Запишите уравнения асимптот графика функции y k x где k не равно 0

Видео:Математика без Ху!ни. Нахождение асимптот, построение графика функции.Скачать

Математика без Ху!ни. Нахождение асимптот, построение графика функции.

Асимптоты

п.1. Понятие асимптоты

Различают вертикальные, горизонтальные и наклонные асимптоты.
Например:

Запишите уравнения асимптот графика функции y k x где k не равно 0
Вертикальная асимптота x=3
Запишите уравнения асимптот графика функции y k x где k не равно 0
Горизонтальная асимптота y=1
Запишите уравнения асимптот графика функции y k x где k не равно 0
Наклонная асимптота y=x

п.2. Вертикальная асимптота

Таким образом, практически каждой точке разрыва 2-го рода (см. §40 данного справочника) соответствует вертикальная асимптота.
Вертикальных асимптот может быть сколько угодно, в том числе, бесконечное множество (например, как у тангенса – см. §6 данного справочника).

Например:
Исследуем непрерывность функции (y=frac)
ОДЗ: (xne left)
(leftnotin D) — точки не входят в ОДЗ, подозрительные на разрыв.
Исследуем (x_0=-3). Найдем односторонние пределы: begin lim_frac=frac=frac=+infty\ lim_frac=frac=frac=-infty end Односторонние пределы не равны и бесконечны.
Точка (x_0=-3) — точка разрыва 2-го рода.
Исследуем (x_1=1). Найдем односторонние пределы: begin lim_frac=frac=frac=-infty\ lim_frac=frac=frac=+infty end Односторонние пределы не равны и бесконечны.
Точка (x_1=1) — точка разрыва 2-го рода.
Вывод: у функции (y=frac) две точки разрыва 2-го рода (left), соответственно – две вертикальные асимптоты с уравнениями (x=-3) и (x=1).

п.3. Горизонтальная асимптота

Число горизонтальных асимптот не может быть больше двух.

Например:
Исследуем наличие горизонтальных асимптот у функции (y=frac)
Ищем предел функции на минус бесконечности: begin lim_frac=frac=+0 end На минус бесконечности функция имеет конечный предел (b=0) и стремится к нему сверху (о чем свидетельствует символическая запись +0).
Ищем предел функции на плюс бесконечности: begin lim_frac=frac=+0 end На плюс бесконечности функция имеет тот же конечный предел (b=0) и также стремится к нему сверху.
Вывод: у функции (y=frac) одна горизонтальная асимптота (y=0). На плюс и минус бесконечности функция стремится к асимптоте сверху.

Итоговый график асимптотического поведения функции (y=frac): Запишите уравнения асимптот графика функции y k x где k не равно 0

п.4. Наклонная асимптота

Число наклонных асимптот не может быть больше двух.

Чтобы построить график асимптотического поведения, заметим, что у функции (y=frac), очевидно, есть вертикальная асимптота x=1. При этом: begin lim_frac=-infty, lim_frac=+infty end

График асимптотического поведения функции (y=frac): Запишите уравнения асимптот графика функции y k x где k не равно 0

п.5. Алгоритм исследования асимптотического поведения функции

На входе: функция (y=f(x))
Шаг 1. Поиск вертикальных асимптот
Исследовать функцию на непрерывность. Если обнаружены точки разрыва 2-го рода, у которых хотя бы один односторонний предел существует и бесконечен, сопоставить каждой такой точке вертикальную асимптоту. Если таких точек не обнаружено, вертикальных асимптот нет.
Шаг 2. Поиск горизонтальных асимптот
Найти пределы функции на плюс и минус бесконечности. Каждому конечному пределу сопоставить горизонтальную асимптоту. Если оба предела конечны и равны, у функции одна горизонтальная асимптота. Если оба предела бесконечны, горизонтальных асимптот нет.
Шаг 3. Поиск наклонных асимптот
Найти пределы отношения функции к аргументу на плюс и минус бесконечности.
Каждому конечному пределу k сопоставить наклонную асимптоту, найти b. Если только один предел конечен, у функции одна наклонная асимптота. Если оба значения k конечны и равны, и оба значения b равны, у функции одна наклонная асимптота. Если оба предела для k бесконечны, наклонных асимптот нет .
На выходе: множество всех асимптот данной функции.

п.6. Примеры

Пример 1. Исследовать асимптотическое поведение функции и построить схематический график:
a) ( y=frac )
1) Вертикальные асимптоты
Точки, подозрительные на разрыв: (x=pm 1)
Односторонние пределы в точке (x=-1) begin lim_frac=frac=frac=-infty\ lim_frac=frac=frac=+infty end Точка (x=-1) — точка разрыва 2-го рода
Односторонние пределы в точке (x=1) begin lim_frac=frac=frac=-infty\ lim_frac=frac=frac=+infty end Точка (x=1) — точка разрыва 2-го рода
Функция имеет две вертикальные асимптоты (x=pm 1)

График асимптотического поведения функции (y=frac)
Запишите уравнения асимптот графика функции y k x где k не равно 0

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin b_1=lim_e^<frac>=e^0=1\ b_2=lim_e^<frac>=e^0=1\ b=b_1=b_2=1 end Функция имеет одну горизонтальную асимптоту (y=1). Функция стремится к этой асимптоте на минус и плюс бесконечности.

График асимптотического поведения функции (y=e^<frac>)
Запишите уравнения асимптот графика функции y k x где k не равно 0

в) ( y=frac )
Заметим, что ( frac=frac=frac=frac ) $$ y=fracLeftrightarrow begin y=frac\ xne -1 end $$ График исходной функции совпадает с графиком функции (y=frac), из которого необходимо выколоть точку c абсциссой (x=-1).

3) Наклонные асимптоты
Ищем угловые коэффициенты: begin k_1=lim_frac=left[fracright]=lim_frac<x^2left(1+fracright)>=frac=1\ k_2=lim_frac=left[fracright]=lim_frac<x^2left(1+fracright)>=frac=1\ k=k_1=k_2=1 end У функции есть одна наклонная асимптота с (k=1).
Ищем свободный член: begin b=lim_(y-kx)= lim_left(frac-2right)= lim_frac= lim_frac=left[fracright]=\ =lim_frac=frac=1 end Функция имеет одну наклонную асимптоту (y=x+1).
График асимптотического поведения функции (y=frac)
Запишите уравнения асимптот графика функции y k x где k не равно 0

2) Горизонтальные асимптоты
Пределы функции на бесконечности: begin b_1=lim_xe^<frac>=-inftycdot e^0=-infty\ b_2=lim_xe^<frac>=+inftycdot e^0=+infty end Оба предела бесконечны.
Функция не имеет горизонтальных асимптот.

График асимптотического поведения функции (y=xe^<frac>)
Запишите уравнения асимптот графика функции y k x где k не равно 0

Видео:Функция y=k/x и ее график. 7 класс.Скачать

Функция y=k/x и ее график. 7 класс.

Асимптоты графика функции

Вы будете перенаправлены на Автор24

Достаточно часто на практике приходится иметь дело с функциями, которые определены не на всей числовой прямой, либо принимают не любые значения из множества действительных чисел.

В таких случаях при построении графиков функций получаем, что график функции не является непрерывной линией, а имеет некоторые разрывы. В результате чего становится целесообразным ввести понятие «асимптота».

Асимптота — это такая прямая, к которой график заданной функции приближается сколько угодно близко, но не пересекает ее.

Среди асимптот выделяют следующие виды:

  • вертикальная асимптота (параллельна оси ОY);
  • горизонтальная асимптота (параллельна оси ОХ);
  • наклонная асимптота (расположена под углом к осям координат).

Отметим, что асимптоты на графике функции изображаются пунктирной линией.

Вертикальная асимптота — это прямая, определяемая уравнением $x=a$, для которой выполняются условия $mathoplimits_ f(x)=infty $ или $mathoplimits_ f(x)=infty $.

Вертикальная асимптота может быть только в точках разрыва функции $y=f(x)$, т.е. в тех точках, где данная функция неопределенна.

Найти вертикальную асимптоту графика данной функции: $y=frac $.

Следовательно, прямая $x=2$ является вертикальной асимптотой (см. рис.).

Запишите уравнения асимптот графика функции y k x где k не равно 0

Горизонтальная асимптота — это прямая, определяемая уравнением $y=b$, для которой выполняются условия $mathoplimits_ f(x)=b$.

Готовые работы на аналогичную тему

Найти горизонтальную асимптоту графика данной функции: $y=5^ $.

Следовательно, прямая $y=0$ является горизонтальной асимптотой (см. рис.).

Запишите уравнения асимптот графика функции y k x где k не равно 0

График функции может иметь только правую либо только левую горизонтальную асимптоту.

Наклонная асимптота — это прямая, определяемая уравнением $y=kx+b$, для которой выполняется условие $mathoplimits_ [f(x)-kx+b]=0$.

Условия существования наклонной асимптоты определяются следующей теоремой.

Если функция $y=f(x)$ имеет конечные пределы $mathoplimits_ frac =k;mathoplimits_ [f(x)-kx]=b$, то данная функция имеет наклонную асимптоту, заданную уравнением $y=kx+b$ при $xto infty $.

Частным случаем наклонной асимптоты при $k=0$ является горизонтальная асимптота.

Наклонная асимптота может быть левой (график приближается справа), правой (график приближается слева) или двусторонней (график приближается с обоих сторон).

Найти наклонную асимптоту графика данной функции: $y=frac <x^> $.

Следовательно, прямая $y=x+2$ является наклонной асимптотой (см. рис.). В данном случае имеем двустороннюю наклонную асимптоту.

Запишите уравнения асимптот графика функции y k x где k не равно 0

Найти наклонную асимптоту графика данной функции: $y=frac <x^> $.

Следовательно, график данной функции не имеет наклонной асимптоты.

График функции может иметь одновременно несколько асимптот, например, вертикальную и наклонную.

Найти асимптоты графика данной функции: $y=frac <3x^> $.

Область определения функции: $D_ = $.

Следовательно, прямая $x=1$ является вертикальной асимптотой (см. рис.).

Следовательно, прямая $y=3x+3$ является наклонной асимптотой (см. рис.). В данном случае имеем двустороннюю наклонную асимптоту.

Запишите уравнения асимптот графика функции y k x где k не равно 0

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 17.02.2022

Видео:Алгебра 8 класс (Урок№14 - Функция y = k/x и её график.)Скачать

Алгебра 8 класс (Урок№14 - Функция y = k/x и её график.)

Асимптоты графика функций: их виды, примеры решений

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы.

Видео:Математический анализ, 15 урок, АссимптотыСкачать

Математический анализ, 15 урок, Ассимптоты

Понятие асимптоты

Если предварительно построить асимптоты кривой, то многих случаях построение графика функции облегчается.

Судьба асимптоты полна трагизма. Представьте себе, каково это: всю жизнь двигаться по прямой к заветной цели, подойти к ней максимально близко, но так и не достигнуть её. Например, стремиться соединить свой жизненный путь с путём желанного человека, в какой-то момент приблизиться к нему почти вплотную, но даже не коснуться его. Или стремиться заработать миллиард, но до достижения этой цели и записи в книгу рекордов Гиннеса для своего случая не достаёт сотых долей цента. И тому подобное. Так и с асимптотой: она постоянно стремится достигнуть кривой графика функции, приближается к нему на минимальное возможное расстояние, но так и не касается его.

Определение 1. Асимптотами называются такие прямые, к которым сколь угодно близко приближается график функции, когда переменная стремится к плюс бесконечности или к минус бесконечности.

Определение 2. Прямая называется асимптотой графика функции, если расстояние от переменной точки М графика функции до этой прямой стремится к нулю при неограниченном удалении точки М от начала координат по какой-либо ветви графика функции.

Различают три вида асимптот: вертикальные, горизонтальные и наклонные.

Видео:Асимптоты функции. Практическая часть. 10 класс.Скачать

Асимптоты функции. Практическая часть. 10 класс.

Вертикальные асимптоты

Первое, что нужно узнать о вертикальных асимптотах: они параллельны оси Oy .

Определение. Прямая x = a является вертикальной асимптотой графика функции, если точка x = a является точкой разрыва второго рода для этой функции.

Из определения следует, что прямая x = a является вертикальной асимптотой графика функции f(x) , если выполняется хотя бы одно из условий:

  • Запишите уравнения асимптот графика функции y k x где k не равно 0(предел функции при значении аргумента, стремящимся к некоторому значению a слева, равен плюс или минус бесконечности)
  • Запишите уравнения асимптот графика функции y k x где k не равно 0(предел функции при значении аргумента, стремящимся к некоторому значению a справа, равен плюс или минус бесконечности).

  • символом Запишите уравнения асимптот графика функции y k x где k не равно 0обозначается стремление x к a справа, причём x остаётся больше a;
  • символом Запишите уравнения асимптот графика функции y k x где k не равно 0обозначается стремление x к a слева, причём x остаётся меньше a.

Из сказанного следует, что вертикальные асимптоты графика функции можно искать не только в точках разрыва, но и на границах области определения. График функции, непрерывной на всей числовой прямой, вертикальных асимптот не имеет.

Запишите уравнения асимптот графика функции y k x где k не равно 0

Пример 1. График функции y=lnx имеет вертикальную асимптоту x = 0 (т.е. совпадающую с осью Oy ) на границе области определения, так как предел функции при стремлении икса к нулю справа равен минус бесконечности:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Найти асимптоты графика функции самостоятельно, а затем посмотреть решения

Пример 2. Найти асимптоты графика функции Запишите уравнения асимптот графика функции y k x где k не равно 0.

Пример 3. Найти асимптоты графика функции Запишите уравнения асимптот графика функции y k x где k не равно 0

Пример 4. Найти асимптоты график функции Запишите уравнения асимптот графика функции y k x где k не равно 0.

Видео:Асимптоты функции. Наклонная асимптота. 10 класс.Скачать

Асимптоты функции. Наклонная асимптота. 10 класс.

Горизонтальные асимптоты

Первое, что нужно узнать о горизонтальных асимптотах: они параллельны оси Ox .

Если Запишите уравнения асимптот графика функции y k x где k не равно 0(предел функции при стремлении аргумента к плюс или минус бесконечности равен некоторому значению b), то y = bгоризонтальная асимптота кривой y = f(x ) (правая при иксе, стремящимся к плюс бесконечности, левая при иксе, стремящимся к минус бесконечности, и двусторонняя, если пределы при стремлении икса к плюс или минус бесконечности равны).

Запишите уравнения асимптот графика функции y k x где k не равно 0

Пример 5. График функции

Запишите уравнения асимптот графика функции y k x где k не равно 0

при a > 1 имеет левую горизонтальную асимпототу y = 0 (т.е. совпадающую с осью Ox ), так как предел функции при стремлении «икса» к минус бесконечности равен нулю:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Правой горизонтальной асимптоты у кривой нет, поскольку предел функции при стремлении «икса» к плюс бесконечности равен бесконечности:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Видео:Асимптоты графика функции. Практика. Пример 1.Скачать

Асимптоты графика функции. Практика. Пример 1.

Наклонные асимптоты

Вертикальные и горизонтальные асимптоты, которые мы рассмотрели выше, параллельны осям координат, поэтому для их построения нам требовалось лишь определённое число — точка на оси абсцисс или ординат, через которую проходит асимптота. Для наклонной асимптоты необходимо больше — угловой коэффициент k, который показывает угол наклона прямой, и свободный член b, который показывает, насколько прямая находится выше или ниже начала координат. Не успевшие забыть аналитическую геометрию, а из неё — уравнения прямой, заметят, что для наклонной асимптоты находят уравнение прямой с угловым коэффициентом. Существование наклонной асимптоты определяется следующей теоремой, на основании которой и находят названные только что коэффициенты.

Теорема. Для того, чтобы кривая y = f(x) имела асимптоту y = kx + b , необходимо и достаточно, чтобы существовали конечные пределы k и b рассматриваемой функции при стремлении переменной x к плюс бесконечности и минус бесконечности:

Запишите уравнения асимптот графика функции y k x где k не равно 0(1)

Запишите уравнения асимптот графика функции y k x где k не равно 0(2)

Найденные таким образом числа k и b и являются коэффициентами наклонной асимптоты.

В первом случае (при стремлении икса к плюс бесконечности) получается правая наклонная асимптота, во втором (при стремлении икса к минус бесконечности) – левая. Правая наклонная асимптота изображена на рис. снизу.

Запишите уравнения асимптот графика функции y k x где k не равно 0

При нахождении уравнения наклонной асимптоты необходимо учитывать стремление икса и к плюс бесконечности, и к минус бесконечности. У некоторых функций, например, у дробно-рациональных, эти пределы совпадают, однако у многих функций эти пределы различны а также может существовать только один из них.

При совпадении пределов при иксе, стремящемся к плюс бесконечности и к минус бесконечности прямая y = kx + b является двусторонней асимптотой кривой.

Если хотя бы один из пределов, определяющих асимптоту y = kx + b , не существует, то график функции не имеет наклонной асимптоты (но может иметь вертикальную).

Нетрудно видеть, что горизонтальная асимптота y = b является частным случаем наклонной y = kx + b при k = 0 .

Поэтому если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример 6. Найти асимптоты графика функции

Запишите уравнения асимптот графика функции y k x где k не равно 0

Решение. Функция определена на всей числовой прямой, кроме x = 0 , т.е.

Запишите уравнения асимптот графика функции y k x где k не равно 0

Поэтому в точке разрыва x = 0 кривая может иметь вертикальную асимптоту. Действительно, предел функции при стремлении икса к нулю слева равен плюс бесконечности:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Запишите уравнения асимптот графика функции y k x где k не равно 0

Следовательно, x = 0 – вертикальная асимптота графика данной функции.

Горизонтальной асимптоты график данной функции не имеет, так как предел функции при стремлении икса к плюс бесконечности равен плюс бесконечности:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Выясним наличие наклонной асимптоты:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Получили конечные пределы k = 2 и b = 0 . Прямая y = 2x является двусторонней наклонной асимптотой графика данной функции (рис. внутри примера).

Пример 7. Найти асимптоты графика функции

Запишите уравнения асимптот графика функции y k x где k не равно 0

Решение. Функция имеет одну точку разрыва x = −1 . Вычислим односторонние пределы и определим вид разрыва:

Запишите уравнения асимптот графика функции y k x где k не равно 0,

Запишите уравнения асимптот графика функции y k x где k не равно 0.

Заключение: x = −1 — точка разрыва второго рода, поэтому прямая x = −1 является вертикальной асимптотой графика данной функции.

Ищем наклонные асимптоты. Так как данная функция — дробно-рациональная, пределы при Запишите уравнения асимптот графика функции y k x где k не равно 0и при Запишите уравнения асимптот графика функции y k x где k не равно 0будут совпадать. Таким образом, находим коэффициенты для подстановки в уравнение прямой — наклонной асимптоты:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Запишите уравнения асимптот графика функции y k x где k не равно 0

Подставляя найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты:

На рисунке график функции обозначен бордовым цветом, а асимптоты — чёрным.

Пример 8. Найти асимптоты графика функции

Запишите уравнения асимптот графика функции y k x где k не равно 0.

Решение. Так как данная функция непрерывна, её график не имеет вертикальных асимптот. Ищем наклонные асимптоты:

Запишите уравнения асимптот графика функции y k x где k не равно 0.

Таким образом, график данной функции имеет асимптоту y = 0 при Запишите уравнения асимптот графика функции y k x где k не равно 0и не имеет асиптоты при Запишите уравнения асимптот графика функции y k x где k не равно 0.

Запишите уравнения асимптот графика функции y k x где k не равно 0

Пример 9. Найти асимптоты графика функции

Запишите уравнения асимптот графика функции y k x где k не равно 0.

Решение. Сначала ищем вертикальные асимптоты. Для этого найдём область определения функции. Функция определена, когда выполняется неравенство Запишите уравнения асимптот графика функции y k x где k не равно 0и при этом Запишите уравнения асимптот графика функции y k x где k не равно 0. Знак переменной x совпадает со знаком Запишите уравнения асимптот графика функции y k x где k не равно 0. Поэтому рассмотрим эквивалентное неравенство Запишите уравнения асимптот графика функции y k x где k не равно 0. Из этого получаем область определения функции: Запишите уравнения асимптот графика функции y k x где k не равно 0. Вертикальная асимптота может быть только на границе области определения функции. Но x = 0 не может быть вертикальной асимптотой, так как функция определена при x = 0 .

Рассмотрим правосторонний предел при Запишите уравнения асимптот графика функции y k x где k не равно 0(левосторонний предел не существует):

Запишите уравнения асимптот графика функции y k x где k не равно 0.

Точка x = 2 — точка разрыва второго рода, поэтому прямая x = 2 — вертикальная асимптота графика данной функции.

Ищем наклонные асимптоты:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Итак, y = x + 1 — наклонная асимптота графика данной функции при Запишите уравнения асимптот графика функции y k x где k не равно 0. Ищем наклонную асимптоту при Запишите уравнения асимптот графика функции y k x где k не равно 0:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Итак, y = −x − 1 — наклонная асимптота при Запишите уравнения асимптот графика функции y k x где k не равно 0.

Запишите уравнения асимптот графика функции y k x где k не равно 0

Пример 10. Найти асимптоты графика функции

Запишите уравнения асимптот графика функции y k x где k не равно 0

Решение. Функция имеет область определения Запишите уравнения асимптот графика функции y k x где k не равно 0. Так как вертикальная асимптота графика этой функции может быть только на границе области определения, найдём односторонние пределы функции при Запишите уравнения асимптот графика функции y k x где k не равно 0:

Запишите уравнения асимптот графика функции y k x где k не равно 0,

Запишите уравнения асимптот графика функции y k x где k не равно 0.

Оба предела нашли, используя первый замечательный предел. Заключение: x = 0 — точка устранимого разрыва, поэтому у графика функции нет вертикальных асимптот.

Ищем наклонные асимптоты:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Запишите уравнения асимптот графика функции y k x где k не равно 0

Таким образом, при Запишите уравнения асимптот графика функции y k x где k не равно 0наклонной асимптотой графика данной функции является прямая y = x . Но при Запишите уравнения асимптот графика функции y k x где k не равно 0найденные пределы не изменяются. Поэтому при Запишите уравнения асимптот графика функции y k x где k не равно 0наклонной асимптотой графика данной функции также является y = x .

Пример 11. Найти асимптоты графика функции

Запишите уравнения асимптот графика функции y k x где k не равно 0.

Решение. Сначала найдём вертикальные асимптоты. Для этого найдём точки разрыва функции и их виды. Знаменатель не может быть равным нулю, поэтому должно соблюдаться условие Запишите уравнения асимптот графика функции y k x где k не равно 0. Функция имеет две точки разрыва: Запишите уравнения асимптот графика функции y k x где k не равно 0, Запишите уравнения асимптот графика функции y k x где k не равно 0. Чтобы установить вид разрыва, найдём односторонние пределы:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Так как все пределы равны бесконечности, обе точки разрыва — второго рода. Поэтому график данной функции имеет две вертикальные асимптоты: x = 2 и x = −2 .

Ищем наклонные асимптоты. Так как данная функция является дробно-рациональной, пределы при Запишите уравнения асимптот графика функции y k x где k не равно 0и при Запишите уравнения асимптот графика функции y k x где k не равно 0совпадают. Поэтому, определяя коэффициенты прямой, ищем просто пределы:

Запишите уравнения асимптот графика функции y k x где k не равно 0

Запишите уравнения асимптот графика функции y k x где k не равно 0

Подставляем найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты y = 2x . Таким образом, график данной функции имеет три асимптоты: x = 2 , x = −2 и y = 2x .

Найти асимптоты графика функции самостоятельно, а затем посмотреть решения

Пример 12. Найти асимптоты графика функции Запишите уравнения асимптот графика функции y k x где k не равно 0.

Пример 13. Найти асимптоты графика функции Запишите уравнения асимптот графика функции y k x где k не равно 0.

📹 Видео

Асимптоты функции. 10 класс.Скачать

Асимптоты функции. 10 класс.

Асимптоты функции. Горизонтальная асимптота. 10 класс.Скачать

Асимптоты функции. Горизонтальная асимптота. 10 класс.

Математика без Ху!ни. Исследование функции, график. Первая, вторая производная, асимптоты.Скачать

Математика без Ху!ни. Исследование функции, график. Первая, вторая производная, асимптоты.

Пределы №6 Нахождение асимптот графиков функцийСкачать

Пределы №6 Нахождение асимптот графиков функций

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать

Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnline

Построить график ЛИНЕЙНОЙ функции и найти:Скачать

Построить график  ЛИНЕЙНОЙ функции и найти:

Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.Скачать

Прямая y=8x+11 параллельна касательной к графику функции y=x^2+7x-7. Найдите абсциссу точки касания.

График функции y=x² (y=аx).Скачать

График функции y=x² (y=аx).

Гипербола. Функция k/x и её графикСкачать

Гипербола. Функция k/x и её график

Исследование функции. Часть 4. Асимптоты графика функцииСкачать

Исследование функции. Часть 4. Асимптоты графика функции

10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графикиСкачать

10 класс, 20 урок, Функции y=tgx, y=ctgx, их свойства и графики

§76 Преобразование графика функции y=k/xСкачать

§76 Преобразование графика функции y=k/x

Асимптоты к графику функций. 10 классСкачать

Асимптоты к графику функций. 10 класс
Поделиться или сохранить к себе: