Задачи на функцию и уравнение лагранжа

Метод множителей Лагранжа. Пример решения

Решение. Найдем экстремум функции F(X)=9·x1+x1 2 +6·x2+x2 2 , используя сервис функция Лагранжа :
L( X , λ )=F( X )+∑λi·φi( X )
где F( X ) — целевая функция вектора X , φi( X ) — ограничения в неявном виде (i=1..n)
В качестве целевой функции, подлежащей оптимизации, в этой задаче выступает функция:
F(X) = 9·x1+x1 2 +6·x2+x2 2
Перепишем ограничение задачи в неявном виде: φi( X )= x1+x2-150=0
Составим вспомогательную функцию Лагранжа: L( X , λ ) = 9·x1+x1 2 +6·x2+x2 2 + λ(x1+x2-150)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 2·x1+λ+9 = 0
∂L/∂x2 = λ+2·x2+6 = 0
∂F/∂λ = x1+x2 -150= 0
Систему решаем с помощью метода Гаусса или используя формулы Крамера.

Запишем систему в виде:
Задачи на функцию и уравнение лагранжа
Для удобства вычислений поменяем строки местами:
Задачи на функцию и уравнение лагранжа
Добавим 2-ую строку к 1-ой:
Задачи на функцию и уравнение лагранжа
Умножим 2-ую строку на (2). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:
Задачи на функцию и уравнение лагранжа
Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой:
Задачи на функцию и уравнение лагранжа
Из 1-ой строки выражаем x3
Задачи на функцию и уравнение лагранжа
Из 2-ой строки выражаем x2
Задачи на функцию и уравнение лагранжа
Из 3-ой строки выражаем x1
Задачи на функцию и уравнение лагранжа

Таким образом, чтобы общие издержки производства были минимальны, необходимо производить x1 = 74.25; x2 = 75.75.

Задание . По плану производства продукции предприятию необходимо изготовить 50 изделий. Эти изделия могут быть изготовлены 2-мя технологическими способами. При производстве x1 — изделий 1-ым способом затраты равны 3x1+x1 2 (т. руб.), а при изготовлении x2 — изделий 2-ым способом они составят 5x2+x2 2 (т. руб.). Определить сколько изделий каждым из способов необходимо изготовить, чтобы общие затраты на производство были минимальные.

Решение: составляем целевую функцию и ограничения:
F(X) = 3x1+x1 2 + 5x2+x2 2 → min
x1+x2 = 50

Пример №2 . В качестве целевой функции, подлежащей оптимизации, выступает функция: F(X) = x1·x2
при условии: 3x1 + x2 = 6.
Перепишем ограничение задачи в неявном виде: φi( X )=3x1 + x2 — 6 = 0
Составим вспомогательную функцию Лагранжа: L( X , λ )=x1·x2+λ(3x1 + x2 — 6)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 3·λ+x2 = 0
∂L/∂x2 = x1+λ = 0
∂F/∂λ = 3·x1 + x2-6 = 0
Решаем данную систему методом Гаусса.
Запишем систему в виде:
Задачи на функцию и уравнение лагранжа
Добавим 2-ую строку к 1-ой:
Задачи на функцию и уравнение лагранжа
Умножим 2-ую строку на (3). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:
Задачи на функцию и уравнение лагранжа
Добавим 2-ую строку к 1-ой:
Задачи на функцию и уравнение лагранжа
Из 1-ой строки выражаем x3
Задачи на функцию и уравнение лагранжа
Из 2-ой строки выражаем x2
Задачи на функцию и уравнение лагранжа
Из 3-ой строки выражаем x1
Задачи на функцию и уравнение лагранжа
Точка экстремума (1;3). Значение функции в точке экстремума F(1;3)=3.

Пример №3 . Рассмотрим функцию: F(X)=3·x1 2 +2·x2 2 -3·x1+1
и условия-ограничения: x1 2 + x2 2 = 4
L( X , λ )=3·x1 2 +2·x2 2 -3·x1+1 + λ(x1 2 + x2 2 — 4)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 2·x1·(λ+3)-3 = 0
∂L/∂x2 = 2·(λ+2)·x2 = 0
∂F/∂λ = x1 2 +x2 2 -4 = 0
Выражаем из первого уравнения x1:
Задачи на функцию и уравнение лагранжа
Из второго уравнения получаем x2 = 0.
Подставляем в третье уравнение:
Задачи на функцию и уравнение лагранжаили Задачи на функцию и уравнение лагранжа
Перепишем в виде: λ+3 =3/4 откуда λ=-9/4.
Подставляя λ в выражение для x1, получаем:
Задачи на функцию и уравнение лагранжа
Стационарная точка (2;0). Значение функции в стационарной точке: F(2;0) = 7.

Пример №4 . Найдем локальные стационарные точки функции:
F(X) = 3·x1·x2
g(x): 2·x1+x2=3
Перепишем ограничение задачи в неявном виде: 2·x1+x2-3 = 0
Составим вспомогательную функцию Лагранжа:
L = 3·x1·x2 + λ·(2·x1+x2-3)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 2·λ+3·x2 = 0
∂L/∂x2 = 3·x1+λ = 0
∂F/∂λ = 2·x1+x2-3 = 0
Данную систему решаем методом обратной матрицы:
Запишем матрицу в виде: Задачи на функцию и уравнение лагранжа
Вектор B: B T = (0,0,3)
Главный определить: ∆ = 0·(0·0-1·1)-3·(3·0-1·2)+2·(3·1-0·2) = 12
Транспонированная матрица: Задачи на функцию и уравнение лагранжа
Алгебраические дополнения
Задачи на функцию и уравнение лагранжа; ∆1,1 = (0·0-1·1) = -1
Задачи на функцию и уравнение лагранжа; ∆1,2 = -(3·0-2·1) = 2
Задачи на функцию и уравнение лагранжа; ∆1,3 = (3·1-2·0) = 3
Задачи на функцию и уравнение лагранжа; ∆2,1 = -(3·0-1·2) = 2
Задачи на функцию и уравнение лагранжа; ∆2,2 = (0·0-2·2) = -4
Задачи на функцию и уравнение лагранжа; ∆2,3 = -(0·1-2·3) = 6
Задачи на функцию и уравнение лагранжа; ∆3,1 = (3·1-0·2) = 3
Задачи на функцию и уравнение лагранжа; ∆3,2 = -(0·1-3·2) = 6
Задачи на функцию и уравнение лагранжа; ∆3,3 = (0·0-3·3) = -9
Обратная матрица: Задачи на функцию и уравнение лагранжа
Вектор результатов X: X = A -1 ·B
Задачи на функцию и уравнение лагранжа
Задачи на функцию и уравнение лагранжа
x1 = 9 / 12 = 0.75
x2 = 18 / 12 = 1.5
λ = -27 / 12 = -2.25
Таким образом, локальный экстремум (0.75; 1.5). Значение функции в стационарной точке F(0.75; 1.5) = 3.375.

Пример №5 . Найдем точку экстремума функции:
F(X) = 2x1 2 +x1x2+x2 2 +2x1-4x2
Перепишем ограничение задачи в неявном виде:
φ1 = x1+x2-2 = 0
Составим вспомогательную функцию Лагранжа:
L = 2x1 2 +x1x2+x2 2 +2x1-4x2 + λ(x1+x2-2)
Необходимым условием экстремума функции Лагранжа является равенство нулю ее частных производных по переменным хi и неопределенному множителю λ.
Составим систему:
∂L/∂x1 = 4x1+λ+x2+2 = 0
∂L/∂x2 = x1+λ+2x2-4 = 0
∂F/∂λ = x1+x2-2 = 0
Решаем данную систему с помощью формул Крамера.
Запишем систему в виде:
Задачи на функцию и уравнение лагранжа
B T = (-2,4,2)
Главный определитель:
∆ = 4 · (2 · 0-1 · 1)-1 · (1 · 0-1 · 1)+1 · (1 · 1-2 · 1) = -4 = -4
Заменим 1-ый столбец матрицы А на вектор результата В.
Задачи на функцию и уравнение лагранжа
Найдем определитель полученной матрицы.
1 = -2 · (2 · 0-1 · 1)-4 · (1 · 0-1 · 1)+2 · (1 · 1-2 · 1) = 4
Задачи на функцию и уравнение лагранжа
Заменим 2-ый столбец матрицы А на вектор результата В.
Задачи на функцию и уравнение лагранжа
Найдем определитель полученной матрицы.
2 = 4 · (4 · 0-2 · 1)-1 · (-2 · 0-2 · 1)+1 · (-2 · 1-4 · 1) = -12
Задачи на функцию и уравнение лагранжа
Заменим 3-ый столбец матрицы А на вектор результата В.
Задачи на функцию и уравнение лагранжа
Найдем определитель полученной матрицы.
3 = 4 · (2 · 2-1 · 4)-1 · (1 · 2-1 · (-2))+1 · (1 · 4-2 · (-2)) = 4
Задачи на функцию и уравнение лагранжа
Стационарная точка: F(-1; 3).

Пример №6 . Найдем экстремум функции F(X) = x1·x2, используя функцию Лагранжа: L( X , λ )=F( X )+∑λi·φi( X ).
Примечание: решение ведем с помощью сервиса Функция Лагранжа онлайн

Видео:Уравнения Лагранжа второго родаСкачать

Уравнения Лагранжа второго рода

Условный экстремум. Метод множителей Лагранжа. Первая часть.

Для начала рассмотрим случай функции двух переменных. Условным экстремумом функции $z=f(x,y)$ в точке $M_0(x_0;y_0)$ называется экстремум этой функции, достигнутый при условии, что переменные $x$ и $y$ в окрестности данной точки удовлетворяют уравнению связи $varphi (x,y)=0$.

Название «условный» экстремум связано с тем, что на переменные наложено дополнительное условие $varphi(x,y)=0$. Если из уравнения связи можно выразить одну переменную через другую, то задача определения условного экстремума сводится к задаче на обычный экстремум функции одной переменной. Например, если из уравнения связи следует $y=psi(x)$, то подставив $y=psi(x)$ в $z=f(x,y)$, получим функцию одной переменной $z=fleft(x,psi(x)right)$. В общем случае, однако, такой метод малопригоден, поэтому требуется введение нового алгоритма.

Видео:Уравнение ЛагранжаСкачать

Уравнение Лагранжа

Метод множителей Лагранжа для функций двух переменных.

Метод множителей Лагранжа состоит в том, что для отыскания условного экстремума составляют функцию Лагранжа: $F(x,y)=f(x,y)+lambdavarphi(x,y)$ (параметр $lambda$ называют множителем Лагранжа). Необходимые условия экстремума задаются системой уравнений, из которой определяются стационарные точки:

Достаточным условием, из которого можно выяснить характер экстремума, служит знак $d^2 F=F_^dx^2+2F_^dxdy+F_^dy^2$. Если в стационарной точке $d^2F > 0$, то функция $z=f(x,y)$ имеет в данной точке условный минимум, если же $d^2F 0$, то $d^2F 0$, т.е. имеем условный минимум функции $z=f(x,y)$.

Примечание относительно формы записи определителя $H$. показатьскрыть

Некоторые авторы записывают определитель $H$ в иной форме (с знаком «-«):

В этой ситуации сформулированное выше правило изменится следующим образом: если $H > 0$, то функция имеет условный минимум, а при $H m$):

Обозначив множители Лагранжа как $lambda_1,lambda_2,ldots,lambda_m$, составим функцию Лагранжа:

Необходимые условия наличия условного экстремума задаются системой уравнений, из которой находятся координаты стационарных точек и значения множителей Лагранжа:

Выяснить, условный минимум или условный максимум имеет функция в найденной точке, можно, как и ранее, посредством знака $d^2F$. Если в найденной точке $d^2F > 0$, то функция имеет условный минимум, если же $d^2F 0.$$

Следовательно, в точке $M_1(1;3)$ функция $z(x,y)=x+3y$ имеет условный максимум, $z_=z(1;3)=10$.

Аналогично, в точке $M_2(-1;-3)$ найдем:

$$H=8cdotleft| begin 0 & x & y\ x & lambda & 0 \ y & 0 & lambda end right|= 8cdotleft| begin 0 & -1 & -3\ -1 & 1/2 & 0 \ -3 & 0 & 1/2 end right|=-40$$

Так как $H 0$. Следовательно, знак $H$ противоположен знаку $lambda$. Можно и довести вычисления до конца:

Вопрос о характере экстремума в стационарных точках $M_1(1;3)$ и $M_2(-1;-3)$ можно решить и без использования определителя $H$. Найдем знак $d^2F$ в каждой стационарной точке:

Отмечу, что запись $dx^2$ означает именно $dx$, возведённый в вторую степень, т.е. $left( dx right)^2$. Отсюда имеем: $dx^2+dy^2>0$, посему при $lambda_1=-frac$ получим $d^2F 0$, посему в данной точке функция имеет условный максимум, $z_=frac$.

Исследуем характер экстремума в каждой из точек иным методом, основываясь на знаке $d^2F$:

Из уравнения связи $x+y=0$ имеем: $d(x+y)=0$, $dx+dy=0$, $dy=-dx$.

Так как $ d^2F Bigr|_=10 dx^2 > 0$, то $M_1(0;0)$ является точкой условного минимума функции $z(x,y)=3y^3+4x^2-xy$. Аналогично, $d^2F Bigr|_=-10 dx^2 0$, то $M_1$ – точка минимума функции $u(x)$, при этом $u_=u(0)=0$. Так как $u_^(M_2) 0; ; y > 0. end right. $$

Все дальнейшие преобразования осуществляются с учетом $x > 0; ; y > 0$ (это оговорено в условии задачи). Из второго уравнения выразим $lambda=-frac$ и подставим найденное значение в первое уравнение: $5y-fraccdot frac=0$, $4y^2-x^2=0$, $x=2y$. Подставляя $x=2y$ в третье уравнение, получим: $frac+frac-1=0$, $y^2=1$, $y=1$.

Так как $y=1$, то $x=2$, $lambda=-10$. Характер экстремума в точке $(2;1)$ определим, исходя из знака $d^2F$.

В принципе, здесь можно сразу подставить координаты стационарной точки $x=2$, $y=1$ и параметра $lambda=-10$, получив при этом:

Однако в других задачах на условный экстремум стационарных точек может быть несколько. В таких случаях лучше $d^2F$ представить в общем виде, а потом подставлять в полученное выражение координаты каждой из найденных стационарных точек:

Подставляя $x=2$, $y=1$, $lambda=-10$, получим:

Ответ: в точке $(2;1)$ функция имеет условный максимум, $z_=6$.

В следующей части рассмотрим применение метода Лагранжа для функций большего количества переменных.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Видео:Уравнения Лагранжа второго рода. Задача 1Скачать

Уравнения Лагранжа второго рода. Задача 1

Условные экстремумы и функция Лагранжа

В задачах оптимизации возникает необходимость найти экстремумы функции двух и более переменных Задачи на функцию и уравнение лагранжапри условии, что существует связь между переменными этой связи, заданная уравнением Задачи на функцию и уравнение лагранжа. В этом случае говорят, что требуется найти условный экстремум.

Для того чтобы найти условный экстремум требуется находить частные производные и решать системы уравнений Существует алгоритм нахождения условного экстремума из трёх шагов, который сейчас и разберём на примере, и геометрический смысл условного экстремума, который должен дойти до каждого при разборе этого самого примера.

Итак, алгоритм, который разберём на примере самой распространённой задачи — нахождение условного экстремума функции двух переменных..

Шаг 1. Вводится функция Лагранжа

Задачи на функцию и уравнение лагранжа,

где первое слагаемое — сама исходная функция, а второе слагаемое со знаком минус — левая часть уравнения условия связи, умноженная на Задачи на функцию и уравнение лагранжа(лямбда) — множитель Лагранжа.

Пример 1. Найти условные экстремумы функции двух переменных Задачи на функцию и уравнение лагранжа, выражающей площадь прямоугольника через его стороны x и y при условии Задачи на функцию и уравнение лагранжа, означающем, что существует верёвка, которой можно ограничить этот прямоугольник, и длина этой верёвки равна 100.

Шаг 1. Решение. Приведём уравнение условия связи к требуемому виду с нулём в правой части:

Задачи на функцию и уравнение лагранжа.

Составим функцию Лагранжа:

Задачи на функцию и уравнение лагранжа.

Шаг 2. Составляем систему уравнений из равенств частных производных нулю и уравения условия связи (необходимый признак существования условного экстремума):

Задачи на функцию и уравнение лагранжа

Решения этой системы уравнений являются точками возможного условного экстремума — стационарными точками или, как ещё говорят, критическими точками.

Решение. Найдём частные производные функции Лагранжа и составим из их равенств нулю и уравнения условия связи систему уравнений:

Задачи на функцию и уравнение лагранжа

Из первого и второго уравнений выразим соответственно x и y :

Задачи на функцию и уравнение лагранжа

Подставим эти выражения в третье уравнение и найдём значение множителя Лагранжа:

Задачи на функцию и уравнение лагранжа

Подставим теперь значение множителя Лагранжа в выражения для x и y и найдём значения переменных исходной функции:

Задачи на функцию и уравнение лагранжа

Получили Задачи на функцию и уравнение лагранжаи Задачи на функцию и уравнение лагранжа. Эти значения являются также координатами стационарной точки. Таким образом, получили стационарную точку Задачи на функцию и уравнение лагранжа.

Шаг 3. Пусть Задачи на функцию и уравнение лагранжаявляется стационарной точкой, найденной на шаге 2. Чтобы определить, является ли условный экстремум минимумом или максимумом, нужно найти второй дифференциал функции Лагранжа

Задачи на функцию и уравнение лагранжа

и в полученном выражении подставить вместо «лямбды» её значения (значения множителя Лагранжа), найденные на шаге 2.

Если значение второго дифференциала функции Лагранжа меньше нуля (Задачи на функцию и уравнение лагранжа), то стационарная точка является точкой максимума, если больше нуля (Задачи на функцию и уравнение лагранжа), то стационарная точка является точкой минимума. Если значение второго дифференциала функции Лагранжа равно нулю, то требуются дополнительные исследования, но такие случаи практически не попадаются в задачах, задаваемых студентам.

Координаты стационарных точек подставляются в исходную точку и, таким образом, мы окончательно находим условные экстремумы (или минимум и максимум или что-то одно из этих экстремумом).

Решение. Найдём второй дифференциал функции Лагранжа:

Задачи на функцию и уравнение лагранжа

В нашем случае, так как первое и третье составляющие равны нулю, нам не придётся подставлять в них значения множителя Лагранжа. Зато нужно найти отношения между дифференциалами dx и dy :

Задачи на функцию и уравнение лагранжа

Так как полученные значения — противоположные по знаку, то получаем, что в любом случае Задачи на функцию и уравнение лагранжа.

Теперь можем найти значение условного экстремума исходной функции, являющееся максимумом:

Задачи на функцию и уравнение лагранжа.

Это заданная исходной функцией максимальная площадь прямоугольника, который можно ограничить верёвкой, длина которой равна 100.

Пример 2. Найти условные экстремумы функции двух переменных Задачи на функцию и уравнение лагранжапри условии Задачи на функцию и уравнение лагранжа.

Шаг 1. Составим функцию Лагранжа:

Задачи на функцию и уравнение лагранжа.

Шаг 2. Найдём частные производные функции Лагранжа и составим из их равенств нулю и уравнения условия связи систему уравнений:

Задачи на функцию и уравнение лагранжа

Из первого и второго уравнений выразим соответственно x и y :

Задачи на функцию и уравнение лагранжа

Подставим эти выражения в третье уравнение и найдём значения множителя Лагранжа:

Задачи на функцию и уравнение лагранжа

Подставим теперь значение множителя Лагранжа в выражения для x и y и найдём значения переменных исходной функции при двух значениях множителя Лагранжа:

Задачи на функцию и уравнение лагранжа

Эти значения икса и игрека являются координатами двух стационарных точек. Таким образом, получили стационарные точки Задачи на функцию и уравнение лагранжа.

Шаг 3. Найдём частные производные второго порядка функции Лагранжа:

Задачи на функцию и уравнение лагранжа:

Найдём второй дифференциал функции Лагранжа по формуле

Задачи на функцию и уравнение лагранжа:

Задачи на функцию и уравнение лагранжа.

Установим знак второго дифференциала функции Лагранжа при значении множителя Лагранжа Задачи на функцию и уравнение лагранжа:

Задачи на функцию и уравнение лагранжа

Получили значение, меньшее нуля, следовательно, точка Задачи на функцию и уравнение лагранжа— точка условного максимума:

Задачи на функцию и уравнение лагранжа.

Установим знак второго дифференциала функции Лагранжа при значении множителя Лагранжа Задачи на функцию и уравнение лагранжа:

Задачи на функцию и уравнение лагранжа

Получили значение, большее нуля, следовательно, точка Задачи на функцию и уравнение лагранжа— точка условного минимума:

Задачи на функцию и уравнение лагранжа.

Таким образом, условные экстремумы заданной функции найдены.

Пример 3. Найти условные экстремумы функции двух переменных Задачи на функцию и уравнение лагранжапри условии Задачи на функцию и уравнение лагранжа.

Шаг 1. Составим функцию Лагранжа:

Задачи на функцию и уравнение лагранжа.

Шаг 2. Найдём частные производные функции Лагранжа и составим из их равенств нулю и уравнения условия связи систему уравнений:

Задачи на функцию и уравнение лагранжа

Из первого и второго уравнений выразим соответственно x и y :

Задачи на функцию и уравнение лагранжа

Получаем, что Задачи на функцию и уравнение лагранжа, однако подстановка этих значений переменных в третье уравнение системы не даёт верного равенства. Поэтому считаем, что на самом деле второй сомножитель равенства Задачи на функцию и уравнение лагранжаравен нулю: Задачи на функцию и уравнение лагранжа. Отсюда получаем

Задачи на функцию и уравнение лагранжа

Ищем координаты стационарных точек при значении множителя Лагранжа Задачи на функцию и уравнение лагранжа. Тогда из выражений для икса и игрека из системы уравнений следует, что Задачи на функцию и уравнение лагранжа. Из третьего уравнения системы получаем:

Задачи на функцию и уравнение лагранжа

Получили две стационарные точки:

Задачи на функцию и уравнение лагранжа

Ищем координаты стационарных точек при значении множителя Лагранжа Задачи на функцию и уравнение лагранжа. Тогда из выражений для икса и игрека из системы уравнений следует, что Задачи на функцию и уравнение лагранжа.

На основании вычислений двух первых стационарных точек получилаем ещё две стационарные точки:

Задачи на функцию и уравнение лагранжа

Шаг 3. Найдём частные производные второго порядка функции Лагранжа:

Задачи на функцию и уравнение лагранжа:

Найдём второй дифференциал функции Лагранжа по формуле

Задачи на функцию и уравнение лагранжа:

Задачи на функцию и уравнение лагранжа.

Установим знак второго дифференциала функции Лагранжа при значении множителя Лагранжа Задачи на функцию и уравнение лагранжа:

Задачи на функцию и уравнение лагранжа

Получили значение, меньшее нуля, следовательно, точки Задачи на функцию и уравнение лагранжа— точки условного максимума:

Задачи на функцию и уравнение лагранжа.

Установим знак второго дифференциала функции Лагранжа при значении множителя Лагранжа Задачи на функцию и уравнение лагранжа:

Задачи на функцию и уравнение лагранжа

Получили значение, большее нуля, следовательно, точки Задачи на функцию и уравнение лагранжа— точки условного минимума:

Задачи на функцию и уравнение лагранжа.

Таким образом, условные экстремумы заданной функции найдены.

Аналогичным образом можно находить условные экстремумы функций трёх и более переменных.

📹 Видео

Теорема Лагранжа / простыми словамиСкачать

Теорема Лагранжа / простыми словами

№1. Уравнения Лагранжа 2 рода. Задача 1.Скачать

№1. Уравнения Лагранжа 2 рода. Задача 1.

Условный экстремум и функция ЛагранжаСкачать

Условный экстремум и функция Лагранжа

Задача на составление уравнения Лагранжа 2-го родаСкачать

Задача на составление уравнения Лагранжа 2-го рода

Теормех. 2021-окт-15. Группа РФЗ. Уравнения Лагранжа.Скачать

Теормех. 2021-окт-15. Группа РФЗ. Уравнения Лагранжа.

Составляем уравнение ЛагранжаСкачать

Составляем уравнение Лагранжа

Дифференциальное уравнение Лагранжа II рода. Расчет механической системы.Скачать

Дифференциальное уравнение Лагранжа II рода. Расчет механической системы.

Решение уравнения ЛагранжаСкачать

Решение уравнения Лагранжа

Уравнения Лагранжа #1Скачать

Уравнения Лагранжа #1

Функция Лагранжа. Уравнения Лагранжа. Интегралы движения.Скачать

Функция Лагранжа. Уравнения Лагранжа. Интегралы движения.

№2. Уравнения Лагранжа 2 рода. Задача 2.Скачать

№2. Уравнения Лагранжа 2 рода. Задача 2.

Т. Уравнения Лагранжа 2 рода. Теория.Скачать

Т. Уравнения Лагранжа 2 рода. Теория.

Метод множителей ЛагранжаСкачать

Метод множителей Лагранжа

Составление уравнения Лагранжа. Задача о клинеСкачать

Составление уравнения Лагранжа. Задача о клине

Уравнение Лагранжа 2-го рода для механизма с одной степенью свободыСкачать

Уравнение Лагранжа 2-го рода для механизма с одной степенью свободы

#Дифуры I. Урок 11. Уравнение Лагранжа . Уравнение КлероСкачать

#Дифуры I. Урок 11.  Уравнение Лагранжа . Уравнение Клеро

Курс по ОДУ: Уравнения Клеро и Лагранжа | Занятие 8Скачать

Курс по ОДУ: Уравнения Клеро и Лагранжа | Занятие 8
Поделиться или сохранить к себе: