Задание множеств уравнениями и неравенствами

Видео:Как решать неравенства? Математика 10 класс | TutorOnlineСкачать

Как решать неравенства? Математика 10 класс | TutorOnline

Множества точек, задаваемые алгебраическими уравнениями и неравенствами

Числовые множества

Множества могут состоять из объектов самой различной природы. Их элементами могут быть буквы, атомы, книги, люди и т.д. Для математики особо важную роль играют множества, составленные из “математических” объектов – чисел, точек, геометрических фигур и т.п. Примерами числовых множеств являются:

а) множество всех действительных чисел R;

б) множество всех рациональных чисел Q;

в) множество всех натуральных чисел N;

г) множество всех чисел вида Задание множеств уравнениями и неравенствами, где n принимает все натуральные значения.

В предлагаемой лекции мы рассмотрим примеры числовых множеств специального вида.

Множества точек на прямой

Числовые промежутки

Пример, имеющий важные применения, – соответствие между множеством действительных чисел R и множеством точек числовой прямой, т.е. прямой, на которой выбраны начало отсчета (ему сопоставлено число 0) и масштаб, однозначно определяющий равномерную шкалу. Каждой точке прямой соответствует ровно одно действительное число – координата этой точки, и обратно, каждому действительному числу x сопоставляется точка прямой с координатой x. Точка, соответствующая большему числу, находится правее, меньшему числу – левее. Данное соответствие позволяет множество чисел интерпретировать на геометрическом языке как множество точек прямой.

Интервалы

Открытым интерваломназывается множество всех чисел х, которые удовлетворяют неравенствам a x и x²

Задание множеств уравнениями и неравенствами

Заштрихованная часть числовой прямой содержит все точки, принадлежащие соответствующему интервалу. Незакрашенные кружочки означают, что эти точки не принадлежат интервалу, а закрашенные, наоборот, означают, что эти точки принадлежат интервалу.

Бесконечные интервалы.Интервал (–¥, a) (или (–¥, a]) – это множество всех чисел х, удовлетворяющих неравенству x a (или x ³ a). Интервал (–¥, +¥) – это множество R всех действительных чисел. Эти интервалы геометрически изображаются так:

Задание множеств уравнениями и неравенствами

Фигурирующие в этих обозначениях символы +¥ и –¥ ни в коем случае нельзя понимать как действительные числа. Наличие символа +¥ в обозначении интервала означает, что интервал содержит любые сколь угодно большие числа (например, интервал (а, +¥) содержит все числа, большие а). По аналогии с обычным интервалом можно записать, что интервал (а, +¥) состоит из всех чисел х – таких, что a a.

Точно так же наличие символа –¥ в обозначении интервала означает, что в этот интервал входят все отрицательные числа, абсолютные величины которых могут быть сколь угодно большими. Неравенство x > –¥, равно как и неравенство –¥

Задание множеств уравнениями и неравенствами

Пример.Пусть A, B, C – множества действительных чисел: A = (–4, 7); B = [0, 10], C = [–1, 4). Числовые промежутки A, B, C изображены на рисунке 3. Светлыми кружками обозначены концы промежутка, не принадлежащие ему (так, у интервала оба конца – светлые); закрашенными – принадлежащие промежутку.

Задание множеств уравнениями и неравенствами

AB = [0, 7); A È B = (–4, 10]; A B = (–4, 0); B A = [7, 10]; C A = Æ; A C = (–4, –1) È [4, 7).

Упражнение. Покажите на числовой прямой множества BC, B È C, B C, C B, A ∩ C,
A
È C , Задание множеств уравнениями и неравенствами, Задание множеств уравнениями и неравенствами, Задание множеств уравнениями и неравенствамии представьте эти промежутки с помощью введенных выше обозначений.

Замечание. Следует отметить, что одинаковым образом определяются и обозначаются числовые промежутки как в области действительных чисел (и тогда промежуток содержит бесконечное множество чисел), так и в области целых чисел (тогда, например, целочисленный отрезок [–3, 2] содержит 6 чисел: , а интервал (–3, 2) содержит 4 числа:
. Разница определяется тем, какое множество выбрано в качестве универсального

Множества точек, задаваемые алгебраическими уравнениями и неравенствами

С каждым уравнением связаны два числовых множества. Первое из них – область определения уравнения. Это множество состоит из всех значений х, для которых имеют смысл обе части уравнения. Второе множество – это множество его корней, то есть чисел, при подстановке которых в уравнение оно обращается в тождество.

Пример 1. Уравнение Задание множеств уравнениями и неравенствамиимеет своей областью определения множество [–4, +¥). Найдем его корни. Возведем обе части уравнения в квадрат:

Решим полученное квадратное уравнение:

Оба числа x1 = 0 и x2 = 5 принадлежат множеству [–4, +¥), однако число x2 = 5 является посторонним корнем уравнения (это показывает простая проверка: Задание множеств уравнениями и неравенствами). Таким образом, множество корней данного уравнения Ì [–4, +¥). На прямой эти множества изображаются так:

Задание множеств уравнениями и неравенствами

Пример 2. Уравнение |x| = 3 имеет своей областью определения множество (–¥, +¥). Найдем его корни. По определению абсолютной величины числа х имеем

Задание множеств уравнениями и неравенствами.

Поэтому данное уравнение можно представить в виде совокупности двух уравнений: х = 3 и
х = 3. Откуда получим два корня: x1 = 3, x2 = –3. Геометрически эти решения можно истолковать так: расстояние от x1 до начала отсчета О и расстояние x2 до начала отсчета О равны 3 (рисунок 4).

Задание множеств уравнениями и неравенствами

Задание множеств уравнениями и неравенствами

Пример 3. Неравенство |x| 3 имеет своими решениями объединение двух множеств:
(–¥, –3) È (3, +¥). Геометрически условие |x| > 3 означает, что расстояние от точки х до начала отсчета больше 3. Множество решений этого неравенства изображено на рисунке 7.

В случае неравенства |xx0| 0, множество решений имеет вид (x0a, x0 + a) и является открытым интервалом длины 2а с центром в точке (рисунок 8).

Множество решений неравенства |xx0| > a, где a > 0, представляет собой объединение двух множеств (–¥, x0a) È (x0 + a, +¥). Эти множества изображены на рисунке 9.

Видео:Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

Операции над множествами

Видео:Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика

Пересечение множеств

Рассмотрим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = <Том,
Фред,
Макс,
Джорж >
Друзья Майкла = <Лео,
Том,
Фред,
Эван >

Видим, что Том и Фред одновременно являются друзьями Джона и Майкла.

Говоря на языке множеств, элементы Том и Фред принадлежат как множеству друзей Джона, так и множеству друзей Майкла.

Зададим новое множество с названием «Общие друзья Джона и Майкла» и в качестве элементов добавим в него Тома и Фреда :

Общие друзья Джона и Майкла=

В данном случае множество «Общие друзья Джона и Майкла» является пересечением множеств друзей Джона и Майкла.

Пересечением двух (или нескольких) исходных множеств называется множество, которое состоит из элементов, принадлежащих каждому из исходных множеств.

В нашем случае элементы Том и Фред принадлежат каждому из исходных множеств, а именно: множеству друзей Джона и множеству друзей Майкла.

Обозначим множество друзей Джона через букву A , множество друзей Майкла — через букву B , а множество общих друзей Джона и Майкла обозначим через букву C :

Тогда пересечением множеств A и B будет множество C и записываться следующим образом:

Символ означает пересечение.

Говоря о множестве, обычно подразумевают элементы, принадлежащие этому множеству. Символ пересечения ∩ читается, как союз И. Тогда выражение A ∩ B = C можно прочитать следующим образом:

«Элементы, принадлежащие множеству A И множеству B, есть элементы, принадлежащие множеству C».

«Друзья, одновременно принадлежащие Джону И Майклу, есть общие друзья Джона и Майкла».

Теперь представим, что у Джона и Майкла нет общих друзей. Для удобства, как и прежде обозначим множество друзей Джона через букву A , а множество друзей Майкла через букву B

В этом случае говорят, что исходные множества не имеют общих элементов и пересечением таких множеств является пустое множество. Пустое множество обозначается символом ∅

Пример 2. Рассмотрим два множества: множество A , состоящее из чисел 1, 2, 3, 5, 7 и множество B, состоящее из чисел 1, 2, 3, 4, 6, 12, 18

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

Множество С является пересечением множеств A и B , поскольку элементы множества C одновременно принадлежат множеству A и множеству B

Пример 3. Рассмотрим два множества: множество A, состоящее из чисел 1, 5, 7, 9 и множество B , состоящее из чисел 1, 4, 5, 7

Зададим новое множество C и добавим в него элементы, которые одновременно принадлежат множеству A и множеству B

Множество С является пересечением множеств A и B , поскольку элементы множества C одновременно принадлежат множеству A и множеству B.

Пример 4. Найти пересечение следующих множеств:

Пересечением множеств A , B и C будет множество, состоящее из элементов, принадлежащих каждому из множеств A , B и C . Этими элементами являются числа 3 и 9.

Зададим новое множество D и добавим в него элементы 3 и 9. Затем с помощью символа пересечения запишем, что пересечением множеств A, B и C является множество D

Чтобы найти пересечение, вовсе необязательно задавать множества с помощью букв. Если элементов мало, то множество можно задать прямым перечислением элементов.

К примеру, пусть первое множество состоит из элементов 1, 3, 5, а второе из элементов 2, 3, 5 . Пересечением в данном случае является множество, состоящее из элементов 3 и 5 . Чтобы записать пересечение, можно воспользоваться прямым перечислением:

Числовые промежутки, которые мы рассмотрели в предыдущих уроках, тоже являются множествами. Элементами таких множеств являются числа, входящие в числовой промежуток.

Например, отрезок [2; 6] можно понимать, как множество всех чисел от 2 до 6. Для наглядности можно перечислить все целые числа, принадлежащие данному отрезку:

Следует иметь ввиду, что мы перечислили только целые числа. Отрезку [2; 6] также принадлежат и другие числа, не являющиеся целыми, например, десятичные дроби. Десятичные дроби располагаются между целыми числами, но их количество настолько велико, что перечислить их не представляется возможным.

Еще пример. Интервал (2; 6) можно понимать, как множество всех чисел от 2 до 6, кроме чисел 2 и 6. Ранее мы говорили, что интервал это такой числовой промежуток, границы которого не принадлежат ему. Для наглядности можно перечислить все целые числа, принадлежащие интервалу (2; 6) :

Поскольку числовые промежутки являются множествами, то мы можем находить пересечения между различными числовыми промежутками. Рассмотрим несколько примеров.

Пример 5. Даны два числовых промежутка: [2; 6] и [4; 8] . Найти их пересечение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [2; 6] и [4; 8] :

Видно, что числа 4, 5, 6 принадлежат как первому промежутку [2; 6] , так и второму [4; 8] .

Тогда пересечением числовых промежутков [2; 6] и [4; 8] будет числовой промежуток [4; 6]

Изобразим промежутки [2; 6] и [4; 8] на координатной прямой. На верхней области отметим числовой промежуток [2; 6] , на нижней — промежуток [4; 8]

Задание множеств уравнениями и неравенствами

Видно, что числа, принадлежащие промежутку [4; 6] , принадлежат как промежутку [2; 6] , так и промежутку [4; 8] . Можно также заметить, что штрихи, входящие в промежутки [2; 6] и [4; 8] пересекаются в промежутке [4; 6] . В такой ситуации, когда перед глазами есть координатная прямая, понятие пересечения множеств можно понимать в прямом смысле, что очень удобно.

Пример 6. Найти пересечение числовых промежутков [−2; 3] и [4; 7]

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие промежуткам [−2; 3] и [4; 7] :

−2, −1, 0, 1, 2, 3 ∈ [−2; 3]

Видно, что числовые промежутки [−2; 3] и [4; 7] не имеют общих чисел. Поэтому их пересечением будет пустое множество:

Если изобразить числовые промежутки [−2; 3] и [4; 7] на координатной прямой, то можно увидеть, что они нигде не пересекаются:

Задание множеств уравнениями и неравенствами

Пример 7. Дано множество из одного элемента . Найти его пересечение с промежутком (−3; 4)

Множество, состоящее из одного элемента , на координатной прямой изображается в виде закрашенного кружка, а числовой промежуток (−3; 4) это интервал, границы которого не принадлежат ему. Значит границы −3 и 4 будут изображаться в виде пустых кружков:

Задание множеств уравнениями и неравенствами

Пересечением множества и числового промежутка (−3; 4) будет множество, состоящее из одного элемента , поскольку элемент 2 принадлежит как множеству , так и числовому промежутку (−3; 4)

На самом деле мы уже занимались пересечением числовых промежутков, когда решали системы линейных неравенств. Вспомните, как мы решали их. Сначала находили множество решений первого неравенства, затем множество решений второго. Затем находили множество решений, которые удовлетворяют обоим неравенствам.

По сути, множество решений, удовлетворяющих обоим неравенствам, является пересечением множеств решений первого и второго неравенства. Роль этих множеств берут на себя числовые промежутки.

Например, чтобы решить систему неравенств Задание множеств уравнениями и неравенствами, мы должны сначала найти множества решений каждого неравенства, затем найти пересечение этих множеств.

В данном примере решением первого неравенства x ≥ 3 является множество всех чисел, которые больше 3 (включая само число 3). Иначе говоря, решением неравенства является числовой промежуток [3; +∞)

Решением второго неравенства x ≤ 6 является множество всех чисел, которые меньше 6 (включая само число 6). Иначе говоря, решением неравенства является числовой промежуток (−∞; 6]

А общим решением системы будет пересечение множеств решений первого и второго неравенства, то есть пересечение числовых промежутков [3; +∞) и (−∞; 6]

Если мы изобразим множество решений системы Задание множеств уравнениями и неравенствамина координатной прямой, то увидим, что эти решения принадлежат промежутку [3; 6] , который в свою очередь является пересечением промежутков [3; +∞) и (−∞; 6]

Задание множеств уравнениями и неравенствами

Поэтому в качестве ответа мы указывали, что значения переменной x принадлежат числовому промежутку [3; 6], то есть пересечению множеств решений первого и второго неравенства

Пример 2. Решить неравенство Задание множеств уравнениями и неравенствами

Все неравенства, входящие в систему уже решены. Нужно только указать те решения, которые являются общими для всех неравенств.

Решением первого неравенства является числовой промежуток (−∞; −1) .

Решением второго неравенства является числовой промежуток (−∞; −5) .

Решением третьего неравенства является числовой промежуток (−∞; 4) .

Решением системы Задание множеств уравнениями и неравенствамибудет пересечение числовых промежутков (−∞; −1), (−∞; −5) и (−∞; 4) . В данном случае этим пересечением является промежуток (−∞; −5) .

Задание множеств уравнениями и неравенствами

На рисунке представлены числовые промежутки и неравенства, которыми эти числовые промежутки заданы. Видно, что числа, принадлежащие промежутку (−∞; −5) , одновременно принадлежат всем исходным промежуткам.

Запишем ответ к системе Задание множеств уравнениями и неравенствамис помощью числового промежутка:

Пример 3. Решить неравенство Задание множеств уравнениями и неравенствами

Решением первого неравенства y > 7 является числовой промежуток (7; +∞) .

Решением второго неравенства y является числовой промежуток (−∞; 4) .

Решением системы Задание множеств уравнениями и неравенствамибудет пересечение числовых промежутков (7; +∞) и (−∞; 4) .

В данном случае пересечением числовых промежутков (7; +∞) и (−∞; 4) является пустое множество, поскольку эти числовые промежутки не имеют общих элементов:

Если изобразить числовые промежутки (7; +∞) и (−∞; 4) на координатной прямой, то можно увидеть, что они нигде не пересекаются:

Задание множеств уравнениями и неравенствами

Видео:Решение системы неравенств с двумя переменными. 9 класс.Скачать

Решение системы неравенств с двумя переменными. 9 класс.

Объединение множеств

Объединением двух (или нескольких) исходных множеств называют множество, которое состоит из элементов, принадлежащих хотя бы одному из исходных множеств.

На практике объединение множеств состоит из всех элементов, принадлежащих исходным множествам. Поэтому и говорят, что элементы такого множества принадлежат хотя бы одному из исходных множеств.

Рассмотрим множество A с элементами 1, 2, 3 и множество B с элементами 4, 5, 6.

Зададим новое множество C и добавим в него все элементы множества A и все элементы множества B

В данном случае объединением множеств A и B является множество C и обозначается следующим образом:

Символ ∪ означает объединение и заменяет собой союз ИЛИ. Тогда выражение AB = C можно прочитать так:

Элементы, принадлежащие множеству A ИЛИ множеству B, есть элементы, принадлежащие множеству C.

В определении объединения сказано, что элементы такого множества принадлежат хотя бы одному из исходных множеств. Данную фразу можно понимать в прямом смысле.

Вернёмся к созданному нами множеству C , куда входят все элементы множеств A и B . Возьмём для примера из этого множества элемент 5. Что можно про него сказать?

Если 5 является элементом множества C , а множество С является объединением множеств A и B , то можно с уверенностью заявить, что элемент 5 принадлежит хотя бы одному из множеств A и B . Так оно и есть:

Возьмем ещё один элемент из множества С , например, элемент 2. Что можно про него сказать?

Если 2 является элементом множества C , а множество С является объединением множеств A и B , то можно с уверенностью заявить, что элемент 2 принадлежит хотя бы одному из множеств A и B . Так оно и есть:

Если мы захотим объединить два или более множества и вдруг обнаружим, что один или несколько элементов принадлежат каждому из этих множеств, то в объединение повторяющиеся элементы будут входить только один раз.

Например, рассмотрим множество A с элементами 1, 2, 3, 4 и множество B с элементами 2, 4, 5, 6.

Видим, что элементы 2 и 4 одновременно принадлежат и множеству A , и множеству B . Если мы захотим объединить множества A и B , то новое множество C будет содержать элементы 2 и 4 только один раз. Выглядеть это будет так:

Чтобы при объединении не допустить ошибок, обычно поступают так: сначала в новое множество добавляют все элементы первого множества, затем добавляют элементы второго множества, которые не принадлежат первому множеству. Попробуем сделать такое объединение с множествами A и B .

Итак, у нас имеются следующие исходные множества:

Зададим новое множество С и добавим в него все элементы множества A

Теперь добавим элементы из множества B , которые не принадлежат множеству A . Множеству A не принадлежат элементы 5 и 6 . Их и добавим во множество C

Пример 2. Друзьями Джона являются Том, Фред, Макс и Джордж. А друзьями Майкла являются Лео, Том, Фред и Эван. Найти объединение множеств друзей Джона и Майкла.

Для начала зададим два множества: множество друзей Джона и множество друзей Майкла.

Друзья Джона = <Том,
Фред,
Макс,
Джорж >
Друзья Майкла = <Лео,
Том,
Фред,
Эван >

Зададим новое множество с названием «Все друзья Джона и Майкла» и добавим в него всех друзей Джона и Майкла.

Заметим, что Том и Фред одновременно являются друзьями Джона и Майкла, поэтому мы добавим их в новое множество только один раз, поскольку сразу двух Томов и двух Фредов не бывает.

Все друзья Джона и Майкла=

В данном случае множество всех друзей Джона и Майкла является объединением множеств друзей Джона и Майкла.

Друзья Джона ∪ Друзья Майкла = Все друзья Джона и Майкла

Пример 3. Даны два числовых промежутка: [−7; 0] и [−3; 5] . Найти их объединение.

Оба промежутка обрамлены квадратными скобками, значит их границы принадлежат им.

Для наглядности перечислим все целые числа, принадлежащие этим промежуткам:

−7, −6, −5, −4, −3,−2, −1 , 0 ∈ [−7; 0]

−3,−2, −1 , 0, 1, 2, 3, 4, 5 ∈ [−3; 5]

Объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5] , который содержит все числа промежутка [−7; 0] и [−3; 5] без повторов некоторых из чисел

−7, −6, −5, −4, −3,−2, −1, 0, 1, 2, 3, 4, 5 ∈ [−7; 5]

Обратите внимание, что числа −3,−2, −1 принадлежали и первому промежутку и второму. Но поскольку в объединение допускается включать такие элементы только один раз, мы включили их единоразово.

Значит объединением числовых промежутков [−7; 0] и [−3; 5] будет числовой промежуток [−7; 5]

Изобразим на координатной прямой промежутки [−7; 0] и [−3; 5] . На верхней области отметим числовой промежуток [−7; 0] , на нижней — промежуток [−3; 5]

Задание множеств уравнениями и неравенствами

Ранее мы выяснили, что промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5] . Здесь полезно вспомнить про определение объединения множеств, которое было приведено в самом начале. Объединение трактуется, как множество, состоящее из всех элементов, принадлежащих хотя бы одному из исходных множеств.

Действительно, если взять любое число из промежутка [−7; 5] , то окажется, что оно принадлежит хотя бы одному из промежутков: либо промежутку [−7; 0] либо промежутку [−3; 5] .

Возьмём из промежутка [−7; 5] любое число, например число 2 . Поскольку промежуток [−7; 5] является объединением промежутков [−7; 0] и [−3; 5] , то число 2 будет принадлежать хотя бы одному из этих промежутков. В данном случае число 2 принадлежит промежутку [−3; 5]

Задание множеств уравнениями и неравенствами

Возьмём ещё какое-нибудь число. Например, число −4 . Это число будет принадлежать хотя бы одному из промежутков: [−7; 0] или [−3; 5] . В данном случае оно принадлежит промежутку [−7; 0]

Задание множеств уравнениями и неравенствами

Возьмём ещё какое-нибудь число. Например, число −2 . Оно принадлежит как промежутку [−7; 0] , так и промежутку [−3; 5] . Но на координатной прямой оно указывается только один раз, поскольку в одной точке сразу два числа −2 не бывает.

Не каждое объединение числовых промежутков является числовым промежутком. Например, попробуем найти объединение числовых промежутков [−2 ; −1] и [4 ; 7].

Идея остаётся та же самая — объединением числовых промежутков [−2 ;−1] и [4 ; 7] будет множество, состоящее из элементов, принадлежащих хотя бы одному из промежутков: [−2; −1] или [4; 7] . Но это множество не будет являться числовым промежутком. Для наглядности перечислим все целые числа, принадлежащие этому объединению:

Получили множество . Это множество не является числовым промежутком по причине того, что числа, располагающиеся между −1 и 4 , не вошли в полученное множество

Задание множеств уравнениями и неравенствами

Числовой промежуток должен содержать все числа от левой границы до правой. Если одно из чисел отсутствует, то числовой промежуток теряет смысл. Допустим, имеется линейка длиной 15 см

Задание множеств уравнениями и неравенствами

Эта линейка является числовым промежутком [0; 15], поскольку содержит все числа в промежутке от 0 до 15 включительно. Теперь представим, что на линейке после числа 9 сразу следует число 12.

Задание множеств уравнениями и неравенствами

Эта линейка не является линейкой в 15 см, и её нежелательно использовать для измерения. Также, её нельзя назвать числовым промежутком [0; 15] , поскольку она не содержит все числа, которые должна была содержать.

Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 класс

Решение неравенств, содержащих знак ≠

Некоторые неравенства содержат знак (не равно). Например, 2x ≠ 8 . Чтобы решить такое неравенство, нужно найти множество значений переменной x , при которых левая часть не равна правой части.

Решим неравенство 2x ≠ 8 . Разделим обе части данного неравенства на 2, тогда получим:

Задание множеств уравнениями и неравенствами

Получили равносильное неравенство x ≠ 4 . Решением этого неравенства является множество всех чисел, не равных 4. То есть если мы подставим в неравенство x ≠ 4 любое число, которое не равно 4, то получим верное неравенство.

Подставим, например, число 5

5 ≠ 4 — верное неравенство, поскольку 5 не равно 4

7 ≠ 4 — верное неравенство, поскольку 7 не равно 4

И поскольку неравенство x ≠ 4 равносильно исходному неравенству 2x ≠ 8 , то решения неравенства x ≠ 4 будут подходить и к неравенству 2x ≠ 8 . Подставим те же тестовые значения 5 и 7 в неравенство 2x ≠ 8 .

Изобразим множество решений неравенства x ≠ 4 на координатной прямой. Для этого выколем точку 4 на координатной прямой, а всю оставшуюся область с обеих сторон выделим штрихами:

Задание множеств уравнениями и неравенствами

Теперь запишем ответ в виде числового промежутка. Для этого воспользуемся объединением множеств. Любое число, являющееся решением неравенства 2x ≠ 8 будет принадлежать либо промежутку (−∞; 4) либо промежутку (4; +∞). Так и записываем, что значения переменной x принадлежат (−∞; 4) или (4; +∞) . Напомним, что для слова «или» используется символ ∪

В этом выражении говорится, что значения, принимаемые переменной x , принадлежат промежутку (−∞; 4) или промежутку (4; +∞).

Неравенства, содержащие знак , также можно решать, как обычные уравнения. Для этого знак заменяют на знак = . Тогда получится обычное уравнение. В конце решения найденное значение переменной x нужно исключить из множества решений.

Решим предыдущее неравенство 2x ≠ 8 , как обычное уравнение. Заменим знак ≠ на знак равенства = , получим уравнение 2x = 8 . Разделим обе части данного уравнения на 2 , получим x = 4 .

Видим, что при x , равном 4, уравнение обращается в верное числовое равенство. При других значениях равенства соблюдаться не будет. Эти другие значения нас и интересуют. А для этого достаточно исключить найденную четвёрку из множества решений.

Пример 2. Решить неравенство 3x − 5 ≠ 1 − 2x

Перенесем −2x из правой части в левую часть, изменив знак, а −5 из левой части перенесём в правую часть, опять же изменив знак:

Задание множеств уравнениями и неравенствами

Приведем подобные слагаемые в обеих частях:

Задание множеств уравнениями и неравенствами

Разделим обе части получившегося неравенства на 5

Задание множеств уравнениями и неравенствами

Решением неравенства x ≠ 1,2 является множество всех чисел, не равных 1,2 .

Изобразим множество решений неравенства x ≠ 1,2 на координатной прямой и запишем ответ в виде числового промежутка:

Задание множеств уравнениями и неравенствами

В этом выражении говорится, что значения, принимаемые переменной x принадлежат промежутку (−∞; 1,2) или промежутку (1,2; +∞)

Видео:Решение неравенства методом интерваловСкачать

Решение неравенства методом интервалов

Решение совокупностей неравенств

Рассмотрим ещё один вид неравенств, который называется совокупностью неравенств. Такой тип неравенств, возможно, вы будете решать редко, но для общего развития полезно изучить и их.

Совокупность неравенств очень похожа на систему неравенств. Различие в том, что в системе неравенств нужно найти множество решений, удовлетворяющих каждому неравенству, образующему эту систему.

А в случае с совокупностью неравенств, нужно найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность.

Совокупность неравенств обозначается квадратной скобкой. Например, следующая запись из двух неравенств является совокупностью:

Задание множеств уравнениями и неравенствами

Решим данную совокупность. Сначала нужно решить каждое неравенство по отдельности.

Решением первого неравенства x ≥ 3 является числовой промежуток [3; +∞) . Решением второго неравенства x ≤ 6 является числовой промежуток (−∞; 6] .

Множество значений x , при которых верно хотя бы одно из неравенств, будет принадлежать промежутку [3; +∞) или промежутку (−∞; 6] . Так и записываем:

В этом выражении говорится, что переменная x , входящая в
совокупность Задание множеств уравнениями и неравенствамипринимает все значения, принадлежащие промежутку [3; +∞) или промежутку (−∞; 6] . А это то, что нам нужно. Ведь решить совокупность означает найти множество решений, удовлетворяющих хотя бы одному неравенству, образующему эту совокупность. А любое число из промежутка [3; +∞) или промежутка (−∞; 6] будет удовлетворять хотя бы одному неравенству.

Например, число 9 из промежутка [3; +∞) удовлетворяет первому неравенству x ≥ 3. А число −7 из промежутка (−∞; 6] удовлетворяет второму неравенству x ≤ 6.

Посмотрите внимательно на выражение x ∈ [3; +∞) ∪ (−∞; 6], а именно на его правую часть. Ведь выражение [3; +∞) ∪ (−∞; 6] представляет собой объединение числовых промежутков [3; +∞) и (−∞; 6] . Точнее, объединение множеств решений первого и второго неравенства.

Стало быть, решением совокупности неравенств является объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности Задание множеств уравнениями и неравенствамибудет объединение числовых промежутков [3; +∞) и (−∞; 6]

Задание множеств уравнениями и неравенствами

Объединением числовых промежутков [3; +∞) и (−∞; 6] является промежуток (−∞; +∞) . Точнее, объединением числовых промежутков [3; +∞) и (−∞; 6] является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть

Ответ можно оставить таким, каким мы его записали ранее:

либо заменить на более короткий:

Возьмём любое число из полученного объединения, и проверим удовлетворяет ли оно хотя бы одному неравенству.

Возьмем для примера число 8. Оно удовлетворяет первому неравенству x ≥ 3.

Возьмем еще какое-нибудь число, например, число 1. Оно удовлетворяет второму неравенству x ≤ 6

Возьмем еще какое-нибудь число, например, число 5 . Оно удовлетворяет и первому неравенству x ≥ 3 и второму x ≤ 6

Задание множеств уравнениями и неравенствами

Пример 2. Решить совокупность неравенств Задание множеств уравнениями и неравенствами

Чтобы решить эту совокупность, нужно найти множество решений, которые удовлетворяют хотя бы одному неравенству, образующему эту совокупность.

Для начала найдём множество решений первого неравенства x . Этим множеством является числовой промежуток (−∞; −0,25) .

Множеством решений второго неравенства x ≥ −7 является числовой промежуток [−7; +∞).

Решением совокупности неравенств Задание множеств уравнениями и неравенствамибудет объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности Задание множеств уравнениями и неравенствамибудет объединение числовых промежутков (−∞; −0,25) и [−7; +∞)

Задание множеств уравнениями и неравенствами

Объединением числовых промежутков (−∞; −0,25) и [−7; +∞) является является вся координатная прямая. А вся координатная прямая это все числа, которые только могут быть

Ответ можно оставить таким, каким мы его записали ранее:

либо заменить на более короткий:

Пример 3. Решить совокупность неравенств Задание множеств уравнениями и неравенствами

Решим каждое неравенство по отдельности:

Задание множеств уравнениями и неравенствами

Множеством решений первого неравенства x является числовой промежуток (−∞; −3) .

Множеством решений второго неравенства x ≤ 0 является числовой промежуток (−∞; 0] .

Решением совокупности неравенств Задание множеств уравнениями и неравенствамибудет объединение множеств решений первого и второго неравенства.

Иначе говоря, решением совокупности Задание множеств уравнениями и неравенствамибудет объединение числовых промежутков (−∞; −3) и (−∞; 0]

Задание множеств уравнениями и неравенствами

Объединением числовых промежутков (−∞; −3) и (−∞; 0] является числовой промежуток (−∞; 0]

Ответ можно оставить таким, каким мы его записали ранее:

Видео:Решение квадратных неравенств | МатематикаСкачать

Решение квадратных неравенств | Математика

Урок на тему «Метод областей». 11-й класс

Класс: 11

Презентация к уроку

«Считай несчастным тот день и тот час,
вк оторый ты не усвоил ничего нового и ничего
не прибавил к своему образованию».
Я.А Коменский

Тип урока: урок-обобщения и систематизации знаний учащихся.

Цели урока:

  • создать условия для систематизации, обобщения знаний и умений обучающихся по применению различных методов решения неравенств;
  • воспитание нравственных качеств личности, таких как ответственность, аккуратность, дисциплинированность;
  • воспитание культуры общения.
  • развитие у учащихся умений выделять главное, существенное в изучаемом материале, обобщать изучаемые факты, логически излагать свои мысли;
  • развитие психических процессов, таких как память, внимание, мышление, а также наблюдательности, активности, самостоятельности.

Задачи:

  • формировать умение классифицировать неравенства по методам решения;
  • закрепить навыки решения неравенств различными методами;
  • отрабатывать навыки самоконтроля с целью подготовки к итоговой аттестации;
  • воспитывать чувство коллективизма, ответственности.

Оборудование:

  • Компьютер
  • Мультимедийный проектор, звуковые колонки
  • Программа «MicrosoftPowerPoint 2003»

Методы обучения:

  • частично-поисковый метод,
  • репродуктивный,
  • обобщающий.

План урока.

План урока рассчитан на 2 учебных часа (90 мин)

  1. Организационный момент.
  2. Вступительное слово учителя.
  3. Повторение теории.
  4. Решение неравенств различными методами (варианты ЕГЭ)
  5. Самостоятельная работа с самопроверкой.
  6. Итог урока.
  7. Рефлексия.

Ход урока

I. Организационный момент

«То, что мы знаем, — ограничено, а то чего
мы не знаем, — бесконечно».

Приветствие учащихся.Ученики под руководством учителя проверяют наличие дневника, рабочей тетради, инструментов, отмечаются отсутствующие, проверяется готовность класса к уроку, учитель психологически настраивает детей на работу на уроке.Формулируется тема и цели урока. Знакомство с этапами урока.

II. Вступительное слово учителя

Для успешного исследования многих задач повышенной сложности полезно уметь строить не только графики функций, но и множества точек плоскости, координаты которых удовлетворяют заданным уравнениям, неравенствам или их системам. Эффективно строить на координатной плоскости такие множества позволяет метод областей. Это весьма полезный прием можно назвать обобщающим методом интервалов.
Метод областей особенно полезен при решении уравнений или неравенств с параметром. Применение метода интервалов в таких случаях затруднено, так как взаимное расположение точек, отмечаемых на числовой оси, может изменяться в зависимости от значений параметра. Это означает необходимость сравнивать их между собой и рассматривать различные случаи. В этой ситуации нам может помочь метод областей.

Задание множеств уравнениями и неравенствами

III. Повторение теории

Метод интервалов на координатной прямой и метод областей на координатной плоскости.

Точка х=а разбивает числовую прямую на два множества, задаваемые неравенствами x a

Задание множеств уравнениями и неравенствами

Всякая действительная кривая на координатной плоскости, заданная уравнением F(x;y)=0 разбивает координатную плоскость на конечное число областей, в каждой из которых для всех точек области выполняется только одно из неравенств: F(x;y)>0 или F(x;y) kx+p или y c

Задание множеств уравнениями и неравенствами

Решением системы неравенств с двумя переменными являются координаты точек пересечения множеств, удовлетворяющих одному из неравенств системы

Задание множеств уравнениями и неравенствами

Уравнение y= k(x-x0) + y0 задает множество прямых, проходящих через точку с координатами (x0,y0).

При изменении значений параметра прямые y= k(x-x0) + y0 «поворачиваются» вокруг данной точки. При увеличении параметра прямая поворачивается «против часовой стрелки», при уменьшении – «по часовой стрелке».

Задание множеств уравнениями и неравенствами

Уравнение y=kx+p при фиксированном значении параметра k = k0 задает семейство прямых, параллельных прямой y=kx+p проходящей через начало координат

Задание множеств уравнениями и неравенствами

Если точка с координатами Задание множеств уравнениями и неравенствамилежит «выше» прямой заданной уравнением y=kx+p, то ее координаты удовлетворяют неравенству , если же точка лежит «ниже», то неравенству

Задание множеств уравнениями и неравенствами

Задача

Пусть M – множество точек плоскости с координатами (x; y) таких, что числа x, y, 6-2x являются сторонами некоторого треугольника. Найдите его площадь.

Если три числа являются сторонами некоторого треугольника, то это числа положительные и каждое из них меньше суммы двух других чисел. Поэтому, координаты точек, удовлетворяющих условию задачи, будут задаваться системой линейных неравенств с двумя переменными:

Задание множеств уравнениями и неравенствами

Геометрическое место точек на плоскости

Множество точек плоскости, равноудаленных от данной точки на расстояние, равное положительной величине R, называется окружностью.
Уравнением окружности называется уравнение вида

Задание множеств уравнениями и неравенствами

Множество точек, удаленных от данной точки на положительное расстояние, меньшее R, называется кругом. Круг задается неравенством

Задание множеств уравнениями и неравенствами

Множество точек, лежащих вне круга, задается неравенством

Задание множеств уравнениями и неравенствами

Задание множеств уравнениями и неравенствами

Геометрическое место точек на плоскости

Квадратным трехчленом относительно переменной, называется выражение

Задание множеств уравнениями и неравенствами

Графиком квадратного трехчлена является кривая, называемая параболой.
Расположение параболы зависит от знака старшего коэффициента и знака дискриминанта квадратного трехчлена

Задание множеств уравнениями и неравенствами

Парабола разбивает плоскость на часть, лежащую «над» параболой и лежащую «под» параболой. Первая задается неравенством

Задание множеств уравнениями и неравенствами

, а вторая – Задание множеств уравнениями и неравенствами

Задание множеств уравнениями и неравенствами

Метод областей при решении задач с параметрами

1. Свойства функций

2. Графический прием

Параметр – «равноправная» переменная Þ отведем ему координатную ось, т.е. задачу с параметром будем рассматривать как функцию f(x ;a) >0

Общие признаки задач подходящих под рассматриваемый метод:

  • В задаче дан один параметр а и одна переменная х
  • Они образуют некоторые аналитические выражения F(x;a), G(x;a)
  • Графики уравнений F(x;a)=0,G(x;a)=0 строятся несложно
  1. Строим графический образ
  2. Пересекаем полученный график прямыми, перпендикулярными параметрической оси
  3. «Считываем» нужную информацию

Обобщенный метод областей («переход» метода интервалов с прямой на плоскость)

Неравенства с одной переменной

Неравенства с двумя переменной

  1. ОДЗ
  2. Граничные линии
  3. Координатная плоскость
  4. Знаки в областях
  5. Ответ по рисунку

IV. Решение неравенств

Пример №1

Найти все значения параметра p, при каждом из которых множество решений неравенства не содержит ни одного решения неравенства

Задание множеств уравнениями и неравенствами

Применим обобщенный метод областей.

1. Построим граничные линии

Задание множеств уравнениями и неравенствами

2. Определяем знаки в полученных областях и получаем решение 1 неравенства

3. Из полученного множества исключим решение Задание множеств уравнениями и неравенствами

Задание множеств уравнениями и неравенствами

Пример № 2

При каких значениях параметра а система неравенств не имеет решений.

Задание множеств уравнениями и неравенствами

1. Рассмотрим 1 неравенство и получаем

Задание множеств уравнениями и неравенствами

2. Рассмотрим 2 неравенство и получаем

Задание множеств уравнениями и неравенствами

3. Заметим, что исходная система неравенств равносильна системе:

Задание множеств уравнениями и неравенствами

4. Изобразим систему неравенств в виде плоской фигуры на координатной плоскости. Для этого введём параметрическую плоскость Oax

Задание множеств уравнениями и неравенствами

5. Мы получили плоскую фигуру, множество точек которой является решением системы.

Таким образом, отвечая на вопрос задачи, решений системы нет при

Задание множеств уравнениями и неравенствами

Пример №3

При каких положительных значениях параметраа система уравнений имеет ровно 4 решения.

Задание множеств уравнениями и неравенствами

1. Запишем систему в следующем виде:

Задание множеств уравнениями и неравенствами

2. Построим график 1 уравнения.

3. Построим график 2 уравнения – семейство окружностей с центром в точке (2; 0) и радиусом а.

Задание множеств уравнениями и неравенствами

Ответ: при Задание множеств уравнениями и неравенствами

V. Самостоятельная работа с самопроверкой

На координатной плоскости изобразите множество точек, удовлетворяющих неравенству

Задание множеств уравнениями и неравенствами

1. ОДЗ: Задание множеств уравнениями и неравенствами

2. Строим граничные линии:

Задание множеств уравнениями и неравенствами

3. Они разбивают плоскость на восемь областей, определяя знаки подстановкой в отдельных точках, получаем решение.

Задание множеств уравнениями и неравенствами

Ответ: заштрихованная область на рисунке

На координатной плоскости изобразите множество точек, координаты которых удовлетворяют неравенству

Задание множеств уравнениями и неравенствами

  1. На координатной плоскости нарисуем линии определённые равенствами x-y=0 и xy-1=0, которые разбивают плоскость на несколько областей.
  2. Определяем знаки в областях.

Задание множеств уравнениями и неравенствами

Ответ: заштрихованная область на рисунке

VI. Итог урока

(подвожу итог, комментирую работу учащихся, сообщаю оценки за урок.)

VII. Рефлексия.

Ребята. На этом урок окончен. Спасибо за урок!

Литература.

  1. П. И. Горнштейн, В.Б.Полонский, М.С.Якир. Задачи с параметрами. 3-е издание, дополненное и переработанное. — М.: Илскса, Харьков: Гимназия, 2005,- 328 с.
  2. Черкасов О. Ю., Якушев А. Г. Математика: интенсивный курс подготовки к экзамену.
  3. Экзаменационные материалы для подготовки к ЕГЭ-2007. Математика. М.: ООО «РУСТЕСТ», 2006. — 108с. Сост. — Клово А.Г.
  4. Задачи с параметром и другие сложные задачи. Козко А.И., Чирский В.Г. М.: МЦНМО, 2007. — 296с.
  5. ЕГЭ 2011. Математика. Задача С5. Козко А.И., Панферов В.С., Сергеев И.Н., Чирский В.Г.

🌟 Видео

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnlineСкачать

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnline

Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать

Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnline

Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnlineСкачать

Рациональные уравнения. ОГЭ номер 21 | ЕГЭ номер 13 | Математика | TutorOnline

Множества и операции над нимиСкачать

Множества и операции над ними

Множества. Операции над множествами. 10 класс алгебраСкачать

Множества. Операции над множествами. 10 класс алгебра

Решение системы неравенствСкачать

Решение системы неравенств

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | МатематикаСкачать

Что такое параметр? Уравнения и неравенства с параметром. 7-11 класс. Вебинар | Математика

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

9 класс, 2 урок, Множества и операции над нимиСкачать

9 класс, 2 урок, Множества и операции над ними

Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать

Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)

✓ Метод интервалов. Рациональные уравнения и неравенства | Борис ТрушинСкачать

✓ Метод интервалов. Рациональные уравнения и неравенства | Борис Трушин

Операции над множествамиСкачать

Операции  над  множествами

Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |Скачать

Как решать уравнения и неравенства? | Ботай со мной #072 | Борис Трушин |
Поделиться или сохранить к себе: