Задание подпространства системой линейных уравнений

23. Задание подпространств конечномерного линейного пространства с помощью систем линейных уравнений

Пусть дано N-Мерное линейное пространство L и пусть в нём зафиксирован базис Е = (Е1, Е2, … , Еn ). Пусть М – линейное подпространство в L .

Определение 30. Будем говорить, что Система линейных уравнений задаёт подпространство М, если этой системе удовлетворяют координаты всех векторов из М и не удовлетворяют координаты никаких других векторов.

Из свойств решений однородной системы линейных уравнений следует, что любая однородная линейная система уравнений ранга R с n Переменными задаёт в любом N-Мерном пространстве Ln (если в нём зафиксирован базис) (N–r )-мерное линейное подпространство.

Справедливо и обратное утверждение. А именно, имеет место следующая теорема.

Теорема 30. Если в линейном N-Мерном пространстве Ln Зафиксирован базис, то любое его К-мерное линейное подпространство можно задать системой линейных однородных уравнений с N Неизвестными ранга (N – к).

Доказательство. Пусть в Ln зафиксирован базис Е = (Е1, Е2, … , Еn ). Пусть – линейное К-мерное подпространство в Ln. Выберем в Любой базис А = (А1, а2,… , ак). Пусть Задание подпространства системой линейных уравненийВ матричной форме А = Е × А, где А = Задание подпространства системой линейных уравнений.

Так как А – базис, то ранг матрицы А Равен К.

Задание подпространства системой линейных уравнений

Получили параметрические уравнения, определяющие .

После исключения параметров получится система (N – к) линейных однородных уравнений. Векторы А1, а2, … , ак являются её линейно независимыми решениями. Все остальные решения являются их линейными комбинациями.

Следовательно, система векторов (А1, а2, … , ак) будет фундаментальной системой решений полученной системы уравнений и поэтому ранг этой системы уравнений равен (N – к).

Пример. В пространстве L5 зафиксирован базис Е = (Е1, Е2, е3, е4 , Е5 ). Найти систему линейных однородных уравнений, задающих L3 = , если А1 = (1, –2, 2, 0, 1), А2 = (0, 4, 7, 0, 1), А3 = (–2, 3, –1, 0, 0).

Решение. Найдём ранг системы векторов (А1, а2, а3 ). Для этого достаточно найти ранг матрицы Задание подпространства системой линейных уравнений. Минор Задание подпространства системой линейных уравнений. Окаймляющий минор Задание подпространства системой линейных уравнений¹ 0, следовательно, ранг матрицы равен 3, т. е. векторы А1, а2, а3 линейно независимы и подпространство L3 – трёхмерное. Согласно доказанной теоремы, оно может быть задано системой линейных однородных уравнений ранга 2.

D Î L3 Û D = с1А1 + С2А2 + С3А3 . Отсюда D Î L3 Û Х1 = с1 – 2с3 , х2 = –2с1 + 4с2 + 3с3 , х3 = 2с1 + 7с2 – с3 , х4 = 0, х5 = с1 + с2. Если из первого, второго и пятого уравнений выразить С1, с2 и С3 И подставить их в третье и четвёртое уравнения, то получим следующую систему

Задание подпространства системой линейных уравнений

Замечание. Очевидно, система, задающая данное подпространство, определяется не единственным образом. К найденным уравнениям можно добавлять новые уравнения, являющиеся их линейными комбинациями.

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Способы описания подпространств линейного пространства

Рассмотрим два важных способа описания линейных подпространств, которые условно будем называть внутренним и внешним. В первом (внутреннем) способе используется понятие линейной оболочки векторов, когда все элементы подпространства выражаются через некоторые его элементы (образующие). При втором (внешнем) способе применяются однородные системы уравнений. В этом случае подпространство описывается как пересечение некоторых содержащих его множеств. Для каждого способа описания подпространств укажем методики на хождения размерностей, базисов, алгебраических дополнений, пересечений и сумм подпространств.

Любое n-мерное вещественное линейное пространство изоморфно n-мерному арифметическому пространству . Чтобы установить изоморфизм , достаточно выбрать в пространстве базис и каждому вектору поставить в соответствие его координатный столбец. Поэтому в данном разделе будем рассматривать описание подпространств n-мерного арифметического пространства .

Первый (внутренний) способ. Пусть в пространстве заданы столбцы . Напомним, что для систем столбцов были определены понятия базы (максимальной линейно независимой подсистемы столбцов) и ранга (максимального числа линейно не зависимых столбцов системы), а также методы их нахождения.

Рассматривая линейную оболочку столбцов как линейное подпространство , заключаем, что база системы столбцов является базисом этого подпространства, а ранг системы столбцов равен размерности подпространства .

Поэтому для нахождения размерности и базиса подпространства нужно выполнить следующие действия:

1) составить из данных столбцов матрицу размеров ;

2) привести ее к ступенчатому виду (1.4), используя элементарные преобразования строк;

3) определить размерность и базис подпространства

– количество ненулевых строк в матрице равняется размерности подпространства, т.е. ,

– столбцы матрицы , содержащие единичные элементы (в начале каждой «ступеньки»), определяют номера линейно независимых столбцов матрицы , т.е. искомый базис.

Таким образом, если подпространство задано своими образующими , то его размерность равна рангу системы столбцов , т.е. , а базисом служит максимальная линейно независимая подсистема образующих.

Второй (внешний) способ. Пусть подпространство задано как множество решений однородной системы уравнений с неизвестными. Множество решений системы уравнений можно рассматривать как пересечение подпространств , где — множество решений i-го уравнения системы . Напомним, что любое решение однородной системы представляется в виде линейной комбинации элементов фундаментальной системы решений. Поэтому раз мерность пространства , а базисом служит фундаментальная система решений однородной системы . Способы нахождения фундаментальной системы решений рассмотрены ранее.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Переход от одного способа описания подпространств к другому

Переход от внутреннего описания к внешнему. Пусть подпространство задано линейной оболочкой столбцов . Требуется составить такую однородную систему уравнений, множество решений которой совпадает с , т.е. . Для этого нужно выполнить следующие действия.

1. Из данных столбцов составить матрицу размеров , а затем блочную матрицу , приписав к матрице единичную матрицу n-го порядка.

2. Элементарными преобразованиями над строками блочной матрицы и первыми ее столбцами привести матрицу к виду , где — простейший вид матрицы .

3. Из последних строк матрицы составить матрицу .

4. Записать искомую систему уравнений .

Поясним содержание алгоритма. Заданное подпространство состоит из линейных комбинаций данных векторов, т.е. все его элементы имеют вид . Решаемую задачу можно сформулировать так: для каких векторов найдутся такие числа , чтобы выполнялось равенство . Другими словами, при каких неоднородная система ( уравнений с неизвестными ) имеет решения? Используя необходимое и достаточное условие (5.24) совместности системы, получаем равенство . Заметим, что решение поставленной задачи неоднозначно, так как существует много однородных систем, имеющих од но и то же множество решений.

Пример 8.8. Подпространство задано линейной оболочкой столбцов . Составить систему уравнений, определяющую подпространство .

Решение. 1. Составляем матрицу и блочную матрицу:

2. Приводим левый блок к простейшему виду. Вычитаем первую строку из остальных, а затем к четвертой строке прибавляем вторую, умноженную на (-2):

Преобразовываем столбцы левого блока: ко второму столбцу прибавим пер вый, умноженный на (-1), к третьему столбцу прибавим первый, умноженный на (-3), а затем второй, умноженный на (-1). Эти преобразования не изменяют правый блок полученной матрицы. Находим простейший вид Л матрицы и матрицу

3. Из последних строк матрицы составляем матрицу искомой системы.

4. Записываем систему уравнений Заданные в условии примера столбцы являются решениями полученной системы, в чем можно убедиться при их подстановке в систему уравнений вместо .

Переход от внешнего описания к внутреннему. Пусть подпространство задано как множество решений однородной системы т уравнений с л неизвестными: . Требуется найти размерность и базис этого подпространства, т.е. представить его в виде линейной оболочки . Для этого нужно выполнить следующие действия.

1. Найти фундаментальную систему решений однородной системы . Искомая размерность .

2. Представить заданное пространство как линейную оболочку .

Первый пункт алгоритма удобно выполнять следующим образом:

– составить блочную матрицу , приписав к матрице единичную матрицу n-го порядка;

– элементарными преобразованиями над столбцами блочной матрицы и строками верхнего блока привести матрицу к виду , где — простейший вид матрицы ;

– из последних столбцов матрицы составить фундаментальную матрицу .

Столбцы фундаментальной матрицы составляют искомую фундаментальную систему решений.

Заметим, что решение поставленной задачи неоднозначно, так как существует много базисов одного и того же линейного подпространства.

Пример 8.9. Найти размерность и базис подпространства , заданного системой уравнений

Решение. 1. Фундаментальная матрица для этой системы была найдена в примере 5.6

Ее столбцы образуют фундаментальную систему решений. Размерность подпространства равна , .

2. Столбцы являются искомым базисом, так как они линейно независимы и .

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Подпространство линейного пространства

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Определение и размерность подпространства

Определение 6.1. Подпространством L n-мерного пространства R называется множество векторов, образующих линейное пространство по отношению к действиям, которые определены в R.

Другими словами, L называется подпространством пространства R, если из x, y∈L следует, что x+y∈L и если x∈L, то λ x∈L, где λ— любое вещественное число.

Простейшим примером подпространства является нулевое подпространство, т.е. подмножество пространства R, состоящее из единственного нулевого элемента. Подпространством может служить и все пространство R. Эти подпространства называются тривиальными или несобственными.

Подпространство n-мерного пространства конечномерно и его размерность не превосходит n: dim L≤ dim R.

Видео:ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

Сумма и пересечение подпространств

Пусть L и M — два подпространства пространства R.

Cуммой L+M называется множество векторов x+y, где x∈L и y∈M. Очевидно, что любая линейная комбинация векторов из L+M принадлежит L+M, следовательно L+M является подпространством пространства R (может совпадать с пространством R).

Пересечением LM подпространств L и M называется множество векторов, принадлежащих одновременно подпространствам L и M (может состоять только из нулевого вектора).

Теорема 6.1. Сумма размерностей произвольных подпространств L и M конечномерного линейного пространства R равна размерности суммы этих подпространств и размерности пересечения этих подпространств:

dim L+dim M=dim(L+M)+dim(L∩M).

Доказательство. Обозначим F=L+M и G=L∩M. Пусть G g-мерное подпространство. Выберем в нем базис Задание подпространства системой линейных уравнений. Так как GL и GM, следовательно базис G можно дополнить до базиса L и до базиса M. Пусть Задание подпространства системой линейных уравненийбазис подпространства L и пусть Задание подпространства системой линейных уравненийбазис подпространства M. Покажем, что векторы

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

составляют базис F=L+M. Для того, чтобы векторы (6.1) составляли базис пространства F они должны быть линейно независимы и любой вектор пространства F можно представить линейной комбинацией векторов (6.1).

Докажем линейную независимость векторов (6.1). Пусть нулевой вектор пространства F представляется линейной комбинацией векторов (6.1) с некоторыми коэффициентами:

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

Левая часть (6.3) является вектором подпространства L, а правая часть является вектором подпространства M. Следовательно вектор

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

принадлежит подпространству G=L∩M. С другой стороны вектор v можно представить линейной комбинацией базисных векторов подпространства G:

Задание подпространства системой линейных уравнений

Из уравнений (6.4) и (6.5) имеем:

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

Но векторы Задание подпространства системой линейных уравненийявляются базисом подпространства M, следовательно они линейно независимы и Задание подпространства системой линейных уравнений. Тогда (6.2) примет вид:

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

В силу линейной независимости базиса подпространства L имеем:

Задание подпространства системой линейных уравнений

Так как все коэффициенты в уравнении (6.2) оказались нулевыми, то векторы

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

линейно независимы. Но любой вектор z из F (по определению суммы подпространств) можно представить суммой x+y, где x∈L, y∈M. В свою очередь x представляется линейной комбинацией векторов Задание подпространства системой линейных уравненийа y — линейной комбинацией векторовЗадание подпространства системой линейных уравнений. Следовательно векторы (6.10) порождают подпространство F. Получили, что векторы (6.10) образуют базис F=L+M.

Изучая базисы подпространств L и M и базис подпространства F=L+M (6.10), имеем: dim L=g+l, dim M=g+m, dim (L+M)=g+l+m. Следовательно:

dim L+dim M−dim(L∩M)=dim(L+M). ■

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Прямая сумма подпространств

Определение 6.2. Пространство F представляет собой прямую сумму подпространств L и M, если каждый вектор x пространства F может быть единственным способом представлен в виде суммы x=y+z, где y∈ L и z∈M.

Прямая сумма обозначается LM. Говорят, что если F=LM, то F разлагается в прямую сумму своих подпространств L и M.

Теорема 6.2. Для того, чтобы n-мерное пространство R представляло собой прямую сумму подпространств L и M, достаточно, чтобы пересечение L и M содержало только нулевой элемент и чтобы размерность R была равна сумме размерностей подпространств L и M.

Доказательство. Выберем некоторый базис Задание подпространства системой линейных уравненийв подпространстве L и некоторый базис Задание подпространства системой линейных уравненийв подпространстве M. Докажем, что

Задание подпространства системой линейных уравнений

является базисом пространства R. По условию теоремы размерность пространства R n равна сумме подпространств L и M (n=l+m). Достаточно доказать линейную независимость элементов (6.11). Пусть нулевой вектор пространства R представляется линейной комбинацией векторов (6.11) с некоторыми коэффициентами:

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

Так как левая часть (6.13) является вектором подпространства L, а правая часть — вектором подпространства M и LM= 0, то

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

Но векторы Задание подпространства системой линейных уравненийи Задание подпространства системой линейных уравненийявляются базисами подпространств L и M соответственно. Следовательно они линейно независимы. Тогда

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

Установили, что (6.12) справедливо лишь при условии (6.15), а это доказывает линейную независимость векторов (6.11). Следовательно они образуют базис в R.

Пусть x∈R. Разложим его по базису (6.11):

Задание подпространства системой линейных уравненийЗадание подпространства системой линейных уравнений

Задание подпространства системой линейных уравнений

Задание подпространства системой линейных уравнений

Из (6.17) и (6.18) следует, что любой вектор из R можно представить суммой векторов x1L и x2M. Остается доказать что это представление является единственным. Пусть кроме представления (6.17) есть и следующее представление:

Задание подпространства системой линейных уравнений

Вычитая (6.19) из (6.17), получим

Задание подпространства системой линейных уравнений

Задание подпространства системой линейных уравнений

Так как Задание подпространства системой линейных уравнений, Задание подпространства системой линейных уравненийи LM= 0, то Задание подпространства системой линейных уравненийи Задание подпространства системой линейных уравнений. Следовательно Задание подпространства системой линейных уравненийи Задание подпространства системой линейных уравнений. ■

🔥 Видео

Базисные решения систем линейных уравнений (03)Скачать

Базисные решения систем линейных уравнений (03)

4.1 Сумма и пересечение подпространств.Скачать

4.1 Сумма и пересечение подпространств.

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.

Решение однородных линейных систем. ТемаСкачать

Решение однородных линейных систем. Тема

Решение системы линейных уравнений. Подстановка. С дробными выражениями.Скачать

Решение системы линейных уравнений. Подстановка. С дробными выражениями.

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Построение угла, равного данному. 7 класс.Скачать

Построение угла, равного данному. 7 класс.

Фундаментальная система решений системы линейных уравнений ФСР СЛАУСкачать

Фундаментальная система решений системы линейных уравнений ФСР СЛАУ

Базис линейного пространства (01)Скачать

Базис линейного пространства (01)

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения

Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения
Поделиться или сохранить к себе: