Закон фарадея ленца и уравнение максвелла

Электромагнитная индукция

Закон фарадея ленца и уравнение максвелла

Содержание
  1. Явление электромагнитной индукции
  2. Магнитный поток
  3. Закон электромагнитной индукции Фарадея
  4. Правило Ленца
  5. Самоиндукция
  6. Индуктивность
  7. Энергия магнитного поля
  8. Основные формулы раздела «Электромагнитная индукция»
  9. Закон электромагнитной индукции
  10. Магнитный поток
  11. Электромагнитная индукция
  12. Закон электромагнитной индукции
  13. Правило Ленца
  14. Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме
  15. История развития и опыты Фарадея
  16. Закон Фарадея
  17. Основные понятия и законы электростатики
  18. Электроёмкость. Конденсаторы. Энергия электрического поля
  19. Основные понятия и законы постоянного тока
  20. Основные понятия и законы магнитостатики
  21. Основные понятия и законы электромагнитной индукции
  22. Электромагнитные колебания и волны
  23. Закон Фарадея-Максвелла
  24. Что мы узнали?
  25. Явление электромагнитной индукции
  26. Самоиндукция
  27. Индуктивность
  28. Энергия магнитного поля
  29. Основные формулы раздела «Электромагнитная индукция»
  30. Правило Ленца
  31. Задачи на применение закона Фарадея

Видео:Билеты №32, 33 "Уравнения Максвелла"Скачать

Билеты №32, 33 "Уравнения Максвелла"

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Закон фарадея ленца и уравнение максвелла

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Видео:О чем говорят уравнения Максвелла? Видео 1/2Скачать

О чем говорят уравнения Максвелла? Видео 1/2

Магнитный поток

Магнитным потоком через площадь ​ ( S ) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ ( B ) ​, площади поверхности ​ ( S ) ​, пронизываемой данным потоком, и косинуса угла ​ ( alpha ) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Закон фарадея ленца и уравнение максвелла

Закон фарадея ленца и уравнение максвелла

Обозначение – ​ ( Phi ) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Закон фарадея ленца и уравнение максвелла

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ ( alpha ) ​ магнитный поток может быть положительным ( ( alpha ) ( alpha ) > 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Видео:Урок 282. Закон Фарадея для электромагнитной индукцииСкачать

Урок 282. Закон Фарадея для электромагнитной индукции

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Закон фарадея ленца и уравнение максвелла

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ ( N ) ​ витков, то ЭДС индукции:

Закон фарадея ленца и уравнение максвелла

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ ( R ) ​:

Закон фарадея ленца и уравнение максвелла

При движении проводника длиной ​ ( l ) ​ со скоростью ​ ( v ) ​ в постоянном однородном магнитном поле с индукцией ​ ( vec ) ​ ЭДС электромагнитной индукции равна:

Закон фарадея ленца и уравнение максвелла

где ​ ( alpha ) ​ – угол между векторами ​ ( vec ) ​ и ( vec ) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Видео:Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.Скачать

Физика. Лекция 8. Уравнения Максвелла и электромагнитные волны.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Видео:Самый Интересный Закон ЭлектричестваСкачать

Самый Интересный Закон Электричества

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Закон фарадея ленца и уравнение максвелла

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Закон фарадея ленца и уравнение максвелла

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ ( varepsilon_ ) ​, возникающая в катушке с индуктивностью ​ ( L ) ​, по закону электромагнитной индукции равна:

Закон фарадея ленца и уравнение максвелла

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Видео:Закон электромагнитной индукцииСкачать

Закон электромагнитной индукции

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ ( Phi ) ​ через контур из этого проводника пропорционален модулю индукции ​ ( vec ) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Закон фарадея ленца и уравнение максвелла

Индуктивность – коэффициент пропорциональности ​ ( L ) ​ между силой тока ​ ( I ) ​ в контуре и магнитным потоком ​ ( Phi ) ​, создаваемым этим током:

Закон фарадея ленца и уравнение максвелла

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Закон фарадея ленца и уравнение максвелла

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Видео:Закон Фарадея | ЕГЭ Физика | Николай НьютонСкачать

Закон Фарадея | ЕГЭ Физика | Николай Ньютон

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Закон фарадея ленца и уравнение максвелла

Видео:3 14 Уравнения МаксвеллаСкачать

3 14  Уравнения Максвелла

Основные формулы раздела «Электромагнитная индукция»

Закон фарадея ленца и уравнение максвелла

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Видео:Урок 383. Вихревое электрическое поле. Ток смещенияСкачать

Урок 383. Вихревое электрическое поле. Ток смещения

Закон электромагнитной индукции

Закон фарадея ленца и уравнение максвелла

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений МаксвеллаСкачать

ЧК_МИФ: 4.1.1.ДФ_1 Физический смысл уравнений  Максвелла

Магнитный поток

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.

Закон фарадея ленца и уравнение максвелла

Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

Закон фарадея ленца и уравнение максвелла

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

Закон фарадея ленца и уравнение максвелла

Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Закон фарадея ленца и уравнение максвелла

Магнитный поток

Закон фарадея ленца и уравнение максвелла

Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Видео:Урок 281. Электромагнитная индукция. Магнитный поток. Правило ЛенцаСкачать

Урок 281. Электромагнитная индукция. Магнитный поток. Правило Ленца

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

Закон фарадея ленца и уравнение максвелла

Вот, что показали эти опыты:

  1. Индукционный ток возникает только при изменении линий магнитной индукции.
  2. Направление тока будет различно при увеличении числа линий и при их уменьшении.
  3. Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Видео:60. Уравнения МаксвеллаСкачать

60. Уравнения Максвелла

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

Закон фарадея ленца и уравнение максвелла

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

Закон фарадея ленца и уравнение максвелла

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

Закон фарадея ленца и уравнение максвелла

Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

Закон фарадея ленца и уравнение максвелла

Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле
  • вследствие изменения во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Видео:Вывод уравнений МаксвеллаСкачать

Вывод уравнений Максвелла

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Закон фарадея ленца и уравнение максвелла

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Видео:Закон электромагнитной индукцииСкачать

Закон электромагнитной индукции

Закон электромагнитной индукции Фарадея и его формулировка в дифференциальной форме

Видео:Электромагнитные волны и уравнения Максвелла — Эмиль АхмедовСкачать

Электромагнитные волны и уравнения Максвелла — Эмиль Ахмедов

История развития и опыты Фарадея

До середины XIX века считалось, что электрическое и магнитное поле не имеют никакой связи, и природа их существования различна. Но М. Фарадей был уверен в единой природе этих полей и их свойств. Явление электромагнитной индукции, обнаруженное им, впоследствии стало фундаментом для устройства генераторов всех электростанций. Благодаря этому открытию знания человечества о электромагнетизме шагнули далеко вперед.

Фарадей проделал следующий опыт: он замыкал цепь в катушке I и вокруг нее возрастало магнитное поле. Далее линии индукции данного магнитного поля пересекали катушку II, в которой возникал индукционный ток.

Закон фарадея ленца и уравнение максвелла

Рис. 1. Схема опыта Фарадея

На самом деле, одновременно с Фарадеем, но независимо от него, другой ученый Джозеф Генри обнаружил это явление. Однако Фарадей опубликовал свои исследования раньше. Таким образом, автором закона электромагнитной индукции стал Майкл Фарадей.

Сколько бы экспериментов не проводил Фарадей, неизменным оставалось одно условие: для образования индукционного тока важным является изменение магнитного потока, пронизывающего замкнутый проводящий контур (катушку).

Видео:Уравнения Максвелла 2021Скачать

Уравнения Максвелла 2021

Закон Фарадея

Явление электромагнитной индукции определяется возникновением электрического тока в замкнутом электропроводящем контуре при изменении магнитного потока через площадь этого контура.

Основной закон Фарадея заключается в том, что электродвижущая сила (ЭДС) прямо пропорциональна скорости изменения магнитного потока.

Формула закона электромагнитной индукции Фарадея выглядит следующим образом:

Закон фарадея ленца и уравнение максвелла

Рис. 2. Формула закона электромагнитной индукции

И если сама формула, исходя из вышесказанных объяснений не порождает вопросов, то знак «-» может вызвать сомнения. Оказывается существует правило Ленца – русского ученого, который проводил свои исследования, основываясь на постулатах Фарадея. По Ленцу знак «-» указывает на направление возникающей ЭДС, т.е. индукционный ток направлен так, что магнитный поток, который он создает, через площадь, ограниченную контуром, стремится препятствовать тому изменению потока, которое вызывает данный ток.

Основные понятия и законы электростатики

Закон Кулона:
сила взаимодействия двух точечных неподвижных зарядов в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними:
Закон фарадея ленца и уравнение максвелла

Коэффициент пропорциональности в этом законе
Закон фарадея ленца и уравнение максвелла

В СИ коэффициент k записывается в виде
Закон фарадея ленца и уравнение максвелла
где ε0 = 8, 85 · 10−12 Ф/м (электрическая постоянная).
Точечными зарядами называют такие заряды, расстояния между которыми гораздо больше их размеров.
Электрические заряды взаимодействуют между собой с помощью электрического поля. Для качественного описания электрического поля используется силовая характеристика, которая называется «напряжённостью электрического поля» (E). Напряжённость электрического поля равна отношению силы, действующей на пробный заряд, помещённый в некоторую точку поля, к величине этого заряда:
Закон фарадея ленца и уравнение максвелла
Направление вектора напряжённости совпадает с направлением силы, действующей на положительный пробный заряд. [E]=B/м. Из закона Кулона и определения напряжённости поля следует, что напряжённость поля точечного заряда
Закон фарадея ленца и уравнение максвелла
где q — заряд, создающий поле; r — расстояние от точки, где находится заряд, до точки, где создаётся поле.
Если электрическое поле создаётся не одним, а несколькими зарядами, то для нахождения напряжённости результирующего поля используется принцип суперпозиции электрических полей: напряжённость результирующего поля равна векторной сумме напряжённостей полей, созданных каждым из зарядов — источников в отдельности:
Закон фарадея ленца и уравнение максвелла
Работа электрического поля при перемещении заряда: найдём работу перемещения положительного заряда силами Кулона в однородном электрическом поле. Пусть поле перемещает заряд q из точки 1 в точку 2:
Закон фарадея ленца и уравнение максвелла
В электрическом поле работа не зависит от формы траектории, по которой перемещается заряд. Из механики известно, что если работа не зависит от формы траектории, то она равна изменению потенциальной энергии с противоположным знаком:
Закон фарадея ленца и уравнение максвелла
Отсюда следует, что
Закон фарадея ленца и уравнение максвелла

Потенциалом электрического поля называют отношение потенциальной энергии заряда в поле к этому заряду:
Закон фарадея ленца и уравнение максвелла
Запишем работу поля в виде
Закон фарадея ленца и уравнение максвелла
Здесь U = ϕ1 − ϕ2 — разность потенциалов в начальной и конечной точках траектории. Разность потенциалов называют также напряжением
Часто наряду с понятием «разность потенциалов» вводят понятие «потенциал некоторой точки поля». Под потенциалом точки подразумевают разность потенциалов между данной точкой и некоторой заранее выбранной точкой поля. Эту точку можно выбирать в бесконечности, тогда говорят о потенциале относительной бесконечности.
Потенциал поля точечного заряда подсчитывается по формуле
Закон фарадея ленца и уравнение максвелла

Проекция напряжённости электрического поля на какую-нибудь ось и потенциал связаны соотношением
Закон фарадея ленца и уравнение максвелла

Электроёмкость. Конденсаторы. Энергия электрического поля

Электроёмкостью тела называют величину отношения
Закон фарадея ленца и уравнение максвелла
Формула для подсчёта ёмкости плоского конденсатора имеет вид:
Закон фарадея ленца и уравнение максвелла
где S — площадь обкладок, d — расстояние между ними.
Конденсаторы можно соединять в батареи. При параллельном соединении ёмкость батареи C равна сумме ёмкостей конденсаторов:
Закон фарадея ленца и уравнение максвелла
Разности потенциалов между обкладками одинаковы, а заряды прямо пропорциональны ёмкостям.
При последовательном соединении величина, обратная ёмкости батареи, равна сумме обратных ёмкостей, входящих в батарею:
Закон фарадея ленца и уравнение максвелла
Заряды на конденсаторах одинаковы, а разности потенциалов обратно пропорциональны ёмкостям.
Заряженный конденсатор обладает энергией. Энергию заряженного конденсатора можно подсчитать по любой из следующих формул:
Закон фарадея ленца и уравнение максвелла

Основные понятия и законы постоянного тока

Электрический ток — направленное движение электрических зарядов. В разных веществах носителями заряда выступают элементарные частицы разного знака. За положительное направление тока принято направление движения положительных зарядов. Количественно электрический ток характеризуют его силой. Это заряд, прошедший за единицу времени через поперечное сечение проводника:
Закон фарадея ленца и уравнение максвелла

Закон Ома для участка цепи имеет вид:
Закон фарадея ленца и уравнение максвелла
Коэффициент пропорциональности R, называемый электрическим сопротивлением, является характеристикой проводника [R]=Ом. Сопротивление проводника зависит от его геометрии и свойств материала:
Закон фарадея ленца и уравнение максвелла
где l — длина проводника, ρ — удельное сопротивление, S — площадь поперечного сечения. ρ является характеристикой материала и его состояния. [ρ] = Ом·м.
Проводники можно соединять последовательно. Сопротивление такого соединения находится как сумма сопротивлений:
Закон фарадея ленца и уравнение максвелла

При параллельном соединении величина, обратная сопротивлению, равна сумме обратных сопротивлений:
Закон фарадея ленца и уравнение максвелла
Для того чтобы в цепи длительное время протекал электрический ток, в составе цепи должны содержаться источники тока. Количественно источники тока характеризуют их электродвижущей силой (ЭДС). Это отношение работы, которую совершают сторонние силы при переносе электрических зарядов по замкнутой цепи, к величине перенесённого заряда:
Закон фарадея ленца и уравнение максвелла
Если к зажимам источника тока подключить нагрузочное сопротивление R, то в получившейся замкнутой цепи потечёт ток, силу которого можно подсчитать по формуле
Закон фарадея ленца и уравнение максвелла
Это соотношение называют законом Ома для полной цепи.
Электрический ток, пробегая по проводникам, нагревает их, совершая при этом работу
Закон фарадея ленца и уравнение максвелла

где t — время, I — сила тока, U — разность потенциалов, q — прошедший заряд.
Закон Джоуля-Ленца:
Закон фарадея ленца и уравнение максвелла

Основные понятия и законы магнитостатики

Характеристикой магнитного поля является магнитная индукция ➛B. Поскольку это вектор, то следует определить и направление этого вектора, и его модуль. Направление вектора магнитной индукции связано с ориентирующим действием магнитного поля на магнитную стрелку. За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.
Направление вектора магнитной индукции прямолинейного проводника с токам можно определить с помощью правила буравчика:
если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения рукоятки буравчика совпадает с направлением вектора магнитной индукции.
Модулем вектора магнитной индукции назовём отношение максимальной силы, действующей со стороны магнитного поля на участок проводника с током , к произведению силы тока на длину этого участка:
Закон фарадея ленца и уравнение максвелла
Единица магнитной индукции называется тесла (1 Тл)
Магнитным потоком Φ через поверхность контура площадью S называют величину, равную произведению модуля вектора магнитной индукции на площадь этой поверхности и на косинус угла между вектором магнитной индукции ➛B и нормалью к поверхности ➛n:
Закон фарадея ленца и уравнение максвелла
Единицей магнитного потока является вебер (1 Вб).
На проводник с током, помещённый в магнитное поле, действует сила Ампера
Закон Ампера:
на отрезок проводника с током силой I и длиной l, помещённый в однородное магнитное поле с индукцией ➛B , действует сила, модуль которой равен произведению модуля вектора магнитной индукции на силу тока, на длину участка проводника, находящегося в магнитном поле, и на синус угла между направлением вектора ➛B и проводником с током:
Закон фарадея ленца и уравнение максвелла
Направление силы Ампера определяется с помощью правила левой руки:
если левую руку расположить так, чтобы перпендикулярная проводнику составляющая вектора магнитной индукции входила в ладонь, а четыре вытянутых пальца указывали бы направление тока, то отогнутый на 90° большой палец укажет направление силы Ампера.
На электрический заряд, движущийся в магнитном поле, действует сила Лоренца. Модуль силы Лоренца, действующей на положительный заряд, равен произведению модуля заряда на модуль вектора магнитной индукции и на синус угла между вектором магнитной индукции и вектором скорости движущегося заряда:
Закон фарадея ленца и уравнение максвелла
Направление силы Лоренца определяется с помощью правила левой руки: если левую руку расположить так, чтобы составляющая магнитной индукции, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда, то отогнутый на 90° большой палец покажет направление силы Лоренца, действующей на заряд. Для отрицательно заряженной частицы сила Лоренца направлена против направления большого пальца.

Основные понятия и законы электромагнитной индукции

Если замкнутый проводящий контур пронизывается меняющимся магнитным потоком, то в этом контуре возникает ЭДС и электрический ток. Эту ЭДС называют ЭДС электромагнитной индукции, а ток — индукционным. Явление их возникновения называют электромагнитной индукцией. ЭДС индукции можно подсчитать по основному закону электромагнитной индукции или по закону Фарадея:
Закон фарадея ленца и уравнение максвелла
Знак «−» связан с направлением индукционного тока. Оно определяется по правилу Ленца:
индукционный ток имеет такое направление, что его действие противодействует причине, вызвавшей появление этого тока.
Магнитный поток, пронизывающий контур, прямо пропорционален току, протекающему в этом контуре:
Закон фарадея ленца и уравнение максвелла
Коэффициент пропорциональности L зависит от геометрии контура и называется индуктивностью, или коэффициентом самоиндукции этого контура. [L] = 1 Гн
Энергию магнитного поля тока можно подсчитать по формуле
Закон фарадея ленца и уравнение максвелла
где L — индуктивность проводника, создающего поле; I — ток, текущий по этому проводнику

Электромагнитные колебания и волны

Колебательным контуром называется электрическая цепь, состоящая из последовательно соединённых конденсатора с ёмкостью C и катушки с индуктивностью L (см. рис. 7).
Закон фарадея ленца и уравнение максвелла

Для свободных незатухающих колебаний в контуре циклическая частота определяется формулой
Закон фарадея ленца и уравнение максвелла

Период свободных колебаний в контуре определяется формулой Томсона:
Закон фарадея ленца и уравнение максвелла
Если в LC-контур последовательно с L, C и R включить источник переменного напряжения, то в цепи возникнут вынужденные электрические колебания. Такие колебания принято называть переменным электрическим током
В цепь переменного тока можно включать три вида нагрузки — конденсатор, резистор и катушку индуктивности.
Закон фарадея ленца и уравнение максвелла
Конденсатор оказывает переменному току сопротивление, которое можно посчитать по формуле
Закон фарадея ленца и уравнение максвелла
Ток, текущий через конденсатор, по фазе опережает напряжение на π/2 или на четверть периода, а напряжение отстаёт от тока на такой же фазовый угол.
Закон фарадея ленца и уравнение максвелла
Катушка индуктивности оказывает переменному току сопротивление, которое можно посчитать по формуле
Закон фарадея ленца и уравнение максвелла

Ток, текущий через катушку индуктивности, по фазе отстаёт от напряжения на π/2 или на четверть периода. Напряжение опережает ток на такой же фазовый угол.
Закон фарадея ленца и уравнение максвелла

Трансформатором называется устройство, предназначенное для преобразования переменных токов. Трансформатор состоит из замкнутого стального сердечника, на который надеты две катушки. Катушка, которая подключается к источнику переменного напряжения, называется первичной обмоткой, а катушка, которая подключается к потребителю, называется вторичной обмоткой. Отношение напряжения на первичной обмотке и вторичной обмотке трансформатора равно отношению числа витков в этих обмотках:
Закон фарадея ленца и уравнение максвелла
Если K > 1, трансформатор понижающий, если K Закон фарадея ленца и уравнение максвелла
Закон фарадея ленца и уравнение максвелла
Закон фарадея ленца и уравнение максвелла
Закон фарадея ленца и уравнение максвелла
Закон фарадея ленца и уравнение максвелла
Закон фарадея ленца и уравнение максвелла
Закон фарадея ленца и уравнение максвелла
Закон фарадея ленца и уравнение максвелла
Закон фарадея ленца и уравнение максвелла

Видео:О чем говорят уравнения Максвелла? Видео 2/2Скачать

О чем говорят уравнения Максвелла? Видео 2/2

Закон Фарадея-Максвелла

В 1873 Дж.К.Максвелл по-новому изложил теорию электромагнитного поля. Уравнения, которые он вывел, легли в основу современной радиотехники и электротехники. Они выражаются следующим образом:

  • Edl = -dФ/dt – уравнение электродвижущей силы
  • Hdl = -dN/dt – уравнение магнитодвижущей силы.

Где E – напряженность электрического поля на участке dl; H – напряженность магнитного поля на участке dl; N – поток электрической индукции, t – время.

Симметричный характер данных уравнений устанавливает связь электрических и магнитных явлений, а также магнитных с электрическими. физический смысл, которым определяются эти уравнения, можно выразить следующими положениями:

  • если электрическое поле изменяется, то это изменение всегда сопровождается магнитным полем.
  • если магнитное поле изменяется, то это изменение всегда сопровождается электрическим полем.

Закон фарадея ленца и уравнение максвелла

Рис. 3. Возникновение вихревого магнитного поля

Также Максвелл установил, что распространение электромагнитного поля равна скорости распространения света.

Видео:Уравнения Максвелла — Мартин МакколлСкачать

Уравнения Максвелла — Мартин Макколл

Что мы узнали?

Ученикам 11 класса необходимо знать, что электромагнитную индукцию впервые как явление обнаружил Майкл Фарадей. Он доказал, что электрическое и магнитное поле имеют общую природу. Самостоятельные исследования на основе опытов Фарадея также проводили такие великие деятели как Ленц и Максвелл, которые расширили наши познания в области электромагнитного поля.

Видео:Джеймс Клерк Максвелл. Научные труды и вклад в наукуСкачать

Джеймс Клерк Максвелл. Научные труды и вклад в науку

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Закон фарадея ленца и уравнение максвелла

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Видео:Закон Фарадея. Гибкий контурСкачать

Закон Фарадея. Гибкий контур

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Закон фарадея ленца и уравнение максвелла

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Закон фарадея ленца и уравнение максвелла

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​( varepsilon_ )​, возникающая в катушке с индуктивностью ​( L )​, по закону электромагнитной индукции равна:

Закон фарадея ленца и уравнение максвелла

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​( Phi )​ через контур из этого проводника пропорционален модулю индукции ​( vec )​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Закон фарадея ленца и уравнение максвелла

Индуктивность – коэффициент пропорциональности ​( L )​ между силой тока ​( I )​ в контуре и магнитным потоком ​( Phi )​, создаваемым этим током:

Закон фарадея ленца и уравнение максвелла

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Закон фарадея ленца и уравнение максвелла

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Закон фарадея ленца и уравнение максвелла

Основные формулы раздела «Электромагнитная индукция»

Закон фарадея ленца и уравнение максвелла

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

6. Решение проверить.

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Закон фарадея ленца и уравнение максвелла

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Задачи на применение закона Фарадея

Условие: проволочный контур помещен в магнитное поле. В нулевой момент времени он пронизывает поток магнитной индукции, равный Φ1 и уменьшающийся после этого до 0. Найдите величину заряда, проходящего по цепи.

Начнем с определения мгновенного значения ЭДС. Это можно сделать с помощью формулы:

Вспомним закон Ома. Согласно ему, мгновенное значение силы тока может быть записано в следующем виде:

Полное сопротивление цепи здесь обозначено буквой R.

Для нахождения заряда, идущего по цепи, нам пригодится выражение:

Поставим эти выражения в нужную формулу и получим:

Автором этой формулы является Фарадей. Он эмпирически подтвердил прямую пропорциональность величины заряда, идущего по цепи, количеству линий магнитной индукции, пересекающей проводник, и его обратную пропорциональность величине сопротивления в цепи.

Условие: квадратная рамка со стороной a помещена в одну плоскость с проводником, сила тока которого равна l. Она движется поступательно с постоянной скоростью v в направлении, обозначенное на иллюстрации ниже. Вычислите ЭДС индукции как функцию εi от расстояния x.

Закон фарадея ленца и уравнение максвелла

Найти ответ можно с помощью закона Фарадея.

Для получения искомой функции Ei(x) нам нужно построить функцию Ф(x). Бесконечный проводник с током создает магнитное поле, которое может быть выражено так:

Расстояние до точки рассмотрения здесь обозначено буквой r.

Для решения нам нужно также выделить площадь рамки. Выразим ее такой формулой:

С учетом приведенных выше выражений, а также того факта, что B→⊥S→, мы можем найти величину элементарного магнитного потока, проходящего через элемент квадратной рамки, так:

Далее вычисляем величину полного потока, учитывая, что x≤r≤x+a:

После этого переходим к нахождению ЭДС индукции с помощью закона Фарадея и выражения для магнитного потока, выведенного ранее:

Поделиться или сохранить к себе: