний, происходящих без действия сил, а также от вынужденных колебаний, происходящих под действием периодической силы. Автоколебательная система сама управляет внешними воздействиями, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени (в такт с ее колебаниями).

Примером автоколебательной системы могут служить часы. Храповой механизм подталкивает маятник в такт с его колебаниями. Энергия, передаваемая при этом маятнику, берется либо за счет раскручивающейся пружины, либо за счет опускающегося груза. Колебания воздуха в духовых инструментах и органных трубах также возникают вследствие автоколебаний, поддерживаемых воздушной струёй.

Автоколебательными системами являются также двигатели внутреннего сгорания, паровые турбины, ламповый генератор и т. д.

4.5 Переменный ток

4.5.1 Вынужденные электромагнитные колебания. Закон Ома для переменного тока.

Переменный ток можно рассматривать как установившиеся вынужденные электромагнитные колебания в цепи, содержащей резистор, катушку индуктивности и конденсатор. Мы будем рассматривать квазистационарные токи, для которых мгновенные значения силы тока во всех сечениях цепи практически одинаковы. Для мгновенных значений квазистационарных токов выполняются закон Ома и вытекающие из него правила Кирхгофа.

Затухающие колебания уравнение затухающих колебаний и его решение критический режимРассмотрим процессы, происходящие в цепи, содержащей последовательно включённые резистор, катушку индуктивности, конденсатор и источник переменной Э. Д.С., изменяющейся по гармоническому закону:

где εo — амплитуда электродвижущей силы.

В цепи возникнет переменный ток, который вызовет на всех элементах цепи соответствующие падения напряжения UR, UL, UC . Будем считать, что внутреннее сопротивление источника э. д.с. пренебрежимо мало по сравнению с R. По закону Ома для участка цепи 1- LR-2 имеем:

где φ2 — φ1 = q/C — мгновенное значение разности потенциалов обкладок

конденсатора, q — его заряд в этот же момент времени, — L(dI/dt) — э. д.с. самоиндукции в контуре. Возьмём производную по времени от обеих частей равенства (145). Учитывая, что dq/dt = I — ток в контуре, получим:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Учитывая, что R/L = 2δ, 1/ (ωC) = ωo2 и введя обозначение — εoω/L = еo уравнение (84) запишем в виде:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Решение уравнения (85) аналогично решению ранее рассмотренного уравнения (71). Ищем решение уравнения (84) для установившегося режима в виде:

где Iо — амплитуда переменного тока в контуре, j сдвиг фаз между э. д.с. источника тока и силой тока. По аналогии с определением формул (74) и (75) найдём выражения для Iо и j :

Затухающие колебания уравнение затухающих колебаний и его решение критический режим(86)

Затухающие колебания уравнение затухающих колебаний и его решение критический режим(87)

Соотношение (86) называется законом Ома для переменного тока. Величина

Затухающие колебания уравнение затухающих колебаний и его решение критический режим(88)

называется полным сопротивлением цепи.

RL = ωL — индуктивное сопротивление;

RC = 1/ (ωC) — ёмкостное сопротивление;

Затухающие колебания уравнение затухающих колебаний и его решение критический режимреактивное сопротивление. Реактивное сопротивление не вызывает тепловых потерь в цепи переменного тока. Оно создаёт сдвиг фаз между током и вынуждающей э. д.с.

R — активное сопротивление; за счёт него возникают тепловые потери в контуре.

Падение напряжения на отдельных участках цепи, представленной на рис. 15, можно получить, используя выражение (85):

UC = q/ С = Затухающие колебания уравнение затухающих колебаний и его решение критический режимU0C cos(ωt — φ — π/2);

По второму правилу Кирхгофа:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режимНа рисунке 16 представлена векторная диаграмма амплитуд колебаний на всех элементах рассматриваемой цепи (см. рис. 15).

Из выражения (86) следует, что амплитуда тока зависит от частоты вынуждающей э. д.с. (рисунок 18). Максимального значения I0 достигает при частоте ωрез, равной:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим Затухающие колебания уравнение затухающих колебаний и его решение критический режим(89)

Явление достижения током максимального значения I0рез при ω = ωрез называется резонансом напряжений. Это вызвано тем, что при ω = ωрез падения напряжений на индуктивном и ёмкостном сопротивлениях достигают максимальных значений равных по модулю и противоположных по фазе, поэтому суммарное падение напряжение на реактивном сопротивлении равно нулю. Падение напряжения на активном сопротивлении максимально, его амплитудное значение

Векторная диаграмма для резонанса напряжений при­ведена на рис.17.

Подставив в формулу (91) значения резонансной частоты и амплитуды напряжений на катушке индуктивности и конденсаторе, получим:

( UL )рез= ( UС )рез= Затухающие колебания уравнение затухающих колебаний и его решение критический режимI0 = Затухающие колебания уравнение затухающих колебаний и его решение критический режим Затухающие колебания уравнение затухающих колебаний и его решение критический режимU0 = Q U0, (92)

где Q добротность контура.

Так как доброт­ность обычных колебательных контуров больше единицы, то напряжение как на катушке индуктивности, так и на конденсаторе превышает напряжение, приложенное к цепи. Поэтому явление резонанса напряжений используется в технике для усиления колебания напряжения какой-либо определенной частоты. Например, в случае резонан­са на конденсаторе, можно получить напряжение с амплитудой QUm ( в данном случае Q — добротность контура, которая может быть значительно больше Um. Это усиление напряжения возможно только для узкого интервала частот вблизи резонанс­ной частоты контура, что позволяет выделить из многих сигналов одно колебание определенной частоты, т. е. на радиоприемнике настроиться на нужную длину волны. Явление резонанса напряжений необходимо учитывать при расчете изоляции элект­рических линий, содержащих конденсаторы и катушки индуктивности, так как иначе может наблюдаться их пробой.

4.5.2 Мощность, выделяемая в цепи переменного тока

Полное мгновенное значение мощности переменного тока равно произведению мгновенных значений э. д.с. и силы тока. P(t) = ε(t) I(t), где

Практический интерес представляет не мгновенное значение мощности, а ее среднее значение за период колебания. Учитывая, что =1/2, sinw t.cosw t = 0, получим

= Затухающие колебания уравнение затухающих колебаний и его решение критический режимI0 ε0 cosj (93)

Из векторной диаграммы (см. рис. 16) следует, что ε0 cosj = RI0. Поэтому

Затухающие колебания уравнение затухающих колебаний и его решение критический режим.

Такую же мощность развивает постоянный ток Затухающие колебания уравнение затухающих колебаний и его решение критический режим. Величины Iэф = I0 /Затухающие колебания уравнение затухающих колебаний и его решение критический режим, Uэф = U0 / Затухающие колебания уравнение затухающих колебаний и его решение критический режимназываются соответственно действующими (или эффективными) значениями тока и на­пряжения. Все амперметры и вольтметры градуируются по действующим значениям тока и напряжения. Учитывая действующие значения тока и напряжения, выражение средней мощности можно записать в виде:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим(94)

где множитель cosj называется коэффициентом мощности,

Формула (94) показывает, что мощность, выделяемая в цепи переменного тока, в общем случае зависит не только от силы тока и напряжения, но и от сдвига фаз между ними. Если в цепи реактивное сопротивление отсутствует, то cosj =1 и P = Iэф εэф. Если цепь содержит только реактивное сопротивление (R=0), то cosj = 0 и средняя мощ­ность равна нулю, какими бы большими ни были ток и напряжение. Если cosj имеет значения, существенно меньшие единицы, то для передачи заданной мощности при данном напряжении генератора нужно увеличивать силу тока I, что приведет либо к выделению джоулевой теплоты, либо потребует увеличения сечения проводов, что повышает стоимость линий электропередачи. Поэтому на практике всегда стремятся увеличить cosj, наименьшее допустимое значение которого для промышленных уста­новок составляет примерно 0,85.

Видео:Затухающие колебания Лекция 11-1Скачать

Затухающие колебания Лекция 11-1

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

§6 Затухающие колебания

Декремент затухания. Логарифмический декремент затухания.

Добротность

Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.

Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими.

Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

где r — коэффициент сопротивления среды. Знак минус показывает, что FC направлена в сторону противоположную скорости.

Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r . По второму закону Ньютона

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

где β — коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

— дифференциальное уравнение затухающих колебаний.

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

— у равнение затухающих колебаний.

ω – частота затухающих колебаний:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Период затухающих колебаний:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режимЗатухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно гово­рить, когда β мало.

Если затухания выражены слабо (β→0), то Затухающие колебания уравнение затухающих колебаний и его решение критический режим. Затухающие колебания можно

рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

В уравнении (1) А0 и φ0 — произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

τ — время релаксации.

Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затухания D , который равен отношению амплитуд, отстоящих по времени на период:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Логарифмический декремент затухания равен логарифму D :

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний умень­шилась в е раз. Логарифмический декремент затухания — постоянная для данной системы величина.

Еще одной характеристикой колебательной система является добротность Q .

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.

Добротность Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.

Добротность Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.

§7 Вынужденные колебания.

Резонанс

В целом ряде случаев возникает необходимость создания систем, совершающих незатухающие колебания. Получить незатухающие колебания в системе можно, если компенсировать потери энергии, воздействуя на систему периодически изменяющейся силой.

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Запишем выражение для уравнения движения материальной точки, совершающей гармоническое колебательное движение под действием вынуждающей силы.

По второму закону Ньютона:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим(1)

— дифференциальное уравнение вынуж­денных колебаний.

Это дифференциальное уравнение является линейным неоднородным.

Его решение равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Найдем частное решение неоднородного уравнения. Для этого перепишем уравнение (1) в следующем виде:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим(2)

Частное решение этого уравнения будем искать в виде:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

т.к. выполняется для любого t , то должно выполняться равенство γ = ω , следовательно,

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Это комплексное число удобно представить в виде

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

где А определяется по формуле (3 ниже), а φ — по формуле (4), следовательно, решение (2),в комплексной форме имеет вид

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Его вещественная часть, являвшаяся решением уравнения (1) равна:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим Затухающие колебания уравнение затухающих колебаний и его решение критический режим(3)

Затухающие колебания уравнение затухающих колебаний и его решение критический режим(4)

Слагаемое Хо.о. играет существенную роль только в начальной стадии при установлении колебаний до тех пор, пока амплитуда вынужденных колебаний не достигнет значения определяемого равенством (3). В установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими. Амплитуда (3) и фаза (4) вынужденных колебаний зависят от частоты вынуждающей силы. При определенной частоте вынуждающей силы амплитуда может достигнуть очень больших значений. Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте механи­ческой системы, называется резонансом.

Затухающие колебания уравнение затухающих колебаний и его решение критический режимЧастота ω вынуждающей силы, при которой наблюдается резонанс, называется резонансной. Для того чтобы найти значение ωрез, необходимо найти условие максимума амплитуды. Для этого нужно определить условие минимума знаменателя в (3) (т.е. исследовать (3) на экстремум).

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Зависимость амплитуды колеблющейся величины от частоты вынуждающей силы называется резонансной кривой. Резонансная кривая будет тем выше, чем меньше коэффициент затухания β и с уменьшением β, максимум резонансных кривых смешается вправо. Если β = 0, то

При ω→0 все кривые приходят к значению Затухающие колебания уравнение затухающих колебаний и его решение критический режим— статическое отклонение.

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Параметрический резонанс возникает в том случае, когда периодическое изменение одного из параметров система приводит к резкому увеличению амплитуды колеблющейся системы. Например, кабины, делающие «солнышко» за счет изменения положения центра тяжести система.(То же в «лодочках».) См. §61 .т. 1 Савельев И.В.

Видео:Урок 343. Затухающие колебания (часть 1)Скачать

Урок 343. Затухающие колебания (часть 1)

Затухающие колебания в контуре и их уравнение

Существуют колебания в системе без источника энергии, называемые затухающими. Рассмотрим реальный контур с сопротивлением не равным нулю. Для примера используют контур с включенным сопротивлением R , с емкостью конденсатора C , с катушкой индуктивности L , изображенный на рисунке 1 . Колебания, происходящие в нем, — затухающие.

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Именно наличие сопротивления становится главной причиной их затухания. Данный процесс возможен посредствам потерь энергии на выделение джоулева тепла. Аналог сопротивления в механике – действие сил трения.

Видео:70. Затухающие колебанияСкачать

70. Затухающие колебания

Характеристики затухающих колебаний

Затухающие колебания характеризуют коэффициентом затухания β . Применив второй закон Ньютона, получим:

m a = — k x — y v , d 2 x d t 2 + r m d x d t + k m x = 0 , ω 0 2 = k m , β = r 2 m .

Из записи видно, что β действительно является характеристикой контура. Реже вместо β применяют декремент затухания δ ,

Значение a ( t ) является амплитудой заряда, силы тока и так далее, δ равняется количеству колебаний, а N e — период времени уменьшения амплитуды в e раз.

Для R L C контура применима формула с ω частотой.

При небольшой δ ≪ 1 говорят, что β ≪ ω 0 ω 0 = 1 L C — собственная частота, отсюда ω ≈ ω 0 .

При рассмотрении затухающих колебаний последовательного контура колебательный контур характеризуется добротностью Q :

Q = 1 R L C = ω 0 L R , где R , L и C — сопротивление, индуктивность, емкость, а ω 0 — частота резонанса. Выражение L C называют характеристическим или волновым сопротивлением. Для параллельного контура формула примет вид:

Q = R L C = R ω 0 L .

R является входным сопротивлением параллельного контура.

Эквивалентное определение добротности применяется при слабых затуханиях. Его выражают через отношение энергий:

Q = ω 0 W P d = 2 π f 0 W P d , называемое общей формулой.

Видео:Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | ИнфоурокСкачать

Затухающие колебания. Вынужденные колебания | Физика 9 класс #26 | Инфоурок

Уравнения затухающих колебаний

Рассмотрим рисунок 1 . Изменение заряда q на конденсаторе в таком контуре описывается дифференциальным уравнением:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Если t = 0 , то заряд конденсатора становится равным q 0 , и ток в цепи отсутствует.

Если R > 2 L C изменения заряда не относят к колебаниям, разряд называют апериодическим.

Значение сопротивления, при котором колебания превращаются в апериодический разряд конденсатора, критическое R k .

Функция изображается аналогично рисунку 2 .

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Записать закон убывания энергии, запасенной в контуре W ( t ) при W ( t = 0 ) = W 0 с затухающими колебаниями. Обозначить коэффициент затухания в контуре β , а собственную частоту — ω 0 .

Решение

Отправная точка решения – это применение формулы изменения заряда на конденсаторе в R L C — контуре:

q ( t ) = q 0 e ( — β t ) cos ω t + a ‘ 0 = q 0 e — β t cos ( ω t ) .

Предположим, что при t = 0 , a ‘ 0 = 0 . Тогда применим выражение

Для нахождения I ( t ) :

I ( t ) = — ω 0 q 0 e ( — 2 β t ) sin ( ω t + α ) , где t g α = β ω .

Очевидно, что электрическая энергия W q запишется как:

W q = q 2 2 C = q 0 2 2 C e ( — 2 β t ) cos 2 ( ω t ) = W 0 e ( — 2 β t ) cos 2 ( ω t ) .

Тогда значение магнитной энергии контура W m равняется:

W m = L 2 ω 0 2 q 0 2 e ( — 2 β t ) sin 2 ω t + a = W 0 e — 2 β t sin 2 ω t + a .

Запись полной энергии будет иметь вид:

W = W q + W m = W 0 e ( — 2 β t ) ( cos 2 ( ω t ) + sin 2 ( ω t + a ) ) = = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + α ) .

Где sin α = β ω 0 .

Ответ: W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) .

Применив результат предыдущего примера, записать выражение для энергии, запасенной в контуре W ( t ) , при медленно затухающих колебаниях. Начертить график убывания энергии.

Решение

Если колебания в контуре затухают медленно, то:

Очевидно, выражение энергии, запасенной в контуре, вычислим из

W ( t ) = W 0 e ( — 2 β t ) 1 + β ω 0 sin ( 2 ω t + a ) , предварительно преобразовав до W ( t ) = W 0 e ( — 2 β t ) .

Такое упрощение возможно по причине выполнения условия β ω 0 ≪ 1 , sin ( 2 ω t + a ) ≤ 1 , что означает β ω 0 sin ( 2 ω t + a ) ≪ 1 .

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Ответ: W ( t ) = W 0 e ( — 2 β t ) . Энергия в контуре убывает по экспоненте.

Видео:Урок 355. Затухающие электромагнитные колебания.Скачать

Урок 355. Затухающие электромагнитные колебания.

Затухающие колебания

ЗАТУХАЮЩИЕ КОЛЕБАНИЯ — колебания с постоянно убывающей со временем амплитудой.

Свободные колебания реальных систем всегда затухают. Затухание обусловлено в основном трением (механические системы) и сопротивлением ( в электромагнитных колебательных контурах).

Колебательная система называется линейной, если её свойства не меняются при колебаниях, то есть такие параметры, как сила тяжести, упругость пружины, сопротивление, емкость, индуктивность не зависят ни от смещения, ни от скорости, ни от ускорения колеблющейся величины. В дальнейшем мы будем рассматривать только линейные системы.

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Уравнения затухающих колебаний

Получим дифференциальное уравнение свободных затухающих колебаний на примере реального пружинного маятника, совершающего колебания в среде с сопротивлением (простейший случай — трение о воздух). Пусть масса маятника m, коэффициент упругости пружины k, сила сопротивления, действующая на маятник, F = — bv, v — скорость маятника, b — коэффициент сопротивления среды, в которой находится маятник. Так как мы рассматриваем только линейные системы, b = const, k = const. x — смещение маятника от положения равновесия.

Второй закон

Затухающие колебания уравнение затухающих колебаний и его решение критический режим
1643 — 1727

в нашем случае запишется так:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Это уравнение и есть дифференциальное уравнение свободных затухающих колебаний пружинного маятника. Его, однако, принято записывать в следующем, так называемом каноническом виде:

Затухающие колебания уравнение затухающих колебаний и его решение критический режим

Затухающие колебания уравнение затухающих колебаний и его решение критический режим— коэффициент затухания, Затухающие колебания уравнение затухающих колебаний и его решение критический режим— собственная частота свободных (незатухающих) колебаний пружинного маятника, то, что раньше мы обозначали просто w .

Уравнение затухающих колебаний в таком (каноническом) виде описывает затухающие колебания всех линейных систем; конкретная колебательная система отличается только выражениями для b и j0 .

📺 Видео

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)Скачать

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)

Урок 344. Затухающие колебания (часть 2)Скачать

Урок 344. Затухающие колебания (часть 2)

1 Лекция 12 Затухающие и вынужденные колебанияСкачать

1 Лекция 12 Затухающие и вынужденные колебания

ЧК_МИФ ЗАТУХАЮЩИЕ КОЛЕБАНИЯСкачать

ЧК_МИФ    ЗАТУХАЮЩИЕ КОЛЕБАНИЯ

Якута А. А. - Механика - Гармонические колебания. Собственные затухающие колебанияСкачать

Якута А. А. - Механика - Гармонические колебания. Собственные затухающие колебания

ЧК_МИФ СВОБОДНЫЕ ЗАТУХАЮЩИЕ КОЛЕБАНИЯ: АПЕРИОДИЧЕСКИЙ РЕЖИМСкачать

ЧК_МИФ   СВОБОДНЫЕ ЗАТУХАЮЩИЕ КОЛЕБАНИЯ: АПЕРИОДИЧЕСКИЙ РЕЖИМ

Затухающие колебания, Киевнаучфильм, 1978Скачать

Затухающие колебания, Киевнаучфильм, 1978

Урок 346. Определение добротности по графику затухающих колебанийСкачать

Урок 346. Определение добротности по графику затухающих колебаний

Лекция №14 "Свободные и затухающие колебания в электрических цепях"Скачать

Лекция №14 "Свободные и затухающие колебания в электрических цепях"

Урок 353. Колебательный контурСкачать

Урок 353. Колебательный контур

Общая физика | Лекция 20: Затухающие колебания. Добротность. Вынужденные колебания. РезонансСкачать

Общая физика | Лекция 20: Затухающие колебания. Добротность. Вынужденные колебания. Резонанс

Физика 9 класс, §26 Затухающие колебания. Вынужденные колебанияСкачать

Физика 9 класс, §26 Затухающие колебания. Вынужденные колебания

Никанорова Е. А. - Механика. Семинары - Затухающие колебанияСкачать

Никанорова Е. А. - Механика. Семинары - Затухающие колебания

Лекция 9. Вынужденные и затухающие колебанияСкачать

Лекция 9. Вынужденные и затухающие колебания
Поделиться или сохранить к себе: