- теория по математике 📈 функции
- Пример №1
- Пример №2
- Пример №3
- Пример №4
- Функция y=x² и её график. Парабола
- График функции y=x²
- Свойства параболы y=x²
- Дана парабола у = (х — 2)2. а) Определите координаты вершины параболы. б) Запишите уравнение оси симметрии параболы. в) Какова область определения функции?
- Ваш ответ
- решение вопроса
- Похожие вопросы
- 📽️ Видео
теория по математике 📈 функции
Функция вида y=ax 2 +bx+c, где а, b, с – некоторые числа, причем, а ≠ 0 число, х – переменная, называется квадратичной функцией.
Графиком квадратичной функции является парабола, она имеет вершину и две ветви, которые могут быть направлены либо вверх, либо вниз (рис.1). Красной точкой обозначена вершина параболы, из которой выходят ветви. Её координаты по графику – (3; –4). Направление ветвей зависит от значения коэффициента «а», то есть, если «а» – положительное число, то ветви направлены вверх; если число «а» – отрицательное, то ветви направлены вверх. На данном рисунке ветви направлены вверх, значит коэффициент «а» у формулы, которая задает эту функцию – положительное число. Коэффициент «с» показывает ординату (у) точки пересечения ветви параболы с осью у. Так, на рисунке №1 парабола пересекает ось у в точке (5;0), значит коэффициент с=5.
Чтобы найти координаты вершины параболы (х0; у0), надо воспользоваться формулой:
для нахождения у0 можно просто подставить значение х0 в формулу данной функции y0=ax 2 +bx+c вместо х.
Рассмотрим это на примере конкретно заданной функции.
Пример №1
Найти вершину параболы, заданной формулой у=2х 2 – 8х + 5.
Найдем, чему равны коэффициенты: а=2; b= – 8
Подставим их в формулу и вычислим значение х0:
х0= − b 2 a . . = 8 2 ∙ 2 . . = 8 4 . . = 2
Теперь в заданную по условию формулу вместо х подставим найденное значение у0=2 ∙ 2 2 – 8 ∙ 2 + 5=8 – 16 + 5= –3
Итак, мы нашли координаты вершины параболы: (2; –3).
Значения х, при которых функция принимает значения, равные нулю, называются нулями функции. Другими словами, Значения абсцисс (х) точек пересечения ветвей параболы с осью х, называются нулями функции. На рисунке №1 точки координаты точек пересечения ветвей параболы с осью х следующие: (1;0) и (5;0). Значит, нули функции – это значения х, равные 1 и 5.
Рассмотрим, как найти нули функции не по рисунку, а по заданной формуле.
Пример №2
Найти нули функции у=х 2 +4х – 5
Так как нули функции это абсциссы точек пересечения ветвей параболы с осью х, то их координаты будут (х;0), то есть у=0. Значит, вместо у подставляем нуль в нашу формулу 0=х 2 +4х – 5 и получаем квадратное уравнение, решив которое, мы и найдем значения нулей функции:
D=b 2 – 4ac=4 2 – 4 ∙ 1 ∙ ( − 5 ) = 36
Значит, нули функции равны –5 и 1
Примечание к заданию по нахождению нулей функции без графика
Если дискриминант уравнения отрицательный, значит, нулей функции нет, то есть парабола не пересекает ось х (вершина находится выше неё, если ветви направлены вверх и ниже, если ветви направлены вниз).
Рассмотрим нахождение соответствия рисунков парабол, расположенных в системе координат значениям а и с.
Пример №3
Для выполнения данного задания на соответствие необходимо сначала поработать с графиками, подписав на них, какими – отрицательными или положительными являются коэффициенты а и с.
Теперь можно выполнить соответствие:
А | Б | В |
2 | 3 | 1 |
Пример №4
Рассмотрим еще пример на соответствие
В данном задании рассмотрим коэффициенты в формулах и подчеркнем их: так, в формуле под буквой А коэффициент а=-2, т.е. отрицательный, значит, ветви направлены вниз, а это график под номером 2. В формулах под буквами Б и В первые и третьи коэффициенты одинаковые, значит, сравнить по рисунку их невозможно, следовательно, будем сравнивать по расположению вершины (справа или слева от оси у), а именно х0.
Итак, найдем х0 для формулы «Б»:
х0= − b 2 a . . = − 4 2 ∙ 2 . . = − 4 4 . . = − 1
Видим, что х0 отрицательное, значит, вершина расположена слева от оси у, а это рисунок 3. Ну и осталось привести в соответствие В и 1.
Запишем в таблицу
А | Б | В |
2 | 3 | 1 |
А) a>0, с >0 Б) а 0 В) а>0, с
На рисунках в задании изображены параболы. Вспомним, что обозначают коэффициенты а и с: а – направление ветвей (a 0 – ветви вверх); коэффициент с показывает ординату точку пересечения параболы с осью х (с >0 – пересечение в положительном направлении; с 0, с >0 – это график №1
Б) а 0 – это график №3
pазбирался: Даниил Романович | обсудить разбор | оценить
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
Сразу обратим внимание на вариант В. Эта функция единственная, имеющая положительный коэффициент при х 2 (здесь а=1, т.е. а>0). При а>0 график параболы направлен ветками вверх. Такой график имеется только один – под №3. Кроме того, можно обратить внимание на коэфициент с. Она равен 3, т.е. с>0. Это указывает на то, что парабола должна пересечь ось Оу выше начала координат. Что и отображено на графике В. Получаем соответствие: В–3.
Оба других графика – 1-й и 2-й – пересекают ось Оу ниже начала координат, что соответствует значению с=–3
pазбирался: Даниил Романович | обсудить разбор | оценить
На рисунках изображены графики функций вида
Установите соответствие между знаками коэффициентов a и c и графиками функций.
Мы вспоминаем, за что отвечают коэффициенты a и b при построении графиков функции вида
Коэффициент a определяет направление ветвей параболы: если a > 0, то ветви направлены вверх, а если a 0.
Далее мы смотрим, на что влияет коэффициент c.
Коэффициент c отвечает за положение параболы относительно оси x, или же отвечает за сдвиг по оси y, а именно:
если c > 0, то вершина параболы расположена выше оси х
Из всего вышеперечисленного можно найти ответ:
pазбирался: Даниил Романович | обсудить разбор | оценить
Видео:Вариант 72, № 5. Уравнение оси симметрии параболы. Пример 2Скачать
Функция y=x² и её график. Парабола
График функции y=x²
Составим таблицу для расчёта значений функции $y = x^2$:
Отметим полученные точки на координатной плоскости и соединим их кривой:
Полученный график называют параболой. Точка (0;0) — это вершина параболы. Вершина делит график на левую и правую части, которые называют ветвями параболы.
Свойства параболы y=x²
1. Область определения $x in (- infty;+ infty)$ — все действительные числа.
2. Область значений $y in [0;+ infty)$ — все неотрицательные действительные числа.
3. Функция убывает при $x lt 0$, функция возрастает при $x gt 0$.
4. Наименьшее значение функции y = 0 — в вершине параболы при x = 0. Вершина параболы совпадает с началом координат.
5. Все точки на ветвях параболы лежат выше оси абсцисс, для них $y gt 0$.
6. График параболы симметричен относительно оси ординат, противоположным значениям аргумента соответствует одно и то же значение функции:
$$ (-x)^2 = x^2 Rightarrow y(-x) = y(x) $$
В таких случаях говорят, что функция чётная.
Если использовать запись для множеств и их элементов (см.§8 данного справочника), то область определения можно записать как $$, а область значений $$.
Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать
Дана парабола у = (х — 2)2. а) Определите координаты вершины параболы. б) Запишите уравнение оси симметрии параболы. в) Какова область определения функции?
Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
Ваш ответ
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
решение вопроса
Видео:Как легко составить уравнение параболы из графикаСкачать
Похожие вопросы
- Все категории
- экономические 43,405
- гуманитарные 33,632
- юридические 17,905
- школьный раздел 607,990
- разное 16,855
Популярное на сайте:
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.
📽️ Видео
Как определить уравнение параболы по графику?Скачать
Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать
Функция у=х² и у=х³ и их графики. Алгебра, 7 классСкачать
7 класс, 34 урок, Функция y=х^2 и её графикСкачать
Графики функций. Задание №11 | Математика ОГЭ 2023 | УмскулСкачать
Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать
Линейная функция: краткие ответы на важные вопросы | Математика | TutorOnlineСкачать
Функция у=х^2. ПАРАБОЛА. §11 алгебра 8 классСкачать
Уравнение параболы #алгебра #графики #парабола #репетиторСкачать
ОГЭ по математике. Задание 5. Уравнение параболы. Коэффициент c.Скачать
А8 Шаблон параболыСкачать
Парабола / квадратичная функция / влияние коэффициентовСкачать
Построить график функции y=x2. Парабола.Скачать
Квадратичная функция и ее график. 8 класс.Скачать
Как строить параболу? | TutorOnlineСкачать