Глава I. Классификация дифференциальных уравнений с частными производными
1. Дифференциальные уравнения с двумя независимыми переменными. 2. Классификация уравнений 2-го порядка со многими независимыми переменными. 3. Канонические формы линейных уравнений с постоянными коэффициентами. Задачи к главе I
Глава II. Уравнения гиперболического типа
1. Уравнение малых поперечных колебаний струны. Уравнение продольных колебаний стержней и струн. 3. Энергия колебания струны. 4. Вывод уравнения электрических колебаний в проводах. 5. Поперечные колебания мембраны. 6. Уравнения гидродинамики и акустики. 7. Граничные и начальные условия. 8. Редукция общей задачи. 9. Постановка краевых задач для случая многих переменных. 10. Теорема единственности. Задачи.
1. Формула Даламбера. 2. Физическая интерпретация. 3. Примеры. 4. Неоднородное уравнение. Устойчивость решении. 6. Полуограниченная прямая и метод продолжений. 7. Задачи для ограниченного отрезка. 8. Дисперсия волн. 9. Интегральное уравнение колебаний. 10. Распространение разрывов вдоль характеристик. Задачи.
1. Уравнение свободных колебаний струны. 2. Интерпретация решения. 3. Представление произвольных колебаний в виде суперпозиции стоячих воли. 4. Неоднородные уравнения. 5. Общая первая краевая задача. 6. Краевые задачи со стационарными неоднородностями. 7. Задачи без начальных условий. 8. Сосредоточенная Сила. 9. Общая схема метода разделения переменных. Задачи.
1. Постановка задачи. 2. Метод последовательных приближений дли задачи Гурса. Задачи.
1. Сопряженные дифференциальные операторы. 2. Интегральная форма решения. 3. Физическая интерпретации функции Римана. 4. Уравнения с постоянными коэффициентами. Задачи к главе II
Приложения к главе II
1. Постановка задачи. 2. Собственные колебания нагруженной струны. 3. Струна с грузом на конце. 4. Поправки для собственных значений.
1. Уравнения газодинамики. Закон сохранения энергии. 2. Ударные волны. Условия динамической совместности. 3. Слабые разрывы.
1. Уравнения, описывающие процесс сорбции газа. 2. Асимптотическое решение.
Глава III. Уравнения параболического типа
1. Линейная задача о распространении тепла. 2. Уравнение диффузии. 3. Распространение тепла в пространстве. 4. Постановка краевых задач. 5. Принцип максимального значения. 6. Теорема единственности. 7. Теорема единственности для бесконечной прямой.
1. Однородная краевая задача. 2. Функция источника. 3. Краевые задачи с разрывными начальными условиями. 4. Неоднородное уравнение теплопроводности. 5. Общая первая краевая задача. Задачи.
1. Распространение тепла на бесконечной прямой. Функция источника для неограниченной области. 2. Краевые задачи для полуограниченной прямой.
Задачи к главе III
Приложения к главе III
1. Функция источника для бесконечной прямой. 2. Краевые задачи для квазилинейного уравнения теплопроводности.
1. Определение d -функции. 2. Разложение d -фикции в ряд Фурье. 3. Применение d -функции к построению функции источника.
Глава IV. Уравнения эллиптического типа
1. Стационарное тепловое поле. Постановка краевых задач. 2. Потенциальное течение жидкости. Потенциал стационарного тока и электростатического поля. 3. Уравнение Лапласа в криволинейной системе координат. 4. Некоторые частные решения уравнения Лапласа. 5. Гармонические функции и аналитические функции комплексного переменного. 6. Преобразование обратных радиусов-векторов.
1. Формулы Грина. Интегральное представление решения. 2. Некоторые основные свойства гармонических функций. 3. Единственность и устойчивость первой краевой задачи. 4. Задачи с разрывными граничными условиями. 5. Изолированные особые точки. 6. Регулярность гармонической функции трех переменных в бесконечности. 7. Внешние краевые задачи. Единственность решения для двух- и трехмерных задач. 8. Вторая краевая задача. Теорема единственности.
1. Первая краевая задача для круга. 2. Интеграл Пуассона. 3. Случай разрывных граничных значений.
1. Функция источника для уравнения D u=0 и ее основные свойства. 2. Метод электростатических изображений и функция источника для сферы. 3. Функция источника для круга. 4. Функция источника для полупространства.
1. Объемный потенциал. 2. Плоская задача. Логарифмический потенциал. Несобственные интегралы. 4. Первые производные объемного потенциала. 5. Вторые производные объемного потенциала. 6. Поверхностные потенциалы. 7. Поверхности и кривые Ляпунова. 8. Разрыв потенциала двойного слоя. 9. Свойства потенциала простого слоя. 10. Применение поверхностных потенциалов к решению краевых задач. 11. Интегральные уравнения, соответствующие краевым задачам. Задачи к главе IV
Приложения к главе IV
1. Единственность решения. 2. Представление бигармонических функций через гармонические функции. 3. Решение бигармонического уравнения для круга.
Глава V. Распространение волн в пространстве
1. Уравнение колебаний в пространстве. 2. Метод усреднения. 3. Формула Пуассона. 4. Метод спуска. 5. Физическая интерпретация. 6. Метод отражения.
1. Вывод интегральной формулы. 2. Следствия из интегральной формулы.
1. Общая схема метода разделения переменных. Стоячие волны. 2. Колебания прямоугольной мембраны. 3. Колебания круглой мембраны. Задачи к главе V
Приложения к главе V
1. Уравнения электромагнитного поля и граничные условия. 2. Потенциалы электромагнитного поля. 3. Электромагнитное поле осциллятора.
Глава VI. Распространение тепла в пространстве
1. Функция температурного влияния. 2. Распространение тепла в неограниченном пространстве.
1. Схема метода разделения переменных. 2. Остывание круглого цилиндра. 3. Определение критических размеров.
1. Формула Грина дли уравнения теплопроводности и функция источника. 2. Решение краевой задачи. 3. Функция источника для отрезка.
1. Свойства тепловых потенциалов простого и двойного слоя. 2. Решение краевых задач. Задачи к главе VI
Приложения к главе VI
Глава VII. Уравнения эллиптического типа (продолжение)
1. Установившиеся колебания. 2. Диффузия газа при наличии распада и при цепных реакциях. 3. Диффузия в движущейся среде. 4. Постановка внутренних краевых задач для уравнения D v + cv=0.
1. Функции влияния точечных источников. 2. Интегральное представление решения. 3. Потенциалы.
1. Уравнение D v + cv =-f в неограниченном пространстве. 2. Принцип предельного поглощения. 3. Принцип предельной амплитуды. 4. Условия излучения.
1. Постановка задачи. 2. Единственность решения задачи дифракции. 3. Дифракция на сфере. Задачи к главе VII
Приложения к главе VII
1. Собственные колебания цилиндрического эндовибратора. 2. Электромагнитная энергия собственных колебаний. 3. Возбуждение колебаний в эндовибраторе.
1. Схемы для уравнения с постоянными коэффициентами. 2. Погрешность аппроксимации. 3. Энергетическое тождество. 4. Устойчивость. 5. Сходимость и точность. 6. Разностные схемы для уравнений с переменными коэффициентами. 7. Метод баланса. Консервативные схемы. 8. Двухслойные схемы для уравнения теплопроводности с переменными коэффициентами. 9. Трехслойные схемы. 10. Решение систем разностных уравнений. Метод прогонки. 11. Разностные методы решения квазилинейных уравнений.
1. Разностная аппроксимация оператора Лапласа. 2. Принцип максимума. 3. Оценка решения неоднородного уравнения. 4. Сходимость решения разностной задачи Дирихле. 5. Решение разностных уравнений методом простой итерации.
1. Многомерные схемы. 2. Экономичные схемы. 3. Итерационные методы переменных направлений для решения разностной задачи Дирихле.
Дополнение II. Специальные функции
1. Введение. 2. Общее уравнение теории специальных функций. 3. Поведение решений в окрестности х=а, если k(а)=0. 4. Постановка краевых задач.
Часть I. Цилиндрические функции
1. Степенные ряды. 2. Рекуррентные формулы. 3. Функции полуцелого порядка. 4. Асимптотический порядок цилиндрических функций.
1. Функции Ханкеля. 2. Функции Ханкеля и Неймана. 3. Функции мнимого аргумента. 4. Функция K 0 (х).
1. Контурные интегралы. 2. функции Ханкеля. 3. Некоторые свойства гамма-функции. 4. Интегральное представление функции Бесселя. 5. Интегральное представление K n (х). 6, Асимптотические формулы для цилиндрических функций.
1. Многомерные схемы. 2. Экономичные схемы. 3. Итерационные методы переменных направлений для решения разностной задачи Дирихле.
1. Гармонические полиномы. 2. Сферические функции. 3. Ортогональность системы сферических функции. 4. Полнота системы сферических функций. 5. Разложение по сферическим функциям.
1. Задача Дирихле для сферы. 2. Проводящая сфера в поле точечного заряда. 3. Поляризация шара в однородном поле. 4. Собственные колебания сферы. 5. Внешняя краевая задача для сферы.
Часть III. Полиномы Чебышева — Эрмита и Чебышева — Лагерра
1. Уравнение Шредингера. 2. Гармонический осциллятор. 3. Ротатор. 4. Движение электрона в кулоновом поле.
Видео:3.2 Решение уравнений гиперболического типа методом характеристикСкачать
Курсовая работа: Решение параболических уравнений
Название: Решение параболических уравнений Раздел: Рефераты по математике Тип: курсовая работа Добавлен 21:20:53 10 октября 2009 Похожие работы Просмотров: 900 Комментариев: 21 Оценило: 4 человек Средний балл: 4.3 Оценка: неизвестно Скачать
Видео:Классические точные аналитические методы решения уравнений гиперболического и параболического типаСкачать
Реферат
Видео:6.1 Смешанные краевые задачи для уравнений гиперболического и параболического типов. Метод Фурье.Скачать
В курсовой работе рассматривается метод сеток решения параболических уравнений. Теоретическая часть включает описание общих принципов метода, его применение к решению параболических уравнений, исследование разрешимости получаемой системы разностных уравнений. В практической части разрабатывается программа для численного решения поставленной задачи. В приложении представлен текст программы и результаты выполнения тестовых расчетов.
1.1 Метод сеток решения уравнений параболического типа
1.2 Метод прогонки решения разностной задачи для уравненийпараболического типа
1.3 Оценка погрешности и сходимость метода сеток
1.4 Доказательство устойчивости разностной схемы
2. Реализация метода
2.1 Разработка программного модуля
2.2 Описание логики программного модуля
2.3 Пример работы программы
К дифференциальным уравнениям с частными производными приходим при решении самых разнообразных задач. Например, при помощи дифференциальных уравнений с частными производными можно решать задачи теплопроводности, диффузии, многих физических и химических процессов.
Как правило, найти точное решение этих уравнений не удается, поэтому наиболее широкое применение получили приближенные методы их решения. В данной работе ограничимся рассмотрением дифференциальных уравнений с частными производными второго порядка, а точнее дифференциальными уравнениями с частными производными второго порядка параболического типа, когда эти уравнения являются линейными, а искомая функция зависит от двух переменных. В общем случае такое уравнение записывается следующим образом:
.
Заметим, что численными методами приходится решать и нелинейные уравнения, но находить их решение много труднее, чем решение линейных уравнений.
введем в рассмотрение величину . В том случае, когда уравнение называется параболическим. В случае, когда величина не сохраняет знак, имеем смешанный тип дифференциального уравнения. Следует отметить, что в дифференциальном уравнении все функции являются известными, и они определены в области , в которой мы ищем решение.
1. Теоретическая часть
1.1 Метод сеток решения уравнений параболического типа
Для решения дифференциальных уравнений параболического типа существует несколько методов их численного решения на ЭВМ, однако особое положение занимает метод сеток, так как он обеспечивает наилучшие соотношения скорости, точности полученного решения и простоты реализации вычислительного алгоритма. Метод сеток еще называют методом конечных разностей.Пусть дано дифференциальное уравнение
. (1.1)
Требуется найти функцию в области с границей при заданных краевых условиях. Согласно методу сеток в плоской области строится сеточная область , состоящая из одинаковых ячеек. При этом область должна как можно лучше приближать область . Сеточная область (то есть сетка) состоит из изолированных точек, которые называются узлами сетки. Число узлов будет характеризоваться основными размерами сетки : чем меньше , тем больше узлов содержит сетка. Узел сетки называется внутренним, если он принадлежит области , а все соседние узлы принадлежат сетке . В противном случае он называется граничным. Совокупность граничных узлов образует границу сеточной области .
Сетка может состоять из клеток разной конфигурации: квадратных, прямоугольных, треугольных и других. После построения сетки исходное дифференциальное уравнение заменяется разностным уравнением во всех внутренних узлах сетки. Затем на основании граничных условий устанавливаются значения искомого решения в граничных узлах. Присоединяя граничные условия сеточной задачи к разностным уравнениям, записанных для внутренних узлов, получаем систему уравнений, из которой определяем значения искомого решения во всех узлах сетки.
Замена дифференциального уравнения разностным может быть осуществлена разными способами. Один из способов аппроксимации состоит в том, что производные, входящие в дифференциальное уравнение, заменяются линейными комбинациями значений функции в узлах сетки по тем или иным формулам численного дифференцирования. Различные формулы численного дифференцирования имеют разную точность, поэтому от выбора формул аппроксимации зависит качество аппроксимации дифференциального уравнения разностным уравнением.
Заметим, что эту полуполосу всегда можно привести к полуполосе, когда . Уравнение (1.2) будем решать с начальными условиями:
, (1.3)
– известная функция, и краевыми условиями:
(1.4)
где – известные функции переменной .
Для решения задачи область покроем сеткой .
Узлы сетки, лежащие на прямых , и будут граничными. Все остальные узлы будут внутренними. Для каждого внутреннего узла дифференциальное уравнения (1.2) заменим разностным. При этом для производной воспользуемся следующей формулой:
.
Для производной запишем следующие формулы:
,
,
.
Можем получить три вида разностных уравнений:
, (1.5)
, (1.6)
, (1.7)
.
Разностные уравнения (1.5) аппроксимируют уравнение (1.2) с погрешностью , уравнение (1.6) – с такой же погрешностью, а уравнение (1.7) уже аппроксимирует уравнение (1.2) с погрешностью .
В разностной схеме (1.5) задействованы 4 узла. Конфигурация схемы (1.5) имеет вид:
В схеме (1.6) также участвуют 4 узла, и эта схема имеет вид:
В схеме (1.7) участвуют 5 узлов, и эта схема имеет вид:
Первая и третья схемы – явные, вторая схема неявная. В случае явных схем значения функции в узле очередного слоя можно найти, зная значения в узлах предыдущих слоев. В случае неявных схем для нахождения значений решения в узлах очередного слоя приходится решать систему уравнений.
Для узлов начального (нулевого) слоя значения решения выписываются с помощью начального условия (1.3):
(1.8)
Для граничных узлов, лежащих на прямых и , заменив производные по формулам численного дифференцирования, получаем из граничных условий (1.4) следующие уравнения:
(1.9)
Уравнения (1.9) аппроксимируют граничные условия (1.4) с погрешностью , так как используем односторонние формулы численного дифференцирования. Погрешность аппроксимации можно понизить, если использовать более точные односторонние (с тремя узлами) формулы численного дифференцирования.
Присоединяя к системе разностных уравнений, записанных для внутренних узлов, начальные и граничные условия (1.8) и (1.9) для разностной задачи получим полные разностные схемы трех видов. Для проведения вычислений самой простой схемой оказывается первая: достаточно на основании начального условия найти значения функции в узлах слоя , чтобы в дальнейшем последовательно определять значения решения в узлах слоев и т.д.
Третья схема также весьма проста для проведения вычислений, но при ее использовании необходимо кроме значений решения в узлах слоя найти каким-то образом значения функции и в слое . Далее вычислительный процесс легко организовывается. В случае второй схемы, которая является неявной, обязательно приходится решать систему уравнений для нахождения решения сеточной задачи.
С точки зрения точечной аппроксимации третья схема самая точная.
Введем в рассмотрение параметр . Тогда наши разностные схемы можно переписать, вводя указанный параметр. При этом самый простой их вид будет при .
В любом случае согласно методу сеток будем иметь столько уравнений, сколько имеется неизвестных (значения искомой функции в узлах). Число неизвестных равно числу всех узлов сетки. Решая систему уравнений, получаем решение поставленной задачи.
Разрешимость этой системы для явных схем вопросов не вызывает, так как все действия выполняются в явно определенной последовательности. В случае неявных схем разрешимость системы следует исследовать в каждом конкретном случае. Важным вопросом является вопрос о том, на сколько найденные решения хорошо (адекватно) отражают точные решения, и можно ли неограниченно сгущая сетку (уменьшая шаг по осям) получить приближенные решения, сколь угодно близкие к точным решениям? Это вопрос о сходимости метода сеток.
На практике следует применять сходящиеся разностные схемы, причем только те из них, которые являются устойчивыми, то есть при использовании которых небольшие ошибки в начальных или промежуточных результатах не приводят к большим отклонениям от точного решения. Всегда следует использовать устойчивые разностные схемы, проводя соответствующие исследования на устойчивость.
Первая из построенных выше разностных схем в случае первой краевой задачи будет устойчивой при . Вторая схема устойчива при всех значениях величины . Третья схема неустойчива для любых , что сводит на нет все ее преимущества и делает невозможной к применению на ЭВМ.
Явные схемы просты для организации вычислительного процесса, но имеют один весьма весомый недостаток: для их устойчивости приходится накладывать сильные ограничения на сетку. Неявные схемы свободны от этого недостатка, но есть другая трудность – надо решать системы уравнений большой размерности, что на практике при нахождении решения сложных уравнений в протяженной области с высокой степенью точности может потребовать больших объемов памяти ЭВМ и времени на ожидание конечного результата. К счастью, прогресс не стоит на месте и уже сейчас мощности современных ЭВМ вполне достаточно для решения поставленных перед ними задач.
1.2 Метод прогонки решения разностной задачи для уравнений параболического типа
Рассмотрим частный случай задачи, поставленной в предыдущем разделе. В области
найти решение уравнения
(1.10)
с граничными условиями
(1.11)
и начальным условием
. (1.12)
Рассмотрим устойчивую вычислительную схему, для которой величина не является ограниченной сверху, а, значит, шаг по оси и может быть выбран достаточно крупным. Покроем область сеткой
Запишем разностное уравнение, аппроксимирующее дифференциальное уравнение (1.10) во всех внутренних узлах слоя . При этом будем использовать следующие формулы:
,
.
Эти формулы имеет погрешность . В результате уравнение (1.10) заменяется разностным:
(1.13)
Перепишем (1.13) в виде:
. (1.14)
Данная вычислительная схема имеет следующую конфигурацию:
(1.15)
(1.16)
Система (1.14) – (1.16) представляет собой разностную задачу, соответствующую краевой задаче (1.10) – (1.12).
За величину мы положили .
(1.14) – (1.16) есть система линейных алгебраических уравнений с 3-диагональной матрицей, поэтому ее резонно решать методом прогонки, так как он в несколько раз превосходит по скорости метод Гаусса.
. (1.17)
Здесь , – некоторые коэффициенты, подлежащие определению. Заменив в (1.17) на будем иметь:
. (1.18)
Подставив уравнение (1.18) в (1.14) получим:
. (1.19)
Сравнив (1.17) и (1.19) найдем, что:
(1.20)
Положим в (1.14) и найдем из него :
,
.
(1.21)
Заметим, что во второй формуле (1.21) величина подлежит замене на согласно первому условию (1.15).
С помощью формул (1.21) и (1.20) проводим прогонку в прямом направлении. В результате находим величины
Затем осуществляем обратный ход. При этом воспользуемся второй из формул (1.15) и формулой (1.17). Получим следующую цепочку формул:
(1.22)
Таким образом, отправляясь от начального слоя , на котором известно решение, мы последовательно можем найти значения искомого решения во всех узлах стеки.
Итак, мы построили неявную схему решения дифференциальных уравнений параболического типа методом сеток.
1.3 Оценка погрешности и сходимость метода сеток
При решении задачи методом сеток мы допускаем погрешность, состоящую из погрешности метода и вычислительной погрешности.
Погрешность метода – это та погрешность, которая возникает в результате замены дифференциального уравнения разностным, а также погрешность, возникающая за счет сноса граничных условий с на .
Вычислительная погрешность – это погрешность, возникающая при решении системы разностных уравнений, за счет практически неизбежных машинных округлений.
Существуют специальные оценки погрешности для решения задач методом сеток. Однако эти оценки содержат максимумы модулей производных искомого решения, поэтому пользоваться ими крайне неудобно, однако эти теоретические оценки хороши тем, что из них видно: если неограниченно измельчать сетку, то последовательность решений будет сходиться равномерно к точному решению. Здесь мы столкнулись с проблемой сходимости метода сеток. При использовании метода сеток мы должны быть уверены, что, неограниченно сгущая сетку, можем получить решение, сколь угодно близкое к точному.
Итак, на примере решения краевой задачи для дифференциального уравнения параболического типа рассмотрим основные принципы метода сеток. Отметим, что если при решении разностной задачи небольшие ошибки в начальных и краевых условиях (или в промежуточных результатах) не могут привести к большим отклонениям искомого решения, то говорят, что задача поставлена корректно в смысле устойчивости по входным данным. Разностную схему называют устойчивой, если вычислительная погрешность неограниченно не возрастает. В противном случае схема называется неустойчивой.
1.4 Доказательство устойчивости разностной схемы
Пусть есть решение уравнения (1.14), удовлетворяющее возмущенным начальным условиям
и граничным условиям
.
Здесь – некоторые начальные ошибки.
.
Погрешность будет удовлетворять уравнению
(1.23)
(в силу линейности уравнения (1.14)), а также следующими граничными и начальными условиями:
, (1.24)
. (1.25)
Частное решение уравнения (1.23) будем искать в виде
. (1.26)
Здесь числа и следует подобрать так, чтобы выражение (1.26) удовлетворяло уравнению (1.23) и граничным условиям (1.24).
При целом удовлетворяет уравнению (1.23) и условиям (1.24).
Подставим уравнение (1.26) в уравнение (1.24). При этом получим:
.
Выражение в квадратных скобках равно
.
Подставляя это выражение в предыдущее уравнение вместо выражения в квадратных скобках и проводя сокращения на получим:
,
откуда находим :
.
Таким образом, согласно уравнению (1.26), получаем линейно-независимые решения уравнения (1.23) в виде
Заметим, что это частное решение удовлетворяет однородным краевым условиям (1.24). Линейная комбинация этих частных решений также является решением уравнения (1.23):
, (1.27)
причем , определенное в выражении (1.27), удовлетворяет для любых однородным граничным условиям (1.24). Коэффициенты подбираются исходя из того, что должны удовлетворять начальным условиям (1.25):
.
В результате получаем систему уравнений
,
содержащую уравнений с неизвестными . Решая построенную систему определяем неизвестные коэффициенты .
Для устойчивости исследуемой разностной схемы необходимо, чтобы при любых значениях коэффициентов , определяемое формулой (1.27), оставалось ограниченной величиной при . Для этого достаточно, чтобы для всех выполнялось неравенство
. (1.28)
Анализируя (1.28) видим, что это неравенство выполняется для любых значений параметра . При этом при или в крайнем случае, когда
,
остается ограниченным и при фиксированном не возрастает по модулю. Следовательно мы доказали, что рассматриваемая разностная схема устойчива для любых значений параметра .
2. Реализация метода
2.1 Разработка программного модуля
Поставлена цель: разработать программный продукт для нахождения приближенного решения параболического уравнения:
(1.29)
,
(1.30)
Разобьем область прямыми
– шаг по оси ,
– шаг по оси .
Заменив в каждом узле производные конечно-разностными отношениями по неявной схеме, получим систему вида:
. (1.31)
Преобразовав ее, получим:
, (1.32)
В граничных узлах
(1.33)
В начальный момент
. (1.34)
Эта разностная схема устойчива при любом . Будем решать систему уравнений (1.32), (1.33) и (1.34) методом прогонки. Для этого ищем значения функции в узле в виде
, (1.35)
где – пока неизвестные коэффициенты.
. (1.36)
Подставив значение (1.35) в (1.32) получим:
.
. (1.37)
Из сравнения (1.35) и (1.37) видно, что
. (1.38)
. (1.39)
Для из (1.32) имеем:
.
.
Откуда, используя (1.35), получим:
, (1.40)
. (1.41)
Используя данный метод, мы все вычисления проведем в следующем порядке для всех .
1) Зная значения функции на границе (1.33), найдем значения коэффициентов по (1.40) и по (1.38) для всех .
2) Найдем по (1.41), используя для начальное условие (1.34).
3) Найдем по формулам (1.39) для .
4) Найдем значения искомой функции на слое, начиная с :
2.2 Описание логики программного модуля
Листинг программы приведен в приложении 1. Ниже будут описаны функции программного модуля и их назначение.
Функция main() является базовой. Она реализует алгоритм метода сеток, описанного в предыдущих разделах работы.
Функция f (x, y) представляет собой свободную функцию двух переменных дифференциального уравнения (1.29). В качестве аргумента в нее передаются два вещественных числа с плавающей точкой типа float. На выходе функция возвращает значение функции , вычисленное в точке .
Функции mu_1 (t) и mu_2 (t) представляют собой краевые условия. В них передается по одному аргументу (t) вещественного типа (float).
Функция phi() является ответственной за начальный условия.
В функции main() определены следующие константы:
– правая граница по для области ;
– правая граница по для области ;
– шаг сетки по оси ;
– шаг сетки по оси ;
Варьируя и можно изменять точность полученного решения от менее точного к более точному. Выше было доказано, что используемая вычислительная схема устойчива для любых комбинаций параметров и , поэтому при устремлении их к нуля можем получить сколь угодно близкое к точному решение.
Программа снабжена тремя механизмами вывода результатов работы: на экран в виде таблицы, в текстовый файл, а также в файл списка математического пакета WaterlooMaple. Это позволяет наглядно представить полученное решение.
Программа написана на языке программирования высокого уровня Borland C++ 3.1 в виде приложения MS-DOS. Обеспечивается полная совместимость программы со всеми широко известными операционными системами корпорации Майкрософт: MS-DOS 5.x, 6.xx, 7.xx, 8.xx, Windows 9x/Me/2000/NT/XP.
2.3 Пример работы программы
В качестве примера рассмотрим численное решение следующего дифференциального уравнения параболического типа:
,
Задав прямоугольную сетку с шагом оси 0.1 и по оси 0.01, получим следующее решение:
В таблице ось x расположена горизонтально, а ось t расположена вертикально и направлена вниз.
На выполнение программы на среднестатистическом персональном компьютере тратится время, равное нескольким миллисекундам, что говорит о высокой скорости алгоритма.
Подробно выходной файл output.txt, содержащий таблицу значений функции представлен в приложении 3.
В работе был рассмотрен метод сеток решения параболических уравнений в частных производных. Раскрыты основные понятия метода, аппроксимация уравнения и граничных условий, исследована разрешимость и сходимость получаемой системы разностных уравнений.
На основании изученного теоретического материала была разработана программная реализация метода сеток, проанализирована ее сходимость и быстродействие, проведен тестовый расчет, построен графики полученного численного решения.
Постановка задачи для уравнения параболического типа
Классическим примером уравнения параболического типа является уравнение теплопроводности(диффузии). Как отмечалось выше, в одномерном по пространству случае однородное (без источников энергии) уравнение теплопроводности имеет вид:
, 0 0 (15)
Уравнение (15), например, может описывать распространение тепла в тонком стержне длиной l, теплоизолированном по боковой поверхности. При этом функция u(x, t) задаёт значение температуры в любой точке стержня в произвольный момент времени t, при условии, что известно распределение температуры в стержне в начальный момент времени t = 0 и известна температура на концах стержня x = 0 и x = l в любой момент времени t. Таким образом, постановка задач для уравнения теплопроводности имеет следующий вид.
Первая начально-краевая задача. Если на границах стержня x = 0 и x = l заданы краевые условия первого рода, т.е. для любых моментов времени на концах стержня x = 0 и x = l заданы значения искомой функции u(x,t) (т.е. температуры):
и, кроме того, для функции u(x, t) заданы начальные условия, т.е. задано распределение температуры в любой точке стержня в момент времени t = 0:
то задачу (15) – (17) называют первой начально-краевой задачей для уравнения теплопроводности.
В терминах теории теплообмена функция u(x,t) описывает распределение температуры в пространственно-временной области W´T = <0 £ x £ l, 0 £ t £ T>, параметр а 2 – является коэффициентом температуропроводности, а краевые условия (16), (17) с помощью функций j1(t) и j2(t) задают температуру на границах x = 0, x = l для различных моментов времени.
Вторая начально-краевая задача. Если на границах x = 0 и x = l заданы краевые условия второго рода, т.е. для x = 0 и x = l заданы значения производных искомой функции по пространственной переменной:
= j1(t), x = 0, t >0, (19)
= j2(t), x = l, t >0, (20)
и, кроме того, для функции u(x, t) заданы начальные условия (21), то задачу (15), (19) – (21) называют второй начально-краевой задачей для уравнения теплопроводности. В терминах теории теплообмена граничные условия (19), (20) задают тепловые потоки на концах стрежня для различных моментов времени.
Третья начально-краевая задача. Если на границах x = 0 и x = l заданы краевые условия третьего рода, т.е. для x = 0 и x = l заданы линейные комбинации искомой функции и её частной производной по пространственной переменной:
+ a u(0, t) = j1(t), x = 0, t >0, (22)
+ b u(l, t) = j2(t), x = l, t >0, (23)
и, для функции u(x, t) заданы начальные условия (21), то задачу (15), (22), (23) называют третьей начально-краевой задачей для уравнения теплопроводности.
В терминах теории теплообмена граничные условия (22), (23) задают теплообмен между газообразной и жидкой средой (которые располагаются с разных «торцов» стержня) и границами расчётной области (т.е. внутренней частью стержня). Из-за теплообмена, температуры u(0, t) и u(l, t) на торцах стержня не известны, а известно, что температуры газообразной и жидкой среды соответственно равны j1(t)/a и j2(t)/b. Параметры a и b являются коэффициентами теплообмена между газообразной или жидкой средой и соответствующей границей стержня.
Дата добавления: 2015-09-14 ; просмотров: 1238 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ