56. 

58. 
Проинтегрировать следующие уравнения, для которых интегрирующий множитель 

59. 

61. 

63. 
64. 
65. 
10.4. Геометрические и физические задачи,
Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

уравнений первого порядка
1°. Геометрические задачи. В задачах геометрии, в которых требуется найти уравнение кривой по заданному свойству ее касательной, нормали или площади криволинейной трапеции, используются геометрическое истолкование производной – угловой коэффициент касательной – и интеграла с переменным верхним пределом – площадь криволинейной трапеции с подвижной ограничивающей ординатой, а также общие формулы для определения длин отрезков касательной t, нормали n, подкасательной 


Пример 1. Найти уравнение кривой, проходящей через начало координат, если в каждой ее точке 


Ñ Пусть 
выражения подкасательной и поднормали из (10.39), получаем дифференциальное уравнение 



Пример 2. Найти уравнение кривой, проходящей через точку (1; 1), если для любого отрезка 


Ñ По условию задачи, 




2°. Задачи с физическим содержанием. При составлении дифференциальных уравнений первого порядка в физических задачах используют метод дифференциалов, по которому приближенные соотношения между малыми приращениями величин заменяются соотношениями между их дифференциалами. В конкретных задачах используется тот или иной физический закон (некоторые из них приведены ниже при формулировании условия задачи), а также физическое истолкование производной как скорости протекания физического процесса.
Пример 3. В резервуаре первоначально содержится A кг вещества, растворенного в В литрах воды и вытекает N литров раствора (M > N), причем однородность раствора достигается путем перемешивания. Найти массу вещества в резервуаре через T минут после начала процесса.
Ñ Обозначим через 




Пусть





Заменяя в (10.40) приращения 


M > N, запишем общее решение: 


З а м е ч а н и е. Случай 
Видео:Записать уравнение прямой параллельной или перпендикулярной данной.Скачать

Задачи для самостоятельного решения
66. Найти уравнение кривой, проходящей через точку 
67. Найти уравнение кривой, проходящей через точку 
68. Найти уравнение кривой, проходящей через точку 
69. Найти уравнение кривых, у которых длина отрезка нормали постоянна и равна a.
70. Найти уравнения кривых, у которых поднормаль имеет постоянную длину а.
71. Найти уравнение кривой, проходящей через точку (0; 2), если площадь криволинейной трапеции, ограниченной дугой этой кривой, в два раза больше длины соответствующей дуги.
72. Найти уравнение кривой, проходящей через точку (1; 1/2), если для любого отрезка [1; x] площадь криволинейной трапеции, ограниченной соответствующей дугой этой кривой, равна отношению абсциссы x концевой точки к ординате.
73. Найти уравнение кривой, проходящей через точку (0; 3), если подкасательная в любой точке равна сумме абсциссы точки касания и расстояния от начала координат до точки касания (ограничиться рассмотрением случая 
74. Найти уравнение кривой, проходящей через точку (1; 0), если длина отрезка оси абсцисс, отсекаемого ее нормалью, на 2 ед. больше абсциссы точки касания.
75. Найти уравнение кривой, проходящей через начало координат, если для любого отрезка 
76. Найти уравнение кривой, проходящей через точку с полярными координатами 


77. Найти уравнение кривой, проходящей через точку (1; 1), если длина отрезка оси абсцисс, отсекаемого любой ее касательной, равна длине этой касательной.
78. Найти уравнение кривой, проходящей через точку (3; 1), если длина отрезка, отсекаемого любой ее касательной на оси ординат, равна поднормали.
79. Найти уравнение кривой, проходящей через начало координат, если середина отрезка ее нормали от любой точки кривой до оси Ox лежит на параболе 
80. Найти уравнение кривой, проходящей через точку (1; 0), если площадь трапеции, образованной касательной, осью координат и ординатой точки касания, постоянна и равна 3/2.
81. Найти уравнение кривой, проходящей через точку (0; 1), если площадь треугольника, образуемого осью абсцисс, касательной и радиус-вектором точки касания, постоянна и равна 1.
82. Найти уравнение кривой, проходящей через точку (1; 2), если произведение абсциссы точки касания на абсциссу точки пересечения нормали с осью Ox равно удвоенному квадрату расстояния от начала координат до точки касания.
83. Найти уравнение кривой, проходящей через точку с полярными координатами 
84. Скорость охлаждения тела пропорциональна разности температур тела и окружающей его среды (закон Ньютона). Найти зависимость температуры T от времени t, если тело, нагретое до 
85. Через сколько времени температура тела, нагретого до
100 °С, понизится до 25 °С, если температура помещения равна 20°С и за первые 10 мин тело охладилось до 60 °С?
86. Замедляющее действие трения на диск, вращающийся в жидкости, пропорционально угловой скорости вращения. Найти зависимость этой угловой скорости от времени, если известно, что диск, начавший вращаться со скоростью 5 об/с, по истечении двух минут вращается со скоростью 3 об/с. Через сколько времени он будет иметь угловую скорость 1 об/мин?
87. Скорость распада радия пропорциональна наличному его количеству. В течение года из каждого грамма радия распадается 0,44 мг. Через сколько лет распадется половина имеющегося количества радия?
88. Скорость истечения воды из сосуда через малое отверстие оп- ределяется формулой 


89. Количество света, поглощаемого при прохождении через тонкий слой воды, пропорционально количеству падающего света и толщине слоя. Зная, что при прохождении слоя воды толщиной 2 м поглощается 1/3 первоначального светового потока, найти, какая часть его дойдет до глубины 12 м.
90. Лодка замедляет свое движение под действием сопротивления воды, которое пропорционально скорости лодки. Начальная скорость лодки 1,5 м/с, скорость ее через 4 секунды 1 м/с. Когда скорость уменьшится до 1 см/с? Какой путь пройдет лодка до остановки?
91. Пуля, двигаясь со скоростью 
92. В баке находится 100 л раствора, содержащего 10 кг соли. В бак вливается вода со скоростью 5 л/мин и смесь вытекает из него с той же скоростью. Однородность раствора достигается путем перемешивания. Сколько соли останется в баке через час?
93. Некоторое вещество преобразуется в другое вещество со скоростью, пропорциональной массе непреобразованного вещества. Если масса первого есть 31,4 г по истечении одного часа и 9,7 г по истечении трех часов, то определить: а) массу вещества в начале процесса; б) через сколько времени после начала процесса останется лишь 1 % первоначальной массы исходного вещества?
94. В помещении цеха вместимостью 10800 м3 воздух содержит 0,12 % углекислоты. Вентиляторы доставляют свежий воздух, содержащий 0,04 % углекислоты, со скоростью 1500 м/мин. Предполагая, что углекислота распределяется по помещению равномерно в каждый момент времени, найти объемную долю углекислоты через 10 мин после начала работы вентиляторов.
95. Сила тока i в цепи с сопротивлением R, самоиндукцией L и напряжением u удовлетворяет уравнению 

10.5. Дифференциальные уравнения высших порядков
10.5.1. Основные понятия и определения. Задача Коши
Задачей Коши для дифференциального уравнения (10.2) называется задача определения решения 

Определение 1. Общим решением уравнения (10.1) или (10.2) называется такая функция 



Определение 2. Уравнение

определяющее общее решение как неявную функцию, называется общим интегралом дифференциального уравнения.
Теорема существования и единственности решения задачи Коши [(10.2); (10.41)]. Если дифференциальное уравнение (10.2) таково, что функция 



Определение 3. Решение уравнения (10.2) называется частным решением, если в каждой точке его сохраняется единственность решения задачи Коши.
З а м е ч а н и е. Если 

Определение 4. Решение уравнения называется особым, если в каждой точке его нарушается единственность решения задачи Коши.
В случае уравнения второго порядка

задача Коши состоит в нахождении решения 


Геометрически это означает, что ищется интегральная кривая, которая проходит через заданную точку 


Механический смысл задачи Коши заключается в следующем. Запишем уравнение движения материальной точки в проекции на ось Ox:

Здесь t – время, 







Пример 1. Показать, что 

Ñ 1. Покажем, что 








🎬 Видео
№970. Напишите уравнение окружности, проходящей через точку А (1; 3), если известноСкачать

Длина отрезкаСкачать

№577. Напишите уравнение сферы с центром А, проходящей через точку N, если: а) А ( — 2; 2; 0)Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

7 класс, 7 урок, Длина отрезкаСкачать

Точка, прямая и отрезок. 1 часть. 7 класс.Скачать

4. Уравнение плоскости проходящей через три точки / в отрезках / доказательство и примерыСкачать

Уравнение параллельной прямойСкачать

Уравнение окружности (1)Скачать

Составляем уравнение прямой по точкамСкачать

Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать

Длина отрезка в пространстве | МатематикаСкачать

9 класс, 7 урок, Уравнение прямойСкачать

Видеоурок "Уравнение плоскости в отрезках"Скачать

№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать

Координаты середины отрезка. Уравнение средней линии или диагонали. Урок 4. Геометрия 8 класс.Скачать

1. Уравнение плоскости проходящей через точку перпендикулярно вектору / общее уравнение / примерыСкачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

