Задачи на составление линейных уравнений с одной переменной 7 класс

Решение задач с помощью линейных уравнений с одной переменной

Алгоритм решения текстовой задачи с помощью уравнения

Алгоритм решения текстовой задачи с помощью уравнения:

  • Проанализировать условие задачи, обозначить неизвестное буквой и составить уравнение.
  • Решить полученное уравнение.
  • Истолковать результат в соответствии с условием задачи.

Задачи с решениями

Задача 1. Одна сторона треугольника в два раза больше другой и на 3 см меньше третьей. Найдите стороны треугольника, если его периметр равен 43 см.

Пусть сторона AB=x.

Периметр треугольника: P = AB+AC+BC = x+2x+(2x+3) = 43

$$5x+3 = 43 iff 5x = 40 iff x = 40:5 = 8$$

AB = x = 8 см, AC = 2x = 16 см, BC = 2x+3 = 19 см

Ответ: 8 см, 16 см и 19 см

Задача 2. Расстояние между двумя станциями поезд может пройти со скоростью 70 км/ч на полчаса быстрее, чем со скоростью 60 км/ч. Найдите это расстояние.

Пусть x – расстояние между станциями.

По условию разность затраченного времени:

Решаем: $ frac — frac = frac | times 420 iff 7x-6x = 210 iff x = 210 $

Расстояние между станциями 210 км

Задача 3. Бригада должна была изготовить детали за 5 дней, но выполнила работу за 4 дня, т.к. изготавливала каждый день на 12 деталей больше. Сколько деталей изготовила бригада?

Пусть x — количество изготовленных деталей.

Количество деталей в день, шт./дни

Количество дней, дни

По условию разность между количествами деталей в день:

Решаем: $ frac — frac = 12 | times 20 iff 5x-4x = 240 iff x = 240 $

Бригада изготовила 240 деталей.

Ответ: 240 деталей

Задача 4. Сумма двух чисел равна 90. Если большее из них разделить на меньшее, то частное равно 3 и в остатке 6. Найдите эти числа.

Пусть x — меньшее число. Тогда большее равно 90-x. По условию: 90-x = 3x+6

$$ 90-6 = 3x+x iff 4x = 84 iff x = 21 $$

Меньшее число x = 21, большее число 90-x = 69.

Задача 5. Матери 37 лет, а дочери 13 лет. Когда дочь была или будет втрое младше матери? А вдвое?

Пусть x — число прошедших лет. Возраст матери станет 37+x, дочери 13+x.

$$ frac = 3 iff 37+x = 3(13+x) iff 37+x = 39+3x iff 37-39 = 3x-x iff $$

$$ iff 2x = -2 iff x = -1 $$

Дочь была втрое младше матери 1 год тому назад.

$$ frac = 2 iff 37+x = 2(13+x) iff 37+x = 26+2x iff 37-26 = 2x-x iff $$

Дочь будет вдвое младше матери через 11 лет.

Ответ: год назад; через 11 лет

Задача 6. Сколько лет отцу и сыну, еcли в позапрошлом году сын был младше в 5 раз, а в следующем будет младше в 4 раза?

Пусть x — возраст сына в этом году.

Возраст сына, лет

Возраст отца, лет

И для отца, и для сына пройдёт три года:

$$ 4(x+1)-5(x-2) = 3 iff 4x+4-5x+10 = 3 iff 4x-5x = 3-14 iff -x = -11 $$ $$ x = 11 $$

Сейчас сыну 11 лет.

В следующем году отцу будет 4(x+1)=4∙12=48 лет. Значит, сейчас отцу 47 лет.

Ответ: 11 лет и 47 лет.

Задача 7. Сумма цифр данного двузначного числа равна 7. Если эти цифры поменять местами, то получится двузначное число на 9 больше данного. Найдите данное число.

Пусть x — первая цифра данного числа, число десятков.

По условию разность чисел:

$$ (70-10x+x)-(10x+7-x) = 9 iff 70-9x-9x-7 = 9 iff $$ $$ iff -18x = 9-63 iff -18x = -54 iff x = 3 $$

Первая цифра x = 3, вторая цифра 7-x = 4.

Данное число 34.

Задача 8. По расписанию автобус должен ехать от посёлка до станции со скоростью 32 км/ч и приезжать на станцию за полчаса до отхода поезда. Но из-за ненастной погоды автобус ехал со скоростью на 7 км/ч меньше и опоздал к поезду на 12 мин. Чему равно расстояние от посёлка до станции?

Пусть x – расстояние от посёлка до станции.

Разность по времени между расписанием и фактическим прибытием:

30 мин+12 мин = 42 мин = $frac$ ч = 0,7 ч

$ frac- frac = 0,7 | times 32 cdot 25 $

$ 32x-25x = frac cdot 32 cdot 25 = 7 cdot 16 cdot 5 $

$ 7x = 7 cdot 16 cdot 5 iff x = 16 cdot 5 = 80 $

Расстояние 80 км.

Задача 9*. Если к двузначному числу приписать справа и слева цифру 4, то получится число в 54 раза больше исходного. Найдите исходное двузначное число.

Пусть x — исходное число.

Если приписать по 4 слева и справа, в полученном четырёхзначном числе первая 4 указывает на количество тысяч, число x — на количество десятков, последняя 4 – на количество единиц. Соотношение чисел:

Решаем: $ 4004+10x = 54x iff 4004=44x iff x = frac = frac = 91 $

Исходное число x = 91.

Задача 10. Для проведения экзамена закуплены тетради. Если их сложить в пачки по 45 штук, останется одна лишняя тетрадь, а если сложить в пачки по 50 штук, то в одной пачке не будет хватать 4 тетради. Сколько тетрадей было куплено, если пачек по 45 тетрадей получается на одну больше, чем пачек по 50 тетрадей?

Видео:Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать

Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)

Решение текстовых задач с помощью линейных уравнений

Видео:7 класс, 5 урок, Задачи на составление линейных уравнений с одной переменнойСкачать

7 класс, 5 урок, Задачи на составление линейных уравнений с одной переменной

Содержание

Раньше с помощью уравнений вы часто решали текстовые задачи, так как этот способ наиболее универсален и прост для нахождения ответа. В данном уроке:

  • сформулируем основные понятия
  • разберем алгоритм действий
  • узнаем, на что обращать особое внимание
  • прорешаем примеры таких задач

Для лучшего понимания темы вспомним, что такое текстовая задача:

Текстовая задача – описание с помощью слов какой-то ситуации, где в итоге требуется что-то из перечисленного:
— дать количественную характеристику какого-то элемента этой ситуации
— установить наличие какого-то отношения между элементами (либо его отсутствие)
— определить вид этого отношения

О том, что такое линейное уравнение, мы говорили в предыдущем уроке.

Видео:АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать

АЛГЕБРА 7 класс : Решение задач с помощью уравнений | Видеоурок

Решение задачи и математическая модель

Когда от нас требуется решить задачу, мы должны с помощью правильной цепочки действий над имеющимися в задании данными выполнить указанное в ней требование.

Почему важно научиться решать задачи? Часто они описывают какие-то реальные ситуации, которые вам будут попадаться в жизни дальше. И их придется решать.

В процессе нахождения ответов для разнообразных текстовых задач мы можем математическим языком (с помощью цифр) записать все данные. В результате перевода условия задачи из словесного в математический язык и получается уравнение. Это уравнение часто называют математической моделью ситуации.

Математическая модель — это способ описания реальной жизненной ситуации (задачи) с помощью математического языка.

Мы должны не просто составить уравнение по написанному в задаче условию, но и, конечно, решить его. То есть необходимо найти корень составленного уравнения. Но и найденный корень – это, как правило, еще не решение.

В младших классах вы находили ответы для задач попроще. Далее они станут сложнее и сложнее, и с найденным корнем уравнения нужно будет произвести какие-то дальнейшие действия. А потом необходимо обязательно удостовериться, не противоречит ли полученный ответ логике.

Важно: Иногда бывает, что у задачи нет правильного ответа и нужно быть особо внимательным при его формулировке.

Рассмотрим на самом простом примере

Несколько ребят на уроке труда собирали яблоки в саду около школы. Всего они насобирали $29$ кг яблок. Каждый из учеников собрал по $4$ кг яблок. Сколько ребят собирали яблоки в саду около школы?

Составим уравнение, обозначив количество учеников за $x$. Получим: $$4x = 29$$ $$x = frac $$$$x = 7,25$$

У нас получилось нецелое число. Но может ли быть количество ребят нецелым числом? Конечно, нет, поэтому такая задача решения не имеет.

Ответ: решения нет.

Разберем другой пример.

Сейчас папе $46$ лет, а сыну $16$. Сколько лет назад папа был старше сына в $3$ раза?

Сначала найдем разницу в возрасте папы и сына: $$46-16 = 30$$ То есть, сын родился, когда папе было $30$ лет. Эта разница в возрасте будет сохраняться всю жизнь. Например, когда ребенку было $5$ лет, то папе все равно было на $30$ лет больше.

Теперь по условию задачи обозначим за $x$ возраст сына в момент, когда он был в 3 раза младше папы. Тогда папе в это же время было $3x$ лет. А разница между $3x$ и $x$, как мы выяснили, равна $30$ годам.

Составим уравнение: $$3x-x = 30$$ Упростим и решим его: $$2x = 30$$ $$x = 15 (лет)$$ Получили ли мы ответ? Еще нет, так как мы нашли только возраст сына. А в задаче требуется узнать, сколько лет назад случилась описанная ситуация. Если сейчас сыну $16$ лет, а тогда ему было $15$, то найдем разницу: $$16-15 = 1 (год)$$ То есть, мы выяснили, что папе было в $3$ раза больше, чем сыну один год назад. Это и будет ответом на нашу задачу.

Ответ: $1$ год назад.

Как видите, в данном задании найденный корень уравнения еще не был нужным нам ответом, и необходимо было решать дальше.

Важно: корень составленного к задаче уравнения – это часто еще не ответ на поставленный в ней вопрос!

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ с одной переменной. §2 алгебра 7 классСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ с одной переменной. §2 алгебра 7 класс

Этапы решения заданий с помощью линейного уравнения

Все перечисленные в примерах выше действия для решения задач с помощью линейных уравнений мы можем свести к одному общему алгоритму:

  1. Выбрать, какую неизвестную величину обозначить за переменную $x$.
  2. Через введенную переменную выразить остальные неизвестные величины.
  3. На основе имеющихся данных составить уравнение и решить его.
  4. При необходимости найти другие неизвестные величины.
  5. Проанализировать, соответствуют ли полученные результаты смыслу задачи.
  6. Сформулировать и записать ответ.

Как правило, легче всего составить уравнение с помощью записи данных задачи в таблицу.

К примеру, решим такую задачу: в столовой на одной полке было в $2$ раза больше кружек, чем на другой. Перед очередным классом с первой полки взяли $16$ кружек, но потом на другую поставили $4$. В итоге на обеих полках оказалось одинаковое количество кружек. Найдите, сколько на каждой полке кружек было первоначально.

Решение. Обозначим исходное количество кружек на второй полке за $x$ и составим таблицу:

БылоСтало
$1$-я полка$2x$$2x-16$
$2$-я полка$x$$x+4$

Так как по условию задачи кружек на обеих полках стало поровну, то $$2x-16 = x+4$$ Упростим и решим, перенеся $x$ влево, а $16$ вправо с противоположным знаком: $$2x-x = 16+4$$ $$x=20$$ Так мы нашли исходное количество кружек на второй полке. Тогда на первой полке было: $$20times 2 = 40 (кружек)$$

Ответ: на первой полке было $40$ кружек, а на второй $20$.

Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Урок алгебры в 7-м классе: «Решение задач с помощью линейных уравнений с одной переменной»

Разделы: Математика

Цели урока:

  • Формирование умения решать линейные уравнения и применять эти умения при решении текстовых задач.
  • Развитие поисковой деятельности и мыслительной активности учащихся, умения применять свои знания в нестандартных ситуациях.
  • Привитие учащимся интереса к предмету посредствам применения информационных технологий.

Ход урока

Организационный момент

Устный опрос: (вопросы классу) 2 слайд.

1). Какое уравнение называется линейным?

2). Что значит решить линейное уравнение?

3). Что называют корнем уравнения?

4). Какие из приведенных ниже уравнений являются линейными? (ответ обосновать)

а) Задачи на составление линейных уравнений с одной переменной 7 классб) Задачи на составление линейных уравнений с одной переменной 7 классв) 4х — 16 = 24
г) Задачи на составление линейных уравнений с одной переменной 7 классд) 13,4 — 6х = 12е) Задачи на составление линейных уравнений с одной переменной 7 класс

5). Назвать этапы математического моделирования, используемые при решении задач.

Подготовка к ГИА (1бальные задания — устно) 3-6 слайды

1. Цена килограмма яблок у рублей. Сколько рублей надо заплатить за 600 г таких яблок?

1). Задачи на составление линейных уравнений с одной переменной 7 класс(р.)2). 600 у (р.)3). 0,6у (р.)4). Задачи на составление линейных уравнений с одной переменной 7 класс(р.)

2. Запишите выражение для нахождения цены 1 кг сахара ( в руб.), если n тонн сахара стоят m рублей.

1). Задачи на составление линейных уравнений с одной переменной 7 класс(р.)2). Задачи на составление линейных уравнений с одной переменной 7 класс(р.)3). Задачи на составление линейных уравнений с одной переменной 7 класс(р.)4). Задачи на составление линейных уравнений с одной переменной 7 класс(р.)

3. По какой формуле можно рассчитать скорость автомобиля (в км/ч), если за t мин он проезжает S км.

1). Задачи на составление линейных уравнений с одной переменной 7 класс2). Задачи на составление линейных уравнений с одной переменной 7 класс3). Задачи на составление линейных уравнений с одной переменной 7 класс4). St

4. Туристы прошли 75% от всего туристического маршрута, и им осталось пройти 5 км. Какова длина всего маршрута?

1). 3,75 км2). 20 км3). 15 км4). 2 км

4. Составление математической модели к задачам 4.18, 4.19, 4.25 — учебник Алгебра 7, задачник, авт. А.Г. Мордкович, Л.А.Александрова, М., 2009г. (составление краткой записи задачи, вспомогательной таблицы и самой математической модели)

4.18. В железной руде содержатся железо и примеси в отношении 7: 2. Сколько тонн железа получится из 189 т руды?

1 частьх
2 части
7 частей
всего2х + 7х=9х

Т.к. всего 189 т, то математическая модель 9х = 189.

4.19. Цена персиков на 20р. выше, чем цена абрикосов. Для консервирования компота купили 3 кг персиков и 5 кг абрикосов. По какой цене покупали фрукты, если вся покупка обошлась 620 рублей? (7 слайд)

Решение: 1. Краткая запись:

Цена 1 кгКол-во

кгвсегоперсики?, на 20 руб. больше3620 руб.абрикосы?5

2. Вспомогательная таблица:

руб.Кол-во

кгЗаплачено,

Руб.персиких+ 2033(х + 20)абрикосых55х

3. Математическая модель 3(х+20) + 5х= 620

4.25. Масса двух моторов равна 52 кг. Масса одного из них в 2 Задачи на составление линейных уравнений с одной переменной 7 классраза больше другого. Найдите массу каждого мотора.

Решение: 1. Вспомогательная таблица:

1 мот.х
2 мот.2Задачи на составление линейных уравнений с одной переменной 7 классх
вместе2Задачи на составление линейных уравнений с одной переменной 7 классх + х

2. Математическая модель х + 2Задачи на составление линейных уравнений с одной переменной 7 классх = 52

Решение задач с выделением трех этапов моделирования.

4.30.Катер за 2 часа по озеру и за 3 часа против течения реки проплывает такое же расстояние, что и за 3 ч 24 мин по течению реки. Найдите собственную скорость катера, если скорость течения реки равна 3 км/ч. (8 слайд)

v, км/чt, чS, км
по озерух2
против течениях — 333(х — 3)
по течениюх + 33,43,4(х + 3)

Т.к. расстояние, пройденное по озеру и против течения равно расстоянию, пройденному по течению, то составим и решим уравнение 2х + 3(х — 3) = 3,4(х+3)

2х + 3х — 9 = 3,4х + 10,2

5х — 9 = 3,4х + 10,2

5х — 3,4х = 10,2 + 9

Значит, 12 км/ч — собственная скорость катера.

Подготовка к ГИА. Решение задач из сборника заданий ГИА-2010.В.В. Кочагина, М.Н. Кочагиной .Алгебра. Москва. Эксмо, 2009.

1. Велосипедист собирался преодолеть расстояние от поселка до станции за 5 часов. Выехав из поселка, он увеличил свою скорость на 3 км/ч и проехал расстояние до станции за 4 часа. Чему равно расстояние от поселка до станции?

Выберите уравнение, соответствующее условию задачи, если буквой х обозначено расстояние (в км) от поселка до станции (1балл) (9 слайд)

1). 5(х — 3) = 4х2). 5х = 4(х + 3)3). Задачи на составление линейных уравнений с одной переменной 7 классЗадачи на составление линейных уравнений с одной переменной 7 класс= 34). Задачи на составление линейных уравнений с одной переменной 7 классЗадачи на составление линейных уравнений с одной переменной 7 класс= 3

Т.к. буквой х обозначено расстояние, то используя формулу пути, варианты 1 и 2 не подходят. При увеличении скорости сократится время в пути, значит, значение дроби Задачи на составление линейных уравнений с одной переменной 7 классбудет больше, чем Задачи на составление линейных уравнений с одной переменной 7 класс. Таким образом, искомое уравнение будет в 4 варианте.

2.Численность рабочих, работающих в двух цехах завода, относятся как 3: 4. Сколько человек в меньшем цехе, если всего на заводе работает 4900 рабочих? (1 балл). 10 слайд

1 частьх
3 части
4 частей
всего3х + 4х=7х

Т.к. всего работает 4900 рабочих, то составим и решим уравнение:

Значит, 700 человек — 1 часть. В меньшем цехе — 3 части, тогда 3 х 700= 2100 (раб.).

Ответ: 2100 человек.

3. На три полки поставили 278 книг. На первую из них поставили на 14 книг больше, чем на вторую. На третью полку в два раза больше, чем на вторую. Сколько книг поставили на первую полку? (1 балл) (11 слайд)

1). 682). 803). 1324). 70

Решение: (12 слайд)

1 полка?, на 14 кн. больше
2 полка?

3 полка ?, в 2 раза больше

1полка, кн.х + 14
2 полка кн.х
3 полка, кн.
Всего, кн2х + х + х + 14

Так как, всего было 278 книг, то составим и решим уравнение

Значит, на второй полке было 66 книг.

2). 66 + 14 = 80 (кн.) — на первой полке.

4. Изделие, цена которого 500 рублей, сначала подорожало на 10%, а затем еще на 20%. Какова окончательная цена изделия? (2 балла) 13 слайд

500 рублей — 100%

после подорожания на 10% — 110% = 1,1 1,1 х 500 = 550 (рублей)

550 рублей — 100%

после подорожания на 20 % — 120% = 1,2 1,2 х 550 = 660 (рублей).

Ответ: 660 рублей.

5. В первый день со склада было отпущено 20% имевшихся яблок. Во второй день 180% от того количества яблок, которое было отпущено в первый день. В третий день — оставшиеся 88 кг. Сколько кг яблок было на складе первоначально? (2 балла) (14 слайд)

Разберем 2 способа решения этой задачи.

1 способ (с помощью уравнения).

Было, кгх
Продали в 1 день, кг0,2х
Продали во 2 день, кг0,2 х 1,8= 0,36х
Продали в третий день, кг88

Составим и решим уравнение.

0,2х + 0,36х + 88 = х

Значит, первоначально было 200 кг яблок.

180% от 20% — 1,8 х 0,2 = 0,36 — 36%

20% + 36% = 56% — за два дня

44% составляют 88 кг, (найти целое по его части)

88 : 0,44 = 200 (кг) было яблок.

Домашнее задание параграф 4 № 4.22, 4.29, 4.32.

Подведение итога урока. Решение кроссворда. (15 слайд)

Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Решение задач с помощью Линейных уравнений
план-конспект урока по алгебре (7 класс) на тему

Решение задач с составлением линейных уравнений

Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Скачать:

ВложениеРазмер
lineynye_zadachi.docx25.99 КБ

Видео:Урок 79 Решение текстовых задач с помощью линейных уравнений (7 класс)Скачать

Урок 79  Решение текстовых задач с помощью линейных уравнений (7 класс)

Предварительный просмотр:

Цели урока:
1. Образовательные:
— закрепить умения и навыки решать линейные уравнения и задачи с помощью составления уравнений;
— формировать умения самостоятельно решать задачи.
2. Развивающие:
— посредством решения заданий развивать логическое мышление, культуру устного счета и речь учащихся;
— дать возможность каждому ребенку определить для себя уровень сложности в выполнении заданий, тем самым развивать самостоятельность, умение критически относиться к своей работе.
3. Воспитательные:
— используя игру как здоровьесберегающую технологию, содействовать воспитанию интереса к математике, активности.
Записи на доске:
— название банка;
— тема урока;
— высказывание Конфуция;
— задания для устного счета;
— задания для практической части.

План и ход урока.

1. Организационный момент.
2. Проверка знаний теоретического материала по теме: «Уравнения с одной переменной».
3. Устная работа.
4. Решение заданий разного уровня.
5. Дифференцированная самостоятельная работа.
6. Подведение итогов.
7. Индивидуальное домашнее задание.
Сегодня мы с вами проведем необыкновенный урок: Урок- игру «Банк знаний».
Тема нашего урока: «Решение задач с помощью уравнений».
На уроке мы повторим определения, свойства линейного уравнения с одной переменной, закрепим навыки и умения решения линейных уравнений с одной переменной, решения задач с помощью составления уравнений.

Китайский мудрец Конфуций, живший, 500 лет до нашей эры сказал:
«Те, кто обладают врожденными знаниями — богаче всех. За ними следуют те, кто приобретают знания благодаря учению» .

Так давайте же будем приобретать знания, и в конце урока мы выясним, сможем ли мы себя назвать богатыми.
В городе Когалым есть сберегательный банк, банк «Петрокоммерц», Ханты-Мансийский банк и сегодня открывается еще один банк: «Банк знаний». Туда я и предлагаю вам вложить сегодня деньги, заработанные во время урока, за свои знания. Для того, чтобы сделать первый вклад вы должны ответить на мои вопросы и получить за это первоначальный капитал. За каждый правильный ответ вы получаете одну медную монету достоинством в « 1 тугрик». 1.Устный счёт.

2.В одном бидоне x л, а в другом y л молока.

2. 2. Что означает равенство?

3. Составьте выражение для решения задачи

  • Купили 2 блокнота по x руб. и тетрадь по 18 руб. Какова стоимость покупки?
  • Вася решил несколько примеров, а Петя в 2 раза больше. Сколько примеров решил Петя? Сколько примеров решили они вместе?
  • Антон прочитал несколько страниц книги, осталось ему прочитать на 32 страницы больше, чем уже прочитано. Сколько страниц в книге?
  • Персик тяжелее абрикоса в 3 раза. На сколько абрикос легче персика?

3x — x _ что их связывает?

_ сформулируйте тему урока.

1. Дайте определение корня уравнения.

2. Является ли число 7 корнем уравнения 2х — 5 = х + 2 ?

3. Что значит решить уравнение?

4. Какие уравнения называются равносильными?

5. Сформулируйте свойства уравнений.

6. Приведите пример уравнения, равносильного уравнению 5х — 4 = 6 .

7. Дайте определение линейного уравнения с одной переменной.

8. Приведите примеры.

9. В каком случае уравнение ах = в имеет:
— единственный корень,
— множество корней,
— не имеет решения ?
Итак, вы имеете определенный капитал.
Продолжим пополнять свой капитал. Вам предстоит выполнить задания. За каждое верное решение вы получаете одну медную монету достоинством один тугрик, которую вы можете поместить в разные вклады:
I. Вклад «Легкий»
Решите уравнение:
а) 2х = 0 г) 6х = 3
б) 3х = 1 д) 3х + 9 = 0
в) х — 2 = 0 е) 7х — 4 = х — 16
II. Вклад «Занимательный»
На доске было написано решение линейного уравнения, но правую часть данного уравнения стерли. Восстановите ее:
а) 3х = …. б) 5х = …. в) 0,2х =….
х = -11 х = 0 х = 14
III. Вклад «Поисковый»
Какое из чисел 3 или -2, является корнем уравнения
а) 3х = — 6 в) 4х — 4 = х + 5
б) х + 3 = 6 г) 5х — 8 = 2х + 4

IV. Вклад «Универсальный»
При каких значениях а уравнение
ах = 8
а) имеет корень, равный -4; 0,5;
б) не имеет корней;
в) имеет отрицательный корень.
5.Решение задач. Вы получили информацию об основных вкладах нашего банка. А теперь каждому из вас предстоит выполнить задания, за решение которых вы будете также получать тугрики.
В банке работают кассиры, которые будут за правильные решения выдавать монеты:
а — медная монета достоинством в 1 тугрик
в — серебряная монета достоинством в 2 тугрика
с — золотая монета достоинством в 3 тугрика
После выполнения всех заданий у каждого из вас образуется накопительный фонд.
Итак, приступайте, перед вами на столах лежат задания для различных вкладов. Самостоятельно выбирайте вклад, решайте, сдавайте кассиру банка и получайте тугрики.
а Папе и дедушке вместе 111 лет. Сколько лет каждому, если папа в два раза моложе дедушки?
в За 3 часа мотоциклист проезжает то же расстояние, что велосипедист за 5 часов. Скорость мотоциклиста на 12 км/ч больше скорости велосипедиста. Определите скорость каждого.
с В двух сараях сложено сено, причем в первом сарае сена в 3 раза больше, чем во втором. После того, как из первого сарая увезли 20 т., а во второй привезли 10 т. В обоих сараях сена стало поровну. Сколько сена было во втором сарае первоначально.

Купили 2 кг 100 г крупы и высыпали ее в три банки. В первую банку крупы вошло в 3 раза больше, чем во вторую, а в третью банку насыпали 500 г крупы. Сколько крупы насыпали в первую и сколько во вторую банки?

Пусть во вторую банку насыпали x г крупы, тогда в первую – 3x г крупы. Всего в три банки насыпали (3x + x + 500) г, что по условию составляет 2100 г. Составим и решим уравнение.

3x + x + 500= 2100;

400 г – насыпали во вторую банку.

400 ⋅ 3 = 1200 (г) – в первой банке.

Задача для слабых. с В первом мешке в 3раза больше картофеля, чем во втором. После того, как из одного мешка взяли 30 кг. картофеля, а во второй насыпали ещё 10 кг., в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.
Задача для сильных. Подготовка к ГИА. Решение задач из сборника заданий ГИА-2010.В.В. Кочагина, М.Н. Кочагиной .Алгебра. Москва. Эксмо, 2009.

1 . Велосипедист собирался преодолеть расстояние от поселка до станции за 5 часов. Выехав из поселка, он увеличил свою скорость на 3 км/ч и проехал расстояние до станции за 4 часа. Чему равно расстояние от поселка до станции?

Ну вот и наступило время подвести итог, сейчас каждый из вас подсчитает сколько тугриков сможет внести в «Банк Знаний»

1. Считаем медные монеты достоинством в 1 тугрик, вы получаете столько тугриков, сколько у вас монет.

2. Считаем серебряные монеты достоинством в 2 тугрика. Умножьте количество серебряных монет на два и получите количество тугриков.

3. Считаем золотые монеты достоинством в три тугрика. Умножьте количество монет на три, получите количество заработанных тугриков.

4. Сложите все полученные тугрики.
Вы получили «5», если набрали 15 тугриков и более, «4», если набрали 10-14 тугриков, «3», если набрали 5-9 тугриков.
Поставьте оценку в дневник, запишите число набранных тугриков на квитанции банка, вложите квитанцию и тугрики (монеты) в пакет и сдайте кассирам банка.
Увеличить свой капитал вы можете дома, выполнив индивидуальные задания, которые лежат у каждого на столе. Выбирайте любой вклад и продолжайте зарабатывать тугрики в «Банке Знаний»
Положите задания в дневник.
Задание на дом:
Вклад «Поисковый»
Решить уравнение:
а 1/5х = 5
3х — 11,4 = 0
4х + 5,5 = 2х — 2,5
в 2х — (6х+1) = 9
5х — 12,5 = 0
3х — 0,6 = х + 4,4
с 4х — (7х — 2) = 17
8х — (2х + 4) = 2(3х — 2)
3х — (9х — 3) = 3 (4 — 2х)
Вклад «Творческий»
а В двух седьмых классах 47 учеников, причем в одном на 3 ученика больше, чем в другом. Сколько учеников в каждом классе?
в Саша решил две задачи за 35 минут. Первую задачу он решал на 7 минут дольше, чем вторую. Сколько минут Саша решал вторую задачу?
с В первом мешке в 3раза больше картофеля, чем во втором. После того, как из одного мешка взяли 30 кг. картофеля, а во второй насыпали ещё 10 кг., в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.
Квитанция «Банка Знаний» к домашнему заданию.
Решить уравнение:
а одно задание 1 тугрик
в одно задание 2 тугрика
с одно задание 3 тугрика
Решить задачу:
а 1 тугрик
в 2 тугрика
с 3 тугрика,
чтобы получить
«5» нужно набрать 12 тугриков
«4» нужно набрать 8-11 тугриков
«3» нужно набрать 4-7 тугриков
Кто же сегодня у нас самые богатые? Те, кто заработал 15 тугриков и более, могут позволить себе делать большие капиталловложения: строить заводы, фабрики, нефтяные вышки. Те, кто заработал 10-14 тугриков, смогут отправиться в путешествие. Ну, а те, кто заработал 5-9 тугриков, вы можете посетить фитобар нашей школьной столовой и купить коктейль. Итак, сегодня банк закрывается. До свидания! До новых встреч в «Банке Знаний».

🔍 Видео

Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

Линейное уравнение с одной переменной. Практическая часть. 6 класс.

Уравнения с одной переменной. Видеоурок по алгебре за 7 класс.Скачать

Уравнения с одной переменной. Видеоурок по алгебре за 7 класс.

Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.Скачать

Линейные уравнения с одной переменной, содержащие переменную под знаком модуля. 6 класс.

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 класс

7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать

7 класс, 4 урок, Линейное уравнение с одной переменной

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Линейные уравнения с одной переменной . Алгебра . 7 класс .Скачать

Линейные уравнения с одной переменной . Алгебра . 7 класс .

Решение задач с помощью уравнений.Скачать

Решение задач с помощью уравнений.

Решение задач с помощью уравнений. Алгебра, 7 классСкачать

Решение задач с помощью уравнений. Алгебра, 7 класс

Линейное уравнение с одной переменнойСкачать

Линейное уравнение с одной переменной

Решение задач с помощью уравнений. Алгебра 7 классСкачать

Решение задач с помощью уравнений. Алгебра 7 класс

7 класс. Решение задач с помощью линейных уравнений с одной переменнойСкачать

7 класс. Решение задач с помощью линейных уравнений с одной переменной
Поделиться или сохранить к себе: