методическая разработка по алгебре (8 класс)
Алгебра. 8 класс. Решение задач с дробно рациональными уравнениями, которые сводятся к квадратным уравнениям.
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Скачать:
Вложение | Размер |
---|---|
8_kl_dr_rats_ur_moyo.doc | 38 КБ |
Видео:Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать
Предварительный просмотр:
Решение задач с дробно рациональными уравнениями, которые сводятся к квадратным уравнениям.
- С аэродрома вылетают одновременно в пункт, отстоящий от него 1600км, два самолёта. Скорость одного из них на 80 км в час больше скорости другого, а потому он прилетает к месту назначения на час раньше. Найти скорость каждого самолёта.
- Две бригады школьников, работая совместно, закончили посадку деревьев на учебно-опытном участке за 4 дня. Сколько дней потребовалось бы на выполнение этой работы каждой бригаде отдельно. Если одна из бригад могла бы закончить посадку деревьев на 6 дней скорее другой?
- Туристы отправились в путешествие вниз по Волге на теплоходе. Определите, с какой скоростью должен идти теплоход, чтобы на обратный путь (против течения) было затрачено на 1ч больше времени, чем на путь по течению, если скорость течения реки – 2км/ч и маршрут (в одну сторону) равен 80км.
- Поезд был задержан у семафора на 12 минут. Чтобы ликвидировать опоздание на перегоне в 60 км, машинисту пришлось увеличить скорость на 10 км/ч. Какая скорость была запланирована по расписанию?
- В одном ателье должны сшить 180 костюмов. А в другом – 160 костюмов. Первое ателье затратило на всю работу на 2 дня меньше, чем второе, так как изготавливало в день на 2 костюма больше. Сколько костюмов в день изготавливало каждое ателье?
- Нужно обработать 80 деталей к определенному сроку. Однако токарь стал обрабатывать в час на 2 детали больше, чем планировал. Поэтому уже за 1ч до срока было обработано на 4 детали больше. Сколько деталей в час обрабатывал токарь?
Решение задач с дробно рациональными уравнениями, которые сводятся к квадратным уравнениям.
- С аэродрома вылетают одновременно в пункт, отстоящий от него 1600км, два самолёта. Скорость одного из них на 80 км в час больше скорости другого, а потому он прилетает к месту назначения на час раньше. Найти скорость каждого самолёта.
- Две бригады школьников, работая совместно, закончили посадку деревьев на учебно-опытном участке за 4 дня. Сколько дней потребовалось бы на выполнение этой работы каждой бригаде отдельно. Если одна из бригад могла бы закончить посадку деревьев на 6 дней скорее другой?
- Туристы отправились в путешествие вниз по Волге на теплоходе. Определите, с какой скоростью должен идти теплоход, чтобы на обратный путь (против течения) было затрачено на 1ч больше времени, чем на путь по течению, если скорость течения реки – 2км/ч и маршрут (в одну сторону) равен 80км.
- Поезд был задержан у семафора на 12 минут. Чтобы ликвидировать опоздание на перегоне в 60 км, машинисту пришлось увеличить скорость на 10 км/ч. Какая скорость была запланирована по расписанию?
- В одном ателье должны сшить 180 костюмов. А в другом – 160 костюмов. Первое ателье затратило на всю работу на 2 дня меньше, чем второе, так как изготавливало в день на 2 костюма больше. Сколько костюмов в день изготавливало каждое ателье?
- Нужно обработать 80 деталей к определенному сроку. Однако токарь стал обрабатывать в час на 2 детали больше, чем планировал. Поэтому уже за 1ч до срока было обработано на 4 детали больше. Сколько деталей в час обрабатывал токарь?
- неполных квадратных уравнений
- приведенных квадратных уравнений
- полных квадратных уравнений
- биквадратных уравнений
Видео:Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)Скачать
Решение задач с помощью дробных рациональных уравнений
Примеры
Пример 1. От посёлка до речки 60 км. Утром турист на скутере отправился на речку. Вечером он возвратился в посёлок, но при этом ехал со скоростью на 10 км/ч меньшей и потратил на дорогу на 18 мин больше. Сколько времени ехал турист от речки к посёлку?
Пусть t — время вечером, на дорогу от речки к посёлку.
Тогда время утром, на дорогу от посёлка к речке t- $frac$ = t-0,3 (ч)
По условию разность скоростей равна 10:
$$1,8=t(t-0,3), t neq 0, t neq 0,3$$
$$ D = 0,3^2-4 cdot (-1,8) = 0,09+7,2=7,29 = 2,7^2 $$
$$ t = frac = left[ begin t_1 = -1,1 \ t_2 = 1,5 end right. $$
Выбираем положительный корень, t = 1,5 ч
Пример 2. Катер прошёл по течению 120 км. На этот же путь против течения от тратит времени в 1,5 раза больше. Найдите скорость течения, если скорость катера в стоячей воде 20 км/ч.
Пусть u — скорость течения
По условию время против течения в 1,5 раз больше:
$$ 1,5(20-u) = 20+u, u neq pm 20 $$
Пример 3. В раствор, содержащий 50 г соли, добавили 150 г воды. В результате концентрация соли уменьшилась на 7,5%. Найдите первоначальную массу раствора.
Пусть x — масса воды в первоначальном растворе, в граммах.
По условию разность концентраций:
$$ 50 cdot 150 = frac (x+50)(x+200), x neq -50, x neq -200 $$
$$ D = 250^2-4 cdot (-90000) = 62500+360000 = 100(625+3600) = $$
$$ = 100 cdot 4225 = 650^2 $$
$$ x = frac = left[ begin x_1 = -450 \ x_2 = 200 end right. $$
Выбираем положительный корень x=200 г – начальное количество воды в растворе. Начальная масса всего раствора: 50+200 = 250 г.
Пример 4. Мастер и его ученик, работая вместе, выполняют норму на 8 ч. Если каждый работает самостоятельно, то мастер тратит на выполнение нормы на 12 ч меньше, чем ученик. Сколько часов тратит каждый из них на выполнении нормы?
Пусть N изделий – это норма, t — время, потраченное мастером.
Из последней строки таблицы получаем:
$$ 8(2t+12) = t(t+12), t neq 0, t neq -12$$
$$ t^2-4t-96 = 0 Rightarrow (t-12)(t+8) = 0 Rightarrow left[ begin t_1 = -8 \ t_2 = 12 end right. $$
Выбираем положительный корень, t=12 ч — время, которое мастер потратит самостоятельно. Ученик потратит 12+12=24 ч.
Ответ: 12 ч и 24 ч
Пример 5*. Один фрилансер может выполнить проект на 12 дней быстрее, чем второй. Над новым проектом первый фрилансер сначала проработал самостоятельно 6 дней, а затем к нему присоединился второй. Через 3 дня совместной работы frac проекта было готово.
За сколько дней каждый из фрилансеров может выполнить проект самостоятельно? За сколько дней проект был фактически выполнен?
Пусть d — количество дней первого фрилансера при самостоятельной работе.
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Решение задач с помощью дробных рациональных уравнений табличным методом
Разделы: Математика
Математика в наши дни проникает во все сферы жизни. Овладение практически любой профессией требует тех или иных знаний по математике. Особое значение в этом смысле имеет умение смоделировать математически определённые реальные ситуации. Данное умение интегрирует в себе разнообразные специальные умения, адекватные отдельным элементам математических знаний, их системам, а также различные мыслительные приёмы, характеризующие культуру мышления.
В школьной математике знакомство с математическим моделированием основано, прежде всего, на решении текстовых задач. Текстовая задача несет в себе важные элементы математического моделирования. Решая ее, учащийся некие производственные, экономические, житейские связи зашифровывает с помощью математических символов, придавая им абстрактную математическую форму. Решая уравнения, учащийся расшифровывает результат, согласуя его со здравым смыслом. Вот почему решению текстовых задач, этому важнейшему мостику между математикой и ее приложениями должно уделяться особое внимание. При этом представляется, что техника решения текстовых задач может отрабатываться на любых задачах. Было бы наивным думать, что задача на движение, начинающаяся словами «Два автомобиля:» непременно предназначена для будущих водителей, а для школы со спортивным уклоном она должна начинаться словами «Два лыжника:».
Применение на практике различных задач на составление уравнений позволяет создавать такие учебные ситуации, которые требуют от учащегося умения смоделировать математически определённые физические, химические, экономические процессы и явления, составить план действия в решении реальной проблемы. Практика последних лет говорит о необходимости формирования умений решения задач на составление уравнений различных типов ещё и в связи с включением их в содержание ГИА и ЕГЭ.
Однако, анализ образовательной практики по данному направлению говорит о том, что значительная часть учащихся испытывает серьёзные затруднения при решении задач на составление уравнений. В большей степени это связано с недостаточной сформированностью у учащихся умения составлять план действий, алгоритм решения конкретной задачи, культурой моделирования явлений и процессов. Большинство учащихся решают такие задачи лишь на репродуктивном уровне.
Решению текстовых задач предшествует достаточно долгое время, отводимое на отработку решения уравнений. Начиная с 8 класса, как только выучены дробные рациональные выражения, решения задач по алгебре практически все сводятся к решению дробных рациональных уравнений, которые, в свою очередь, включают чаще всего решение квадратных уравнений.
В 8 классе решение задач с помощью дробных рациональных уравнений как показывает опыт эффективнее решать табличным методом, так как он является более наглядным, что важно для подготовки к ГИА в 9 классе.
Все задачи, решаемые с помощью дробных рациональных уравнений, можно разделить на несколько групп:
- Задачи на движение по местности.
- Задачи на движение по воде.
- Задачи на работу.
- Задачи на нахождение дробей и т.д.
Начинать обучение следует с простых задач, условия которых полностью соответствуют названиям основных типов, и сводящихся к решению дробных рациональных уравнений. Затем можно приступать к решению более сложных задач. Рекомендуется подобрать разноуровневые задачи по каждому типу, что дает возможность работать со школьниками разных математических способностей.
Мы стараемся научить детей строить таблицы с данными величинами задачи, слева обозначаются объекты (автомобили, лодки, пешеходы, самолеты и т.д.), сверху в колонках — величины, характеризующие данную задачу, и обязательно единицы их измерения. И дети понимают, что из трех величин, зная две, всегда можно записать третью.
Приведем пример оформления задачи:
Автобус-экспресс отправился от вокзала в аэропорт, находящийся на расстоянии 120км от вокзала. Пассажир, опоздавший на 10 минут на автобус, решил добраться до аэропорта на такси. Скорость такси на 10км/ч больше скорости автобуса. С какой скорость ехал автобус, если он приехал в аэропорт одновременно с такси?
Пусть км/ч — скорость автобуса, тогда составим и заполним таблицу:
Скорость (км/ч) | Время (ч) | Путь (км) | |
Автобус | |||
Такси |
Т.к. по условию задачи пассажир опоздал на автобус на 10 минут =часа, то составим и решим уравнение:
, ОДЗ: >0 (т.к. скорость положительна)
720(х+10) — 720х= х (х+10),
Далее решая квадратное уравнение, получаем:
-90 — не входит в ОДЗ, значит, скорость автобуса равна 80 км/ч.
Основная часть класса уверенно заполняет таблицу и составляет уравнение.
В зависимости от выделенного времени, обучаемым может быть предложен широкий спектр мероприятий — семинары, кружки, факультативы, индивидуальные и групповые консультации и т.д., в рамках которых обучаемые более глубоко осваивают решение задач с помощью уравнений.
Практикум по решению задач табличным методом с помощью дробных рациональных уравнений можно провести во второй половине дня на групповой консультации по математике, что целесообразно в рамках школы полного дня.
Список предлагаемых задач:
Числитель обыкновенной дроби на 4 меньше ее знаменателя. Если к числителю этой дроби прибавить 19, а к знаменателю 28, то она увеличится на . Найдите эту дробь.
Теплоход, собственная скорость которого 18 км/ч, прошел 50 км по течению реки и 8 км против течения, затратив на весь путь 3 часа. Какова скорость течения реки?
Два комбайна убрали поле за 4 дня. За сколько дней мог убрать поле каждый комбайн, если одному из них для выполнения этой работы потребовалось бы на 6 дней меньше, чем другому?
Моторная лодка прошла против течения 8 км и вернулась обратно, затратив на обратный путь на 30 мин меньше, чем при движении против течения. Найдите скорость лодки в неподвижной воде, если скорость течения равна 4 км/ч.
Расстояние 700 км экспресс проходит на 4 часа быстрее товарного поезда, так как его скорость больше скорости товарного поезда на 20 км/ч. Определите скорость каждого из поездов, если известно, что они движутся с постоянной скоростью без остановок.
Мастеру на выполнение заказа потребуется на 5 дней меньше, чем его ученику, но при совместной работе они выполнят заказ на 4 дня быстрее, чем мастер, работающий в одиночку. За сколько дней выполнит заказ мастер, работая в одиночку?
На участке пути длиной 300 км поезд увеличил скорость на 10 км/ч, в результате чего прибыл на конечную станцию на 1 час раньше, чем планировалось по расписанию. С какой скоростью должен был идти поезд по расписанию?
Прозаик хочет набрать на компьютере рукопись объемом 450 страниц. Если он будет набирать на 5 страниц в день больше, чем запланировал, то закончит работу на 3 дня раньше. Сколько страниц в день планирует набирать прозаик?
Дорога между пунктами А и В состоит из подъема и спуска, а ее длина равна 19 км. Пешеход прошел путь из А в В за 5 часов. Время его движения на спуске составило 4 часа. С какой скоростью пешеход шел на спуске, если скорость его движения на подъеме меньше скорости движения на спуске на 1 км/ч?
Велосипедист отправился с некоторой скоростью из города А в город В, расстояние между которыми равно 88 км. Возвращаясь из В в А, он ехал поначалу с той же скоростью, но через 2 часа пути вынужден был сделать остановку на 10 минут. После этого он продолжил путь в А, увеличив скорость на 2 км/ч, и в результате затратил на обратный путь столько же времени, сколько на путь из А в В. Найдите скорость велосипедиста на пути из А в В.
Количество решаемых задач может меняться в зависимости от отводимого на это время.
Используемая литература:
📸 Видео
Алгебра 8 класс (Урок№32 - Решение задач с помощью рациональных уравнений.)Скачать
Решение дробных рациональных уравнений. Алгебра, 8 классСкачать
Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать
Решение задач с помощью рациональных уравнений. Видеоурок 20. Алгебра 8 классСкачать
Алгебра 8 класс (Урок№29 - Решение задач с помощью квадратных уравнений.)Скачать
8 класс, 28 урок, Рациональные уравнения как математические модели реальных ситуацийСкачать
Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Алгебра 8. Урок 13 - Задачи на составление дробно-рациональных уравнений (Часть 2)Скачать
Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать
Дробно рациональное уравнение. ОГЭ математика задача 4 (тип 4) 🔴Скачать
Алгебра 8. Урок 15 - Задачи на составление дробно-рациональных уравнений (Часть 4)Скачать
ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать
ІІ - четверть, Алгебра, 8 класс, Решение текстовых задач с помощью дробно-рациональных уравненийСкачать
Квадратные уравнения #shorts Как решать квадратные уравненияСкачать
#136 Урок 61. Дробно-рациональные уравнения. Рациональные уравнения, приводящиеся к квадратным.Скачать