Задано уравнение колебаний см логарифмический декремент затухания равен

Видео:Уравнения и графики механических гармонических колебаний. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. 11 класс.

Задано уравнение колебаний см логарифмический декремент затухания равен

§6 Затухающие колебания

Декремент затухания. Логарифмический декремент затухания.

Добротность

Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.

Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими.

Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения

Задано уравнение колебаний см логарифмический декремент затухания равен

где r — коэффициент сопротивления среды. Знак минус показывает, что FC направлена в сторону противоположную скорости.

Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r . По второму закону Ньютона

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

где β — коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.

Задано уравнение колебаний см логарифмический декремент затухания равен

— дифференциальное уравнение затухающих колебаний.

Задано уравнение колебаний см логарифмический декремент затухания равен

— у равнение затухающих колебаний.

ω – частота затухающих колебаний:

Задано уравнение колебаний см логарифмический декремент затухания равен

Период затухающих колебаний:

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равенЗатухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно гово­рить, когда β мало.

Если затухания выражены слабо (β→0), то Задано уравнение колебаний см логарифмический декремент затухания равен. Затухающие колебания можно

рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону

Задано уравнение колебаний см логарифмический декремент затухания равен

В уравнении (1) А0 и φ0 — произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания

Задано уравнение колебаний см логарифмический декремент затухания равен

Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

τ — время релаксации.

Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затухания D , который равен отношению амплитуд, отстоящих по времени на период:

Задано уравнение колебаний см логарифмический декремент затухания равен

Логарифмический декремент затухания равен логарифму D :

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний умень­шилась в е раз. Логарифмический декремент затухания — постоянная для данной системы величина.

Еще одной характеристикой колебательной система является добротность Q .

Задано уравнение колебаний см логарифмический декремент затухания равен

Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.

Добротность Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.

Добротность Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.

Задано уравнение колебаний см логарифмический декремент затухания равен

Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.

§7 Вынужденные колебания.

Резонанс

В целом ряде случаев возникает необходимость создания систем, совершающих незатухающие колебания. Получить незатухающие колебания в системе можно, если компенсировать потери энергии, воздействуя на систему периодически изменяющейся силой.

Задано уравнение колебаний см логарифмический декремент затухания равен

Запишем выражение для уравнения движения материальной точки, совершающей гармоническое колебательное движение под действием вынуждающей силы.

По второму закону Ньютона:

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен(1)

— дифференциальное уравнение вынуж­денных колебаний.

Это дифференциальное уравнение является линейным неоднородным.

Его решение равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Найдем частное решение неоднородного уравнения. Для этого перепишем уравнение (1) в следующем виде:

Задано уравнение колебаний см логарифмический декремент затухания равен(2)

Частное решение этого уравнения будем искать в виде:

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

т.к. выполняется для любого t , то должно выполняться равенство γ = ω , следовательно,

Задано уравнение колебаний см логарифмический декремент затухания равен

Это комплексное число удобно представить в виде

Задано уравнение колебаний см логарифмический декремент затухания равен

где А определяется по формуле (3 ниже), а φ — по формуле (4), следовательно, решение (2),в комплексной форме имеет вид

Задано уравнение колебаний см логарифмический декремент затухания равен

Его вещественная часть, являвшаяся решением уравнения (1) равна:

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен Задано уравнение колебаний см логарифмический декремент затухания равен(3)

Задано уравнение колебаний см логарифмический декремент затухания равен(4)

Слагаемое Хо.о. играет существенную роль только в начальной стадии при установлении колебаний до тех пор, пока амплитуда вынужденных колебаний не достигнет значения определяемого равенством (3). В установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими. Амплитуда (3) и фаза (4) вынужденных колебаний зависят от частоты вынуждающей силы. При определенной частоте вынуждающей силы амплитуда может достигнуть очень больших значений. Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте механи­ческой системы, называется резонансом.

Задано уравнение колебаний см логарифмический декремент затухания равенЧастота ω вынуждающей силы, при которой наблюдается резонанс, называется резонансной. Для того чтобы найти значение ωрез, необходимо найти условие максимума амплитуды. Для этого нужно определить условие минимума знаменателя в (3) (т.е. исследовать (3) на экстремум).

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Зависимость амплитуды колеблющейся величины от частоты вынуждающей силы называется резонансной кривой. Резонансная кривая будет тем выше, чем меньше коэффициент затухания β и с уменьшением β, максимум резонансных кривых смешается вправо. Если β = 0, то

При ω→0 все кривые приходят к значению Задано уравнение колебаний см логарифмический декремент затухания равен— статическое отклонение.

Задано уравнение колебаний см логарифмический декремент затухания равен

Параметрический резонанс возникает в том случае, когда периодическое изменение одного из параметров система приводит к резкому увеличению амплитуды колеблющейся системы. Например, кабины, делающие «солнышко» за счет изменения положения центра тяжести система.(То же в «лодочках».) См. §61 .т. 1 Савельев И.В.

Видео:Урок 343. Затухающие колебания (часть 1)Скачать

Урок 343. Затухающие колебания (часть 1)

Задано уравнение колебаний см логарифмический декремент затухания равен

логарифмический декремент затухания

Период затухающих колебаний T = 1 с, логарифмический декремент затухания Θ = 0,3, начальная фаза равна нулю. Смещение точки при t = 2Т составляет 5 см. Запишите уравнение движения этого колебания.

Логарифмический декремент затухания тела, колеблющегося с частотой 50 Гц, равен 0,01. Определить: 1) время, за которое амплитуда колебаний тела уменьшится в 20 раз; 2) число полных колебаний тела, чтобы произошло подобное уменьшение амплитуды.

За время t = 100 с тело массой m = 5 г успевает совершить 100 колебаний. Логарифмический декремент затухания λ = 0,01. Определите коэффициент сопротивления среды.

Амплитуда затухающих колебаний маятника уменьшается в е 2 раз за время t = 100 с. При этом система успевает совершить 1000 колебаний. Определите логарифмический декремент затухания.

Логарифмический декремент затухания маятника λ = 0,003. Определите число колебаний, которое должен совершить маятник, чтобы его амплитуда уменьшилась в два раза.

Амплитуда колебаний маятника длиной L = 1 м за время t = 10 мин уменьшилась в два раза. Определите логарифмический декремент затухания.

Определите период собственных колебаний системы, если период затухающих колебаний этой системы равен 1 с, а логарифмический декремент затухания λ = 0,628.

Найдите число полных колебаний системы, в течение которых энергия системы уменьшилась в 2 раза, если логарифмический декремент затухания λ = 0,01.

Математический маятник совершает колебания в среде, для которой логарифмический декремент затухания λ = 1,5. Чему будет равен логарифмический декремент затухания, если коэффициент сопротивления среды уменьшить в два раза?

Логарифмический декремент затухания математического маятника λ = 0,2. Во сколько раз уменьшится амплитуда колебаний за одно полное колебание маятника?

Во сколько раз уменьшится амплитуда через 50 затухающих колебаний, если логарифмический декремент затухания равен 0,02?

Энергия колебательной системы в начальный момент равна 2 Дж. На сколько она уменьшится через два полных колебания, если логарифмический декремент затухания λ = 0,02?

Логарифмический декремент затухания камертона, колеблющегося с частотой 100 Гц, равен 0,002. Определить промежуток времени, за который амплитуда возбужденного камертона уменьшится в 50 раз.

Период затухающих колебаний T = 4 с; логарифмический декремент затухания Θ = 1,6; начальная фаза φ = 0. При t = T/4 смещение точки х = 4,5 см. Написать уравнение движения этого колебания. Построить график этого колебания в пределах двух периодов.

Определить период Т затухающих колебаний, если период Т0 собственных колебаний системы равен 1 с и логарифмический декремент затухания θ= 0,628.

Логарифмический декремент затухания маятника λ = 0,01. Определите число полных колебаний маятника до уменьшения амплитуды в 3 раза.

Логарифмический декремент затухания маятника λ = 0,04. За какое время амплитуда уменьшится в 50 раз, если ν = 50 Гц?

Пружинный маятник массой 100 г совершает затухающие колебания на пружине жесткостью k = 6 Н/м. Через какой промежуток времени его энергия уменьшится в 16 раз, если логарифмический декремент затухания λ = 0,03? Рассчитайте коэффициент затухания β.

Определить логарифмический декремент затухания колебательной системы, для которой резонанс наблюдается при частоте, меньшей собственной частоты 100 кГц на 4 Гц.

Найти логарифмический декремент затуханий λ математического маятника, если за время t = l мин амплитуда колебаний уменьшилась в 2 раза. Длина маятника l = 1 м.

Амплитуда колебаний математического маятника длиной 0,6 м уменьшилась в два раза за 10 мин. Определить логарифмический декремент затухания и коэффициент сопротивления, если m = 0,5 г.

Амплитуда колебаний математического маятника длиной 2 м уменьшилась в два раза за 10 минут. Определить логарифмический декремент затухания.

Затухающие колебания происходят в колебательном контуре с емкостью конденсатора 2 мкФ, индуктивностью катушки 350 мГн и сопротивлением 15,2 Ом. В начальный момент времени напряжение на обкладках конденсатора было 25 В, а ток в контуре отсутствовал. Запишите уравнение затухающих колебаний для заряда и определите все параметры этого уравнения. Определите логарифмический декремент затухания.

Математический маятник длиной l = 24,7 см совершает затухающие колебания. Через какое время t энергия колебаний маятника уменьшится 9,4 раза. Значение логарифмического декремента затухания θ = 0,01.

Математический маятник длиной l = 24,7 см совершает затухающие колебания. Логарифмический декремент затухания θ = 3. Определить время τ, в течение которого энергия W маятника уменьшится в N = 9,4 раза.

За 100 с система успевает совершить 100 колебаний. За то же время амплитуда колебаний уменьшается в 2,718 раз. Чему равны:
а) коэффициент затухания колебаний β,
б) логарифмический декремент затухания λ,
в) добротность системы Q,
г) относительная убыль энергии системы — ΔE/E за период колебаний?

Амплитуда затухающих колебаний математического маятника за 1 мин уменьшается вдвое. Во сколько раз она уменьшится за 3 мин? Чему равно время релаксации и логарифмический декремент затухания, если длина маятника 1 м?

Определить координату x материальной точки относительно положения равновесия в момент времени t = 1,3 с, если известно, что амплитуда затухающих колебаний А0 = 20 см, логарифмический декремент затухания равен 7,564, начальное отклонение x0 = 0, циклическая частота собственных колебаний ω0 = 1,26 с –1 .

Колебания в контуре описываются уравнением: q(t) = 0,5e –0,1t cos(10 4 πt), мкКл. Определить: а) период затухающих колебаний; б) логарифмический декремент затухания; в) добротность контура. Записать дифференциальное уравнение колебаний с числовыми коэффициентами.

Определите логарифмический декремент затухания колебательного контура с емкостью 2 нФ, индуктивностью 0,15 мГн, если на поддержание в этом контуре незатухающих колебаний с амплитудой напряжения 0,9 В требуется мощность 10 –4 Вт.

Ниже приведены уравнения затухающих электромагнитных колебаний. Логарифмический декремент затухания наибольший в случае 1) U = 2е –4t cos πt, В 2) q = 0,02е –t cos 4πt, мкКл 3) q = 2e –t cos 2πt, мкКл 4) U = 5e –2t cos(2πt + π), В.

Уравнение затухающих электромагнитных колебаний имеет вид: q = q0·e –βt cosωt, q0 = 10 –2 Кл, β = 4 c –1 , ω = 4π рад/с.
Верно ли, что…
1….это колебания гармоническое?
2….амплитуда колебаний равна q0 = 10 –2 Кл?
3….время релаксации r = 0,25с?
4….логарифмический декремент затухания χ = 2?
На сколько вопросов и какие именно Вы ответили «да, верно»?

Найти коэффициент затухания β и логарифмический декремент затухания χ математического маятника, если известно, что за время t = 100 с колебаний полная механическая энергия маятника уменьшилась в десять раз. Длина маятника l = 0,98 м.

Найти коэффициент затухания и логарифмический декремент затухания математического маятника, если известно, что за время t = 50 с колебаний полная механическая энергия маятника уменьшилась в десять раз. Длина маятника L = 0,98 м.

Период затухающих колебаний, совершаемых пружинным маятником, равен T = 4 с, а логарифмический декремент затухания λ = 0,5. Время, за которое амплитуда колебаний уменьшится в 3 раза равно (в секундах) .

Уравнение затухающих колебаний для заряда на обкладках конденсатора имеет вид: q(t) = 4exp(–100t)cos(10 4 πt), мкКл. Ёмкость конденсатора 10 –7 Ф. Определить: а) индуктивность катушки; б) активное сопротивление контура; в) логарифмический декремент затухания.

В начальный момент времени смещение колеблющейся точки максимально и равно 0,1 м. За 10 колебаний амплитуда уменьшается на 1/10 своей первоначальной величины. Период колебаний равен 0,4 с. Определить коэффициент затухания и логарифмический декремент. Написать уравнение колебаний.

Математический маятник длиной 0,5 м, выведенный из положения равновесия, отклонился при первом колебании на 5 см, а при втором (в ту же сторону) на 4 см. Найти время релаксации, декремент затухания и логарифмический декремент затухания.

Контур состоит из емкости С = 0,1 мкФ, индуктивности L = 4 мГн и омического сопротивления. Затухающие колебания в таком контуре совершаются по закону: q1 = е –0,1t ·cos(5·10 4 πt), мкКл. Определить: а) период затухающих колебаний; б) сопротивление контура; в) логарифмический декремент затухания; г) изменение энергии за период.

В последовательном колебательном контуре совершаются свободные затухающие колебания. В момент времени, когда напряжение на конденсаторе оказалось равным нулю, амплитуда колебаний напряжения на конденсаторе была 9,91 В. Когда в ближайшее время после этого напряжение на конденсаторе снова обратилось в ноль, амплитуда стала 6,44 В. Рассчитать логарифмический декремент затухания.

Каким должен быть логарифмический декремент затухания маятника, чтобы амплитуда смещения уменьшилась в 8 раз за 200 колебаний?

Видео:70. Затухающие колебанияСкачать

70. Затухающие колебания

Задано уравнение колебаний см логарифмический декремент затухания равен

4.1. Механические колебания.

4.2. Электрические колебания.
4.3. Упругие волны. Акустика.
4.4. Электромагнитные волны. Излучение.
_______________________________________________________________________________________________

4.1. Механические колебания.

4.1.1. Гармонические колебания.

4.1. 1 -1. Частица совершает гармоническое колебание с амплитудой А и периодом Т = 12 с. Найти время t ₁ , за которое смещение частицы изменяется от 0 до А/2.

Решение:

Т = 12 с
х(0) = 0
х( t ₁) = А/2 (1)
t ₁ – ?
Так как начальное положение частицы х(0) = 0, то частица колеблется по закону синуса с начальной фазой ϕ ₀ = 0:
x = Asin ( ωt + ϕ ₀) или
x = Asinωt , (2)
где ω = 2 π / T – круговая частота.
С учётом условия (1), запишем (2) в виде:
х( t ₁) = Asin ( ωt ₁); А/2 = Asin ( (2 π / T ) t ₁ ); 1/2 = sin (2 πt ₁/ T ); 2 πt ₁/ T = π /6. Отсюда
t ₁ = T /12.
t₁ = 12/12 = 1 с.
Ответ: t₁ = T/12 = 1 c.

4.1.1-2. Определить период Т простых гармонических колебаний диска радиусом R = 40 см около горизонтальной оси, проходящей через образующую диска.

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

где − I момент инерции диска относительно оси вращения, проходящей через точку подвеса А (см. рис.); x = AO = R − расстояние от точки подвеса до центра тяжести О диска; m − масса диска; g = 9,8 м/с² − ускорение свободного падения.
Момент инерции I ₀ диска относительно оси симметрии диска:
I ₀ = mR
²/2.
По теореме Штейнера:
I = I₀ + mR². Имеем
I = mR²/2 + mR² = 3mR²/2. Тогда по (1)

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Решение:
r ( t ) = A ( icosωt + jsinωt ) (1)
A = 0,5 м
ω = 5 с⁻¹
v − ?
an − ?
Представим (1) в виде:
r ( t ) = iAcosωt + jAsinωt (1*)
Радиус вектор r ( t ) точки: r ( t ) = ix + jy , где x , y − проекции радиус вектора соответственно на оси OX и OY ; i , j − единичные векторы (орты), направленные соответственно по оси OX и OY . Тогда (1*) примет вид
ix + jy = iAcosωt + jAsinωt ,
отсюда получим два уравнения
x = Acosωt , (*)
y = Asinωt . (**)
Возведём их в квадрат
x ² = A ² cos ² ωt ,
y ² = A ² sin ² ωt .
Сложим эти уравнения
x ² + y ² = A ² cos ² ωt + A ² sin ² ωt или x ² + y ² = A ²( cos ² ωt + sin ² ωt ). Отсюда, т.к. cos ² ωt + sin ² ωt = 1, получим уравнение траектории движения точки
x ² + y ² = A ². (2)
Уравнение (2) − это уравнение окружности радиусом R = A = 0,5 м с центром в начале координат (см. рис.).
Найдём проекции скорости v x и vy . Для этого продифференцируем x и y из (*) и (**) по времени t :
vx = xt ʹ = ( Acosωt ) t ʹ = — Aωsinωt ;
vy = yt ʹ = ( Asinωt ) t ʹ = Aωcosωt .
Тогда квадрат скорости
v ² = vx ² + vy ² или v ² = (- Aωsinωt )² + ( Aωcosωt )² или v ² = A ² ω ²( sin ² ωt + cos ² ωt ) или v ² = A ² ω ². Отсюда модуль скорости v :
v = Aω . (3)
v = 0,5·5 = 2,5 м/с².
Модуль нормального ускорения an : an = v ²/ R или, с учётом (3) и R = A , получим an = A ² ω ²/ A или
an = Aω ².
an = 0,5·5² = 12,5 м/с².
Ответ: траектория − окружность радиусом R = A = 0,5 м с центром в начале координат, v = Aω = 2,5 м/с², an = Aω ² = 12,5 м/с².

_______________________________________________________________________________________________

4.1.2. Свободные затухающие колебания.

4.1.2-1.
Амплитуда затухающих колебаний уменьшилась в n = 100 за 15 с. Чему равен коэффициент затухания β ?

Решение:

t = 15 c
n = 100
A = A ₀/ n (*)
β – ?
Зависимость амплитуды А затухающих колебаний от времени t :
A = A ₀ e — β t , (1)
где A ₀ – начальная амплитуда; β – коэффициент затухания.
Имеем из (1) и (*):
A ₀/ n = A ₀ e — β t ; 1/ n = e — β t ; e β t = n ; βt = ln ( n ) отсюда
β = ln ( n )/ t .
β = ln(100)/15 = 0,307 1/c.
Ответ: β = ln(n)/t = 0,307 1/c.

4.1.2-2. Найти логарифмический декремент затухания тонкого стержня, подвешенного за один из его концов, если за промежуток времени t = 5 мин его полная механическая энергия уменьшилась в n = 4 · 10 ² раз. Длина стержня L = 50 см.

Решение:
t = 5 мин = 300 с
n = 400
L = 0,5 м
λ − ?
В данном случае стержень − это физический маятник.
Логарифмический декремент затухания λ
λ = βT
, (1)
где β – коэффициент затухания, T − период колебаний стержня.

1. Найдём коэффициент затухания β .
Связь частот ω и ω₀:
ω² = ω₀² — β². (2)
ω – частота затухающих колебаний; ω ₀ – собственная частота колебаний.
Зависимость от времени t полной механической энергии Е физического маятника:
Е =
E ₀ e -2 βt ,
где E ₀ – начальная (при t = 0) полная механическая энергия.
Отсюда имеем
n = Е ₀/ Е = Е ₀/( E ₀ e -2 βt ) = 1 /( e -2 βt ) = e 2 βt .
Получили n = e 2 βt . Прологарифмируем это равенство Ln ( n ) = 2 βt . Отсюда
β = Ln ( n )/(2 t ). (3)

2. Найдём период Т затухающих колебаний.
Оценим коэффициент β 2 по (3).
β = Ln (400)/(2 · 300) = 0,009986, отсюда
β ² = (0,009986)² ≈ 0,0000997.
Собственная частота колебаний физического маятника:

Задано уравнение колебаний см логарифмический декремент затухания равен

Подставим в (1) найденные β из (3) и Т из (4**) и, после упрощения, получим

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

4.1.2-3. Логарифмический декремент затухания тела, колеблющегося с частотой 50 Гц, равен 0,02. Определите: время, за которое амплитуда колебаний тела уменьшится в 20 раз; число колебаний тела, чтобы произошло подобное уменьшение амплитуды.

Решение:
ν = 50 Гц
λ = 0,02
n = 20
t − ?
N − ?
1. Пусть β – коэффициент затухания; T = 1/ ν – период, ν – частота колебаний. Логарифмический декремент затухания λ :
λ = βT
или λ = β / ν , отсюда
β = λν . (1)
Амплитуда А затухающих колебаний
A = A ₀· e — βt ,
где A ₀ − начальная амплитуда (при t = 0).
Подставим сюда из условия задачи A = A ₀/ n :
A ₀/ n = A ₀· e — βt ,
отсюда e βt = n и, после логарифмирования, βt = Ln ( n ), отсюда
t = ( Ln ( n ) )/ β и, с учётом (1),
t = ( Ln ( n ) )/( λν ). (2)

2.
Число колебаний N за время t :
N = t / T = tν = ( и, с учётом (2), ) = ν ( Ln ( n ) )/( λν ) или
N = ( Ln ( n ) )/ λ . (3)

3.
Вычисления по формулам (2) и (3):
t = ( Ln (20) )/(0,02·50) ≈ 3 с.
N = ( Ln (20) )/0,02 ≈ 150.
Ответ: t = ( Ln ( n ) )/( λν ) ≈ 3 с; N = ( Ln ( n ) )/ λ ≈ 150.

4.1.2-4. Составьте дифференциальное уравнение гармонических свободных затухающих крутильных колебаний механической системы.

Решение:
Пусть система (например, тонкий однородный диск, подвешенный в горизонтальном положении к упругой нити) совершает крутильные колебания относительно закреплённой оси Z (ось нити). Пусть на диск действует упругая сила, проекция момента которой на ось Z равна
Mz = — kϕ , (1)
где k − постоянная, ϕ − угол поворота из положения равновесия. Знак “минус” указывает на то, что при отклонении системы на угол ϕ , момент упругой силы возвращает систему к положению равновесия. Поместим диск в вязкую среду ( например, жидкость ). Момент силы сопротивления Mc , действующий на диск, пропорционален угловой скорости ϕ ʹ:
M c = — ηϕ ʹ, (2)
где η − постоянная.
Уравнение динамики вращательного движения диска имеет вид
Iϕ ʹʹ = Mz + M c , (3)
где I – момент инерции диска относительно оси вращения.
С учётом (1) и (2), уравнение (3) примет вид Iϕ ʹʹ = — kϕ — ηϕ ʹ, отсюда
ϕ ʹʹ + ( η / I ) ϕ ʹ + ( k / I ) ϕ = 0.
Применив обозначения 2 β = η / I , ω ₀² = k / I , перепишем последнее уравнение:
ϕ ʹʹ + 2 βϕ ʹ + ω ₀² ϕ = 0.
Это дифференциальное уравнение описывает затухающие крутильные колебания механической системы.
Ответ: ϕ ʹʹ + 2 βϕ ʹ + ω ₀² ϕ = 0.

4.1.2-5. Найти добротность Q осциллятора, у которого отношение резонансной частоты ωрез к частоте затухающих колебаний ω равно η.

Решение:
ωрез/ω = η (*)
Q − ?
Пусть β − коэффициент затухания, ω₀ − собственная частота колебаний, T = 2π/ω − период затухающих колебаний, λ = βT = 2πβ/ω − логарифмический декремент затухания. Тогда добротность Q:
Q = π/λ = π/(2πβ/ω), или
Q = ω/(2β). (1)
Связь частот ω и ω₀:
ω² = ω₀² — β². (2)
Формула для резонансной частоты ωрез:
ωрез² = ω₀² — 2β². (3)
Из (2) вычтем (3)
ω² — ωрез² = (ω₀² — β²) — (ω₀² — 2β²), или
ω² — ωрез² = ω₀² — β² — ω₀² + 2β², или
ω² — ωрез² = β². (**)
С учётом условия (*) имеем ωрез = ωη. Тогда (**) примет вид
ω² — ω²η² = β², или
ω²(1 — η²) = β², отсюда

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

___________________________________________________________________________________

4.1.3. Вынужденные колебания. Резонанс.

4.1.3-1. Осциллятор массы m движется по закону x = Asinωt под действием вынуждающей силы Fₓ = F₀cosωt. Найти коэффициент затухания β осциллятора.

Решение:
m,
x = Asinωt,
Fₓ = F₀cosωt,
β − ?
Установившееся смещение х(t) осциллятора при вынужденных колебаниях:
x = Acos(ωt — ϕ), (1)

Задано уравнение колебаний см логарифмический декремент затухания равен

ω₀ − собственная частота колебаний осциллятора,
f₀ = F₀/m. (*)
Так как по условию смещение х(t) осциллятора x = Asinωt, то из (1) следует: ϕ = π/2
(т. к. cos(ωt — π/2) = sinωt). Тогда из (3) имеем:

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

где f₀ = F ₀/ m , m − масса осциллятора , β − коэффициент затухания, ω₀ − собственная частота колебаний, ω − частота вынужденных колебаний.
При постоянной амплитуде вынуждающей силы F ₀ (и, следовательно, постоянной f ₀) из (*) при двух разных частотах ω₁ и ω₂ получаем две амплитуды А₁ и А₂ вынужденных колебаний:

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

4.2. Электрические колебания.

4.2-1. Небольшая магнитная стрелка совершает малые колебания вокруг оси, перпендикулярной направлению внешнего магнитного поля. При изменении индукции этого поля период колебаний стрелки уменьшился в η = 5 раз. Во сколько раз и как изменилась индукция поля? Затухание колебаний пренебрежимо мало.

Решение:
T ₁/ T ₂ = η = 5
B ₂/ B ₁ − ?
Момент сил М, действующий на стрелку со стороны магнитного поля
М = [ B · P m ], где P m − вектор магнитного момента стрелки.
Модуль момента сил
М = B · P m · sinϕ , где ϕ – угол между векторами B и P m .
При малых колебаниях угол ϕ очень мал и sinϕ ≈ ϕ . Тогда
М = B · P m · ϕ .
При повороте стрелки на угол ϕ возникает момент сил М , стремящийся вернуть стрелку в положение равновесия, т.е. М = — B · P m · ϕ . Если J – момент инерции стрелки относительно оси вращения, то основное уравнение динамики вращательного движения примет вид
Jϕ ’’ = M или Jϕ ’’ = — B · P m · ϕ отсюда
ϕ ’’ + ( B · P m / J ) · ϕ = 0. (1)
Если ω – циклическая частота колебаний, то сравнивая (1) с уравнением гармонических колебаний
ϕ ’’ + ω ² ϕ = 0, получим
ω ² = B · P m / J , отсюда
ω = √( B · P m / J ).
Тогда период T колебаний
T = 2 π / ω или
T = 2 π √( J /( B · P m ) ). (2)
На основе (2) для разных B ₁ и B ₂ получим соответствующие T ₁ и T ₂
T ₁ = 2 π √( J /( B ₁ · P m ) )
T ₂ = 2 π √( J /( B ₂ · P m ) ).
Отсюда
T ₁/ T ₂ = √( B ₂/ B ₁) и отсюда
B ₂/ B ₁ = ( T ₁/ T ₂)² = η ² = 25. Итак
B ₂/ B ₁ = η ² = 25.
Ответ: индукция магнитного поля увеличится в η ² = 25 раз.

4.2-2. Индуктивность катушки равна 0,125 Гн. Уравнение колебаний силы ток в ней имеет вид:
i = 0,4 cos (1000 t ), где все величины выражены в системе СИ. Определить амплитуду напряжения на катушке.

Решение:
L = 0,125 Гн
i = 0,4 cos (1000 t ). (1)
Um − ?
Уравнение колебаний силы тока в катушке имеет вид:
i = Imcos ( ωt ). (2)
Из (1) и (2) имеем
Im = 0,4 А − амплитуда силы тока в катушке; ω = 1000 с⁻¹− частота.
Индуктивное сопротивление катушки: X L = ωL .
По закону Ома
Im = Um / X L , отсюда
Um = X L · Im или
Um = ωL · Im .
Um = 1000·0,125·0,4 = 50 В.
Ответ: Um = 50 В.

4.2-3. Электрический колебательный контур состоял из последовательно соединенных катушки с индуктивностью L = 0,8 Гн и конденсатора емкостью С. Сопротивление катушки и соединительных проводов было равно R = 2000 Ом. После того, как часть витков в катушке замкнулась накоротко, индуктивность ее уменьшилась в n = 7 раз, частота собственных колебаний в контуре возросла в k = 3 раза, а коэффициент затухания этих колебаний не изменился. Определить емкость конденсатора .

Решение:
L = 0,8 Гн
R = 2000 Ом
L ₂ = L / n
n = 7
ω ₂ = kω
k = 3
β = const
C − ?
Коэффициент затуханий β = R /(2 L ).
ω и ω ₂ − начальная и конечная частоты собственных колебаний в контуре, где
ω = √( 1/( LC ) — β ² ) = √( 1/( LC ) — R ²/(4 L ²) );
ω ₂ = √( 1/( L ₂ C ) — β ² ) = √( n /( LC ) — R ²/(4 L ²) ).
Возведём в квадрат равенство ω ₂ = kω , получим ω ₂² = k ² ω ² или
n /( LC ) — R ²/(4 L ²) = k ²( 1/( LC ) — R ²/(4 L ²) ), отсюда
C = 4 L ( k ² — n )/( R ²( k ² — 1) ).
C = 4·0,8·(3² — 7)/( 2000²·(3² — 1) ) = 2·10⁻⁷ Ф.
Ответ: C = 4L(k² — n)/( R²(k² — 1) ) = 2·10⁻⁷ Ф.

4.2-4. Ток в колебательном контуре зависит от времени как I = Imsinω₀t, где Im = 9,0 мА, ω₀ = 4,5·10⁴ с⁻¹. Ёмкость конденсатора С = 0,50 мкФ. Найти индуктивность контура и напряжение на конденсаторе в момент t = 0.

Решение:

I = Imsinω₀t (*)
Im = 9·10⁻³ А
ω₀ = 4,5·10⁴ с⁻¹
С = 0,5·10⁻⁶ Ф
L − ?
U(0) − ?
1). Собственная частота ω₀ колебательного контура

Задано уравнение колебаний см логарифмический декремент затухания равен

1
L = ––––– . (1)
ω₀²C
2). Закон сохранения энергии в колебательном контуре:
LI²/2 + CU²/2 = LIm²/2
или, с учётом (*),
L(Imsinω₀t)²/2 + CU²/2 = LIm²/2.
Отсюда при t = 0 (т.к. sinω₀0 = 0) получим напряжение U(0) = Um на конденсаторе в момент времени t = 0 ( Um − максимальное напряжение ):
CU²(0) = LIm²
и, подставляя сюда L из (1), получим
Im²
CU²(0) = ––––– или
ω₀²C
Im
U(0) = Um = –––– . (2)
ω₀C
Вычисления по формулам (1) и (2 ):
1
L = –––––––––––––––– = 0,001 Гн = 1 мГн.
(4,5·10⁴)²·0,5·10⁻⁶
9·10⁻³
U(0) = Um = –––––––––––––– = 0,4 В.
4,5·10⁴·0,5·10⁻⁶

Задано уравнение колебаний см логарифмический декремент затухания равен

4.3. Упругие волны. Акустика.

4.3-1. По шнуру слева направо бежит со скоростью v незатухающая гармоническая волна. При этом поперечное смещение точки О шнура изменяется по закону y = Acos ( ωt ). Как зависит от времени смещение точки шнура, находящейся правее точки О на расстоянии x от нее?

Решение:

y = Acos ( ω ( t — x / v ) ).
Ответ: y = Acos ( ω ( t – x / v ) ).

4.3-2. Уравнение плоской звуковой волны имеет вид ξ = 60 cos (1800 t — 5,3 x ). где ξ – в мкм, t – в секундах, х – в метрах .
Найти:
а) отношение амплитуды смещения частиц среды к длине волны;
б) амплитуду колебаний скорости частиц среды и ее отношение к скорости распространения волны;
в) амплитуду колебаний относительной деформации среды и её связь с амплитудой колебаний скорости частиц среды.

а) Уравнение плоской синусоидальной волны
ξ = Acos(ωt – kx). (2)
Из (1) и (2) следует
A = 60 ·10 ⁻ ⁶ м – амплитуда колебаний частиц среды,
ω = 1800 1/с – циклическая частота,
k = 5,3 1/м – волновое число.
k = 2π/λ, отсюда λ = 2π/k. Тогда
A/λ = A/(2π/k) или
A/λ = Ak/(2π).
A / λ = 60 ·10 ⁻ ⁶ · 5,3/(2 · 3,14) = 5,1 ·10 ⁻ ⁵ .

б) Амплитуда колебаний скорости частиц среды
V m = Aω . (*)
Vm = 60 ·10 ⁻ ⁶ · 1800 = 0,11 м/с. = 11 см/с.
Скорость распространения волны
v = ω / k . (3)
Тогда ( см. (*) )
Vm/v = Aω / ( ω / k ) = A k .
Vm/v = A k .
Vm/v = 60 ·10 ⁻ ⁶ · 5,3 = 3,2 ·10 ⁻ ⁴ .

в) Относительную деформацию среды найдём дифференцируя (2) по х:
∂ ξ/ ∂ x = ( Acos(ωt – kx) )x ʹ = — Aksin (ωt – kx).

Ответ: a) A/λ = 5,1 ·10 ⁻ ⁵ ;
б)
Vm = 0,11 м/с, Vm/v = 3,2 ·10 ⁻ ⁴;
в)
( ∂ ξ/ ∂ x)m = 3,2 ·10 ⁻ ⁴, V m = v · (d ξ/dx)m , где v = 340 м/с – скорость волны .

4.3-3. Что такое амплитуда колебаний скорости частиц среды?

Решение:
Объясню на простом примере. В озере на воде поплавок. Бросьте в воду камешек, от него во все стороны пойдут волны. Поплавок колеблется на волнах. Скорость колебаний поплавка − это скорость колебаний частиц среды (воды). Максимальная скорость колебаний поплавка − это амплитуда колебаний скорости частиц среды.
Амплитуда колебаний скорости частиц среды
Vm = Aω ( A — амплитуда, ω — циклическая частота).
Скорость распространения волны
v = ω / k ( k — волновое число).
A , ω , k определяют из общего вида уравнения бегущей плоской синусоидальной волны
ξ = Acos ( ωt – kx ).

4.3-4. Точечный изотропный источник испускает звуковые колебания с частотой ν = 1,45 кГц. На расстоянии r₁ = 5 м от источника амплитуда смещения частиц среды А₁ = 50 мкм, а в точке А, находящейся на расстоянии r₂ = 10 м от источника, амплитуда смещения в η = 3 раза меньше А₁. Найти:
а) коэффициент затухания волны γ;
б) амплитуду колебаний скорости частиц среды в точке А.

Решение:
ν = 1450 Гц
r₁ = 5 м
А₁ = 50·10⁻⁶ м
r₂ = 10 м
А₂ = А₁/η (η = 3) (*)
а) γ − ?
б) Vm − ? (в точке А)
От данного точечного источника распространяются сферические волны. Для однородной поглощающей среды уравнение сферической волны:

Задано уравнение колебаний см логарифмический декремент затухания равен

(1)
где ξ − смещение частиц среды; ω = 2πν − циклическая частота; k − волновое число.

а). Из (1) выпишем амплитуду A смещения частиц среды (множитель перед косинусом):
A = (A₀/r)·e⁻ᵞʳ.
Отсюда для r = r₁ и r = r₂ получаем амплитуды смещения частиц среды A₁ и A₂ соответственно
A ₁ = ( A ₀ / r ₁ ) · e ⁻ ᵞ r₁ , (**)
A ₂ = ( A ₀ / r ₂ ) · e ⁻ ᵞ r ₂ . (***)
Делим (**) на (***) и, с учётом (*), получаем:

Задано уравнение колебаний см логарифмический декремент затухания равен

η = ( r ₂ / r ₁ ) · e ᵞ ⁽ r ₂ ⁻ r₁ ⁾ отсюда η r ₁ / r ₂ = e ᵞ ⁽ r ₂ ⁻ r₁ ⁾ , отсюда, по определению логарифма, имеем

ln ( η r ₁ / r ₂ ) = γ( r ₂ — r ₁ ), отсюда

Задано уравнение колебаний см логарифмический декремент затухания равен

γ = ln(3 · 5 /10 )/(10 — 5 ) ≈ 0,08 м ⁻ ¹ .

б). Для нахождения скорости смещения частиц среды V найдём частную производную по времени t от (1):
V = ∂ ξ / ∂ t = ( A ₀ / r ) · e ⁻ ᵞ ʳ ·( — ω sin ( ω t — kr ) ).
С учётом ω = 2πν, имеем
V = — ( 2 π ν A ₀ /r ) ·e ⁻ ᵞ ʳ ·sin ( ω t-kr ) .
Отсюда амплитуда колебаний скорости частиц среды Vm (множитель перед синусом):

Задано уравнение колебаний см логарифмический декремент затухания равен

Задано уравнение колебаний см логарифмический декремент затухания равен

4.3-5. Плоская звуковая волна, частота которой 100 Гц и амплитуда 5 мкм, распространяется со скоростью 300 мс в воздухе, плотность которого равна 1 , 2 кгм ³ . Определить интенсивность волны.

Решение:
ν = 100 Гц
а = 5·10⁻⁶ м
V = 300 мс
ρ = 1,2 кгм³
I − ?
Интенсивность I звуковой волны
I = ρ а² ω ² V /2 и т.к. ω = 2 πν , то
I = ρ а²(2 πν )² V /2.
I = 1,2·(5·10⁻⁶)²·(2·3,14·100)²·300/2 = 1,77·10⁻³ Вт/м².
Ответ: I = 1,77·10⁻³ Вт/м².

4.3-6. Стальная струна длины l = 100 см и диаметра d = 0,50 мм даёт основной тон частоты ν = 256 Гц. Найти силу её натяжения.

Решение:
l = 1 м
d = 0,5·10⁻³ м
ν = 256 Гц
ρ = 7800 кг/м³ (плотность стали)
F − ?
В закреплённой с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны. Основной тон частоты ν колебаний струны:
ν = V/2l, отсюда
V = 2lν, (1)
где

Задано уравнение колебаний см логарифмический декремент затухания равен

− фазовая скорость поперечных волн в струне. Отсюда

F = V²ρ₁ , (2)
где ρ₁ = m/l − линейная плотность струны, m = ρV₀ − масса струны, V₀ = (πd²/4)l = πd²l/4 − объём струны.
Имеем: ρ₁ = ρV₀/l = ρ(πd²l/4)/l = ρπd²/4. Получили
ρ₁ = ρπd²/4. (3)
Подставляя в (2) V из (1) и ρ₁ из (3), получим силу натяжения F струны
F = (2lν)²ρπd²/4, или
F = πρ(lνd)².
F = 3,14·7800· (1·256·0,5·10⁻³)² ≈ 401,3 Н.
Ответ: F = πρ(lνd)² ≈ 401,3 Н.

_______________________________________________________________________________________________

4.4. Электромагнитные волны. Излучение.

4.4-1. Электромагнитная волна с частотой 6 · 10 ¹⁴ Гц распространяется в стекле, показатель преломления которого 1,5. Какова скорость волны в стекле и значение волнового числа?

Решение:

ν = 6 · 10¹⁴ Гц
n = 1,5
c = 3 · 10⁸ м/с (скорость света в вакууме)
V – ? k – ?
Скорость V волны в стекле:
V = c / n . (1)
Длина волны в стекле:
λ = V / ν = c /( nν ). (*)
Волновое число k:
k = 2 π / λ или с учётом (*)
k = 2 πnν /с. (2)
Вычисления по (1), (2)
V = 3 · 10⁸/1,5 = 2 · 10⁸ м/с.
k = 2 · 3,14 · 1,5 · 6 · 10¹⁴/(3 · 10⁸) = 1,88 · 10⁷ (1/м).
Ответ: V = 2 · 10⁸ м/с; k = 1,88 · 10⁷ (1/м).

4.4-2. Определить показатель преломления призмы из парафина , если его диэлектрическая проницаемость Ԑ = 2 и магнитная проницаемость μ = 1.

Решение:
Ԑ = 2
μ = 1
n – ?
Показатель преломления среды
n = C / V . (1)
С – скорость света в вакууме.
Скорость света в среде
V = C /√( Ԑμ ). (2)
Из (1) и (2) имеем
n = √( Ԑμ ).
n = √(2·1) = 1,41.
Ответ: n = 1,41.
___________________________________________________________________________________

🔥 Видео

5.4 Уравнение гармонических колебанийСкачать

5.4 Уравнение гармонических колебаний

Затухающие колебанияСкачать

Затухающие колебания

Урок 346. Определение добротности по графику затухающих колебанийСкачать

Урок 346. Определение добротности по графику затухающих колебаний

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)Скачать

Физика 9 класс (Урок№11 - Гармонические колебания. Затухающие колебания. Резонанс.)

Затухающие колебания. Вынужденные колебания. Физика 11 классСкачать

Затухающие колебания. Вынужденные колебания. Физика 11 класс

Лекция №11 "Колебания" (Булыгин В.С.)Скачать

Лекция №11 "Колебания" (Булыгин В.С.)

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебанийСкачать

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ период колебаний частота колебаний

Выполнялка 53.Гармонические колебания.Скачать

Выполнялка 53.Гармонические колебания.

Как решать задачи о механических колебаниях.Скачать

Как решать задачи о механических колебаниях.

Урок 327. Гармонические колебанияСкачать

Урок 327. Гармонические колебания

Никанорова Е. А. - Механика. Семинары - Затухающие колебанияСкачать

Никанорова Е. А. - Механика. Семинары - Затухающие колебания

Затухающие колебанияСкачать

Затухающие колебания

Консультация к устному экзамену. Механика. Часть 6: "Колебания"Скачать

Консультация к устному экзамену. Механика. Часть 6: "Колебания"

13.5. Свободные затухающие колебанияСкачать

13.5. Свободные затухающие колебания

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.Скачать

Уравнения и графики механических гармонических колебаний. Практ. часть - решение задачи. 11 класс.

Уравнение колебаний струны. Метод разделения переменных. Метод ФурьеСкачать

Уравнение колебаний струны. Метод разделения переменных. Метод Фурье

Лекция №11 "Вынужденные колебания" (Попов П.В.)Скачать

Лекция №11 "Вынужденные колебания" (Попов П.В.)
Поделиться или сохранить к себе: