Задачи линейное уравнение одной переменной

Содержание
  1. Решение задач с помощью линейных уравнений с одной переменной
  2. Алгоритм решения текстовой задачи с помощью уравнения
  3. Задачи с решениями
  4. Решение текстовых задач с помощью линейных уравнений
  5. Содержание
  6. Решение задачи и математическая модель
  7. Рассмотрим на самом простом примере
  8. Разберем другой пример.
  9. Этапы решения заданий с помощью линейного уравнения
  10. Линейное уравнение с одной переменной с примерами решения
  11. Линейное уравнение с одной переменной
  12. Общие сведения об уравнении
  13. Равносильные уравнения
  14. Линейные уравнения
  15. Уравнения первой степени
  16. Решение задач с помощью уравнений
  17. Линейное уравнение с одной переменной
  18. Решение задач с помощью уравнений
  19. Что такое уравнение, линейное уравнение, что значит решить уравнение
  20. Что такое уравнение
  21. Корень уравнения
  22. Количество корней уравнения
  23. Пример №86
  24. Пример №87
  25. Решение уравнений. Свойства уравнений
  26. Линейные уравнения с одной переменной
  27. Уравнения с модулями
  28. Решение уравнений с модулями, исходя из определения модуля числа
  29. Решение задач с помощью уравнений
  30. 🎦 Видео

Видео:Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Решение задач с помощью линейных уравнений с одной переменной

Алгоритм решения текстовой задачи с помощью уравнения

Алгоритм решения текстовой задачи с помощью уравнения:

  • Проанализировать условие задачи, обозначить неизвестное буквой и составить уравнение.
  • Решить полученное уравнение.
  • Истолковать результат в соответствии с условием задачи.

Задачи с решениями

Задача 1. Одна сторона треугольника в два раза больше другой и на 3 см меньше третьей. Найдите стороны треугольника, если его периметр равен 43 см.

Пусть сторона AB=x.

Периметр треугольника: P = AB+AC+BC = x+2x+(2x+3) = 43

$$5x+3 = 43 iff 5x = 40 iff x = 40:5 = 8$$

AB = x = 8 см, AC = 2x = 16 см, BC = 2x+3 = 19 см

Ответ: 8 см, 16 см и 19 см

Задача 2. Расстояние между двумя станциями поезд может пройти со скоростью 70 км/ч на полчаса быстрее, чем со скоростью 60 км/ч. Найдите это расстояние.

Пусть x – расстояние между станциями.

По условию разность затраченного времени:

Решаем: $ frac — frac = frac | times 420 iff 7x-6x = 210 iff x = 210 $

Расстояние между станциями 210 км

Задача 3. Бригада должна была изготовить детали за 5 дней, но выполнила работу за 4 дня, т.к. изготавливала каждый день на 12 деталей больше. Сколько деталей изготовила бригада?

Пусть x — количество изготовленных деталей.

Количество деталей в день, шт./дни

Количество дней, дни

По условию разность между количествами деталей в день:

Решаем: $ frac — frac = 12 | times 20 iff 5x-4x = 240 iff x = 240 $

Бригада изготовила 240 деталей.

Ответ: 240 деталей

Задача 4. Сумма двух чисел равна 90. Если большее из них разделить на меньшее, то частное равно 3 и в остатке 6. Найдите эти числа.

Пусть x — меньшее число. Тогда большее равно 90-x. По условию: 90-x = 3x+6

$$ 90-6 = 3x+x iff 4x = 84 iff x = 21 $$

Меньшее число x = 21, большее число 90-x = 69.

Задача 5. Матери 37 лет, а дочери 13 лет. Когда дочь была или будет втрое младше матери? А вдвое?

Пусть x — число прошедших лет. Возраст матери станет 37+x, дочери 13+x.

$$ frac = 3 iff 37+x = 3(13+x) iff 37+x = 39+3x iff 37-39 = 3x-x iff $$

$$ iff 2x = -2 iff x = -1 $$

Дочь была втрое младше матери 1 год тому назад.

$$ frac = 2 iff 37+x = 2(13+x) iff 37+x = 26+2x iff 37-26 = 2x-x iff $$

Дочь будет вдвое младше матери через 11 лет.

Ответ: год назад; через 11 лет

Задача 6. Сколько лет отцу и сыну, еcли в позапрошлом году сын был младше в 5 раз, а в следующем будет младше в 4 раза?

Пусть x — возраст сына в этом году.

Возраст сына, лет

Возраст отца, лет

И для отца, и для сына пройдёт три года:

$$ 4(x+1)-5(x-2) = 3 iff 4x+4-5x+10 = 3 iff 4x-5x = 3-14 iff -x = -11 $$ $$ x = 11 $$

Сейчас сыну 11 лет.

В следующем году отцу будет 4(x+1)=4∙12=48 лет. Значит, сейчас отцу 47 лет.

Ответ: 11 лет и 47 лет.

Задача 7. Сумма цифр данного двузначного числа равна 7. Если эти цифры поменять местами, то получится двузначное число на 9 больше данного. Найдите данное число.

Пусть x — первая цифра данного числа, число десятков.

По условию разность чисел:

$$ (70-10x+x)-(10x+7-x) = 9 iff 70-9x-9x-7 = 9 iff $$ $$ iff -18x = 9-63 iff -18x = -54 iff x = 3 $$

Первая цифра x = 3, вторая цифра 7-x = 4.

Данное число 34.

Задача 8. По расписанию автобус должен ехать от посёлка до станции со скоростью 32 км/ч и приезжать на станцию за полчаса до отхода поезда. Но из-за ненастной погоды автобус ехал со скоростью на 7 км/ч меньше и опоздал к поезду на 12 мин. Чему равно расстояние от посёлка до станции?

Пусть x – расстояние от посёлка до станции.

Разность по времени между расписанием и фактическим прибытием:

30 мин+12 мин = 42 мин = $frac$ ч = 0,7 ч

$ frac- frac = 0,7 | times 32 cdot 25 $

$ 32x-25x = frac cdot 32 cdot 25 = 7 cdot 16 cdot 5 $

$ 7x = 7 cdot 16 cdot 5 iff x = 16 cdot 5 = 80 $

Расстояние 80 км.

Задача 9*. Если к двузначному числу приписать справа и слева цифру 4, то получится число в 54 раза больше исходного. Найдите исходное двузначное число.

Пусть x — исходное число.

Если приписать по 4 слева и справа, в полученном четырёхзначном числе первая 4 указывает на количество тысяч, число x — на количество десятков, последняя 4 – на количество единиц. Соотношение чисел:

Решаем: $ 4004+10x = 54x iff 4004=44x iff x = frac = frac = 91 $

Исходное число x = 91.

Задача 10. Для проведения экзамена закуплены тетради. Если их сложить в пачки по 45 штук, останется одна лишняя тетрадь, а если сложить в пачки по 50 штук, то в одной пачке не будет хватать 4 тетради. Сколько тетрадей было куплено, если пачек по 45 тетрадей получается на одну больше, чем пачек по 50 тетрадей?

Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Решение текстовых задач с помощью линейных уравнений

Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Содержание

Раньше с помощью уравнений вы часто решали текстовые задачи, так как этот способ наиболее универсален и прост для нахождения ответа. В данном уроке:

  • сформулируем основные понятия
  • разберем алгоритм действий
  • узнаем, на что обращать особое внимание
  • прорешаем примеры таких задач

Для лучшего понимания темы вспомним, что такое текстовая задача:

Текстовая задача – описание с помощью слов какой-то ситуации, где в итоге требуется что-то из перечисленного:
— дать количественную характеристику какого-то элемента этой ситуации
— установить наличие какого-то отношения между элементами (либо его отсутствие)
— определить вид этого отношения

О том, что такое линейное уравнение, мы говорили в предыдущем уроке.

Видео:7 класс, 5 урок, Задачи на составление линейных уравнений с одной переменнойСкачать

7 класс, 5 урок, Задачи на составление линейных уравнений с одной переменной

Решение задачи и математическая модель

Когда от нас требуется решить задачу, мы должны с помощью правильной цепочки действий над имеющимися в задании данными выполнить указанное в ней требование.

Почему важно научиться решать задачи? Часто они описывают какие-то реальные ситуации, которые вам будут попадаться в жизни дальше. И их придется решать.

В процессе нахождения ответов для разнообразных текстовых задач мы можем математическим языком (с помощью цифр) записать все данные. В результате перевода условия задачи из словесного в математический язык и получается уравнение. Это уравнение часто называют математической моделью ситуации.

Математическая модель — это способ описания реальной жизненной ситуации (задачи) с помощью математического языка.

Мы должны не просто составить уравнение по написанному в задаче условию, но и, конечно, решить его. То есть необходимо найти корень составленного уравнения. Но и найденный корень – это, как правило, еще не решение.

В младших классах вы находили ответы для задач попроще. Далее они станут сложнее и сложнее, и с найденным корнем уравнения нужно будет произвести какие-то дальнейшие действия. А потом необходимо обязательно удостовериться, не противоречит ли полученный ответ логике.

Важно: Иногда бывает, что у задачи нет правильного ответа и нужно быть особо внимательным при его формулировке.

Рассмотрим на самом простом примере

Несколько ребят на уроке труда собирали яблоки в саду около школы. Всего они насобирали $29$ кг яблок. Каждый из учеников собрал по $4$ кг яблок. Сколько ребят собирали яблоки в саду около школы?

Составим уравнение, обозначив количество учеников за $x$. Получим: $$4x = 29$$ $$x = frac $$$$x = 7,25$$

У нас получилось нецелое число. Но может ли быть количество ребят нецелым числом? Конечно, нет, поэтому такая задача решения не имеет.

Ответ: решения нет.

Разберем другой пример.

Сейчас папе $46$ лет, а сыну $16$. Сколько лет назад папа был старше сына в $3$ раза?

Сначала найдем разницу в возрасте папы и сына: $$46-16 = 30$$ То есть, сын родился, когда папе было $30$ лет. Эта разница в возрасте будет сохраняться всю жизнь. Например, когда ребенку было $5$ лет, то папе все равно было на $30$ лет больше.

Теперь по условию задачи обозначим за $x$ возраст сына в момент, когда он был в 3 раза младше папы. Тогда папе в это же время было $3x$ лет. А разница между $3x$ и $x$, как мы выяснили, равна $30$ годам.

Составим уравнение: $$3x-x = 30$$ Упростим и решим его: $$2x = 30$$ $$x = 15 (лет)$$ Получили ли мы ответ? Еще нет, так как мы нашли только возраст сына. А в задаче требуется узнать, сколько лет назад случилась описанная ситуация. Если сейчас сыну $16$ лет, а тогда ему было $15$, то найдем разницу: $$16-15 = 1 (год)$$ То есть, мы выяснили, что папе было в $3$ раза больше, чем сыну один год назад. Это и будет ответом на нашу задачу.

Ответ: $1$ год назад.

Как видите, в данном задании найденный корень уравнения еще не был нужным нам ответом, и необходимо было решать дальше.

Важно: корень составленного к задаче уравнения – это часто еще не ответ на поставленный в ней вопрос!

Видео:Линейное уравнение с одной переменнойСкачать

Линейное уравнение с одной переменной

Этапы решения заданий с помощью линейного уравнения

Все перечисленные в примерах выше действия для решения задач с помощью линейных уравнений мы можем свести к одному общему алгоритму:

  1. Выбрать, какую неизвестную величину обозначить за переменную $x$.
  2. Через введенную переменную выразить остальные неизвестные величины.
  3. На основе имеющихся данных составить уравнение и решить его.
  4. При необходимости найти другие неизвестные величины.
  5. Проанализировать, соответствуют ли полученные результаты смыслу задачи.
  6. Сформулировать и записать ответ.

Как правило, легче всего составить уравнение с помощью записи данных задачи в таблицу.

К примеру, решим такую задачу: в столовой на одной полке было в $2$ раза больше кружек, чем на другой. Перед очередным классом с первой полки взяли $16$ кружек, но потом на другую поставили $4$. В итоге на обеих полках оказалось одинаковое количество кружек. Найдите, сколько на каждой полке кружек было первоначально.

Решение. Обозначим исходное количество кружек на второй полке за $x$ и составим таблицу:

БылоСтало
$1$-я полка$2x$$2x-16$
$2$-я полка$x$$x+4$

Так как по условию задачи кружек на обеих полках стало поровну, то $$2x-16 = x+4$$ Упростим и решим, перенеся $x$ влево, а $16$ вправо с противоположным знаком: $$2x-x = 16+4$$ $$x=20$$ Так мы нашли исходное количество кружек на второй полке. Тогда на первой полке было: $$20times 2 = 40 (кружек)$$

Ответ: на первой полке было $40$ кружек, а на второй $20$.

Видео:7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать

7 класс, 4 урок, Линейное уравнение с одной переменной

Линейное уравнение с одной переменной с примерами решения

Содержание:

Видео:Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

Линейное уравнение с одной переменной. Практическая часть. 6 класс.

Линейное уравнение с одной переменной

Уравнение — одно из важнейших понятий не только математики, но и многих прикладных наук. Это наиболее удобная математическая модель, наилучшее средство для решения сложнейших задач. Образно говоря, уравнение — это ключ, которым можно отворять тысячи дверей в неизвестное. Основные темы главы:

  • общие сведения об уравнениях;
  • равносильные уравнения;
  • линейные уравнения;
  • решение задач с помощью уравнений.

Общие сведения об уравнении

Алгебра в течение многих столетий развивалась как наука об уравнениях.

Уравнение — это равенство, содержащее не-известные числа, обозначенные буквами.

Неизвестные числа в уравнении называют переменными. Переменные чаще всего обозначают буквами х, у, z (икс, игрек, зет), хотя их можно обозначить и другими буквами.

Примеры уравнений: Задачи линейное уравнение одной переменной

Задачи линейное уравнение одной переменной

Рассмотрим уравнение Задачи линейное уравнение одной переменной. Если в нём вместо переменной х написать число 5, то будем иметь правильное числовое равенство Задачи линейное уравнение одной переменной. Говорят, что «число 5 удовлетворяет данное уравнение».

Число, удовлетворяющее уравнение, называется его корнем.

Уравнение Задачи линейное уравнение одной переменнойимеет только один корень: Задачи линейное уравнение одной переменной

Уравнение Задачи линейное уравнение одной переменнойимеет три корня: Задачи линейное уравнение одной переменной

Уравнение Задачи линейное уравнение одной переменнойне имеет ни одного корня, так как при каждом значении переменной х число х + 7 на 7 больше, чем х.

Уравнение Задачи линейное уравнение одной переменнойимеет бесконечное множество корней.

Решить уравнение — это означает, что надо найти все его корни или показать, что их не существует.

Простейшие уравнения можно решать, пользуясь известными зависимостями между слагаемыми и суммой, между множителями и произведением и т. п.

Пример:

Решите уравнение Задачи линейное уравнение одной переменной

Решение:

В данном случае неизвестно вычитаемое. Чтобы найти его, следует от уменьшаемого отнять разность: Задачи линейное уравнение одной переменной

Здесь неизвестный множитель х. Чтобы найти его, надо произведение разделить на известный множитель:

Задачи линейное уравнение одной переменной

Уравнение — это своеобразный кроссворд. Только в клеточки кроссворда вписывают буквы, чтобы получить нужные слова, а в уравнение вместо переменных подставляют числа, чтобы получались правильные равенства.

Например, уравнение Задачи линейное уравнение одной переменнойможно записать в форме числового кроссворда:

Задачи линейное уравнение одной переменной

Какое число надо поставить в квадратики, чтобы получилось верное равенство?

Уравнения бывают разных видов, в частности — содержащие неизвестную переменную в квадрате, в кубе, под знаком модуля и т. п. Решим, например, уравнения:

Задачи линейное уравнение одной переменной

1) Ответим на вопрос: какое число надо возвести в квадрат, чтобы получить 9? Это числа 3 и -3. Это и есть корни данного уравнения.

2) Разделим обе части уравнения Задачи линейное уравнение одной переменнойКакое число, возведённое в куб, равно 8? Таковым является число 2. Значит, решение данного уравнения х = 2.

3) Если модуль числа x — 2, то это число равно 5 или -5. Имеем: x — 2 = 5, отсюда х = 7, или x — 2 = -5, отсюда х = -3. Значит, уравнение Задачи линейное уравнение одной переменнойимеет два корня: x = 7 и x = -3.

Пример:

Решите уравнение Задачи линейное уравнение одной переменной

Решение:

Задачи линейное уравнение одной переменнойЗадачи линейное уравнение одной переменной

Пример:

Я задумал число. Если его умножить на 3, от результата отнять 4, то получим 5. Какое число я задумал?

Решение:

Обозначим искомое число буквой х. Если умножить его на 3, то получим Зх. Отняв от результата 4, получим Зх — 4. Имеем уравнение: Задачи линейное уравнение одной переменной

Решим это уравнение: Задачи линейное уравнение одной переменнойОтвет. 3.

Пример:

При каком значении а уравнение Задачи линейное уравнение одной переменнойбудет иметь корень х = 3?

Решение:

Первый способ. Найдём неизвестный множитель х как частное от деления произведения 12 и известного множителя а + 5:

Задачи линейное уравнение одной переменной

По условию x + 3, поэтому Задачи линейное уравнение одной переменнойотсюда Задачи линейное уравнение одной переменнойа = -1.

Второй способ. Подставим в уравнение Задачи линейное уравнение одной переменнойвместо переменной х число 3:

Задачи линейное уравнение одной переменной

Решим полученное уравнение относительно переменной а. Имеем:

Задачи линейное уравнение одной переменнойОтвет. Если а = -1, то уравнение Задачи линейное уравнение одной переменнойимеет корень х = 3.

Равносильные уравнения

Рассмотрим два уравнения: Задачи линейное уравнение одной переменной. Каждое из них имеет один и тот же корень: х = 5.

Два уравнения называют равносильными, если каждое из них имеет те же корни, что и другое. Равносильными считают и такие уравнения, которые не имеют корней.

Задачи линейное уравнение одной переменной

Чтобы решать более сложные уравнения, нужно уметь заменять их более простыми и равносильными данным. Покажем, как это делается.

Из распределительного закона умножения следует, что при любом значении х числа 2x + 5x = 7x. Поэтому равносильными будут такие, например, уравнения: Задачи линейное уравнение одной переменной

Из распределительного закона следует, что при каждом значении х числа Задачи линейное уравнение одной переменной. Поэтому равносильны и уравнения:

Задачи линейное уравнение одной переменной

Вообще, если в любой части уравнения свести подобные слагаемые или раскрыть скобки, то получим уравнение, равносильное данному.

Прибавив к обеим частям верного числового равенства одно и то же число, получим также верное равенство. Подобно этому тела с равными массами, положенные на чаши уравновешенных весов, не нарушают равновесия (рис. 4).

Отсюда следует, что когда, например, к обеим частям уравнения Задачи линейное уравнение одной переменной(1) прибавить по -10y, то получим уравнение Задачи линейное уравнение одной переменной, равносильное данному. А прибавить к левой и правой частям уравнения (1) по -10y — это то же самое, что перенести 10y из правой части уравнения в левую с противоположным знаком. Вообще, если из одной части уравнения в другую перенести любой его член с противоположным знаком, то получим уравнение, равносильное данному.

Вспомним также, что обе части числового равенства можно умножить или разделить на одно и то же число, отличное от нуля. Поэтому если обе части уравнения умножить иди разделить на одно и то же число, отличное от нуля, то получим уравнение, равносильное данному. Например, умножив обе части уравнения Задачи линейное уравнение одной переменнойполучим уравнение Задачи линейное уравнение одной переменнойимеющее такой же корень, как и данное. А если обе части уравнения Задачи линейное уравнение одной переменнойразделим на 20, то будем иметь более простое уравнение Задачи линейное уравнение одной переменной, равносильное данному.

Всегда справедливы такие основные свойства уравнений.

  1. В любой части уравнения можно свести подобные слагаемые или раскрыть скобки, если они есть.
  2. Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
  3. Обе части уравнения можно умножить или разделить на одно и то число, отличное от нуля.

В результате таких преобразований всегда получаем уравнение, равносильное данному.

Сформулированные свойства часто используют для решения уравнений. Для примера решим уравнение:Задачи линейное уравнение одной переменной

Решение:

Умножим обе части уравнения на 6:

Задачи линейное уравнение одной переменнойПеренесём 4х в правую часть, а -1 — в левую с противоположными знаками:

Задачи линейное уравнение одной переменнойСведём подобные члены:

Задачи линейное уравнение одной переменной

Разделим обе части уравнения на 2:

Задачи линейное уравнение одной переменной

Ответ. Задачи линейное уравнение одной переменной

Откуда произошло название науки — алгебра? От названия книги об уравнениях узбекского математика IX в. Мухаммеда аль-Хо-резми (Мухаммеда из Хорезма). В те далёкие времена отрицательные числа не считались настоящими. Поэтому когда в результате перенесения отрицательного члена уравнения из одной его части в другую этот член становился положительным, считалось, что Qh восстанавливался, переходил из ненастоящего в настоящий. Такое преобразование уравнений Мухаммед аль-Хорезми назвал восстановлением (аль-джебр). Свойство об уничтожении одинаковых членов уравнения в обеих частях он назвал противопоставлением (аль-мукабала). Книга об этих преобразованиях называлась «Китаб мухтасар аль-джебр ва-л-мукабала» («Книга о восстановлении и противопоставлении»). Со временем её перевели на латинский Язык, взяв для названия только одно слово, которое стали писать Algebr. Отсюда и пошло название науки — алгебра. Преобразование «аль,-джебр» стало важным шагом в развитии алгебры, так как упростило решение уравнений.

Алгебра, арифметика, геометрия, математический анализ — основные составляющие математики (рис. 5). Арифметику — науку о числах и вычислениях — вы уже изучали на уроках математики. В 7-9 классах будете изучать алгебру и геометрию, с математическим анализом ознакомитесь в старших классах.

Задачи линейное уравнение одной переменной

Пример:

Равносильны ли уравнения:

а)Задачи линейное уравнение одной переменной

б)Задачи линейное уравнение одной переменной

Решение:

а) Если раскрыть скобки в первом уравнении, то получим второе. Значит, уравнения равносильны.

б) Решим первое уравнение:

Задачи линейное уравнение одной переменнойотсюда х = 1. Итак, данные уравнения не равносильны.

Ответ. а) Равносильны; б) не равносильны.

Пример:

Задачи линейное уравнение одной переменной

Решение:

Раскроем скобки и приведём подобные слагаемые: Задачи линейное уравнение одной переменнойПеренесём слагаемое 3 в правую часть, а Зх — в левую, изменив их знаки на противоположные:

Задачи линейное уравнение одной переменной

Разделим обе части уравнения на 2. Получим: х = 6. Ответ. х = 6.

Пример:

Найдите корни уравнения: Задачи линейное уравнение одной переменной

Решение:

Умножим обе части уравнения на 3. Получим: Задачи линейное уравнение одной переменной

Линейные уравнения

Уравнение вида ax = b, где a и b — данные числа, называется линейным уравнением с переменной х.

Числа a и b — коэффициенты уравнения ax = b , a— коэффициент при переменной х,b — свободный член уравнения.

Если Задачи линейное уравнение одной переменнойто уравнение ах = b называют уравнением первой степени с одной переменной. Его корень Задачи линейное уравнение одной переменной

Каждое уравнение первой степени с одной переменной имеет один корень. Линейное уравнение может не иметь корней, иметь один или бесконечное множество корней.

Линейное уравнение ах = b:

Задачи линейное уравнение одной переменной

Например, уравнение 0x = 5 не имеет ни одного корня, так как не существует числа, которое при умножении на 0 в произведении давало бы 5.

Уравнение 0x = 0 имеет бесконечное множество корней, так как его удовлетворяет любое значение переменной х.

Решая уравнение, его сначала стараются упростить, свести к линейному. Делают это преимущественно в такой последовательности.

  1. Избавляются от знаменателей (если они есть).
  2. Раскрывают скобки (если они есть).
  3. Переносят члены, содержащие переменные, в левую часть уравнения, а не содержащие — в правую.
  4. Приводят подобные слагаемые.

В результате такого преобразования получают уравнение, равносильное данному; его корни являются также корнями данного уравнения.

Пример 1. Решите уравнение:

Задачи линейное уравнение одной переменной

Решение. Умножим обе части уравнения на 12 — наименьшее общее кратное знаменателей 2, 3, 4 и 12:

Задачи линейное уравнение одной переменной

Если коэффициенты уравнения многозначные, его удобно решать, пользуясь калькулятором. Пример 2. Решите уравнение

Задачи линейное уравнение одной переменной

Ответ. Задачи линейное уравнение одной переменной

Задачи линейное уравнение одной переменной

Задачи линейное уравнение одной переменной

Найденное значение корня — приближённое. Точное значение пришлось бы записать в виде смешанной дроби, а именно Задачи линейное уравнение одной переменнойРешая прикладные задачи, ответ обычно округляют и записывают, например, так: Задачи линейное уравнение одной переменной

Уравнение первой степени — это отдельный вид линейных уравнений. Соотношение между этими двумя видами уравнений наглядно проиллюстрировано на рисунке 7.

Ниже приведём примеры линейных уравнений, которые не являются уравнениями первой степени.

Уравнения первой степени

Задачи линейное уравнение одной переменной

Задачи линейное уравнение одной переменной

Уравнения Задачи линейное уравнение одной переменнойне линейные,но сводящиеся к линейным.

Почему уравнение вида ах = b называют линейными, станет понятно, когда вы ознакомитесь с линейными функциями.

Пример:

а) Задачи линейное уравнение одной переменнойб) Задачи линейное уравнение одной переменной

Решение:

а) Задачи линейное уравнение одной переменнойЗадачи линейное уравнение одной переменной

Задачи линейное уравнение одной переменной— уравнение корней не имеет.

б) Задачи линейное уравнение одной переменнойЗадачи линейное уравнение одной переменной

Задачи линейное уравнение одной переменной— любое число удовлетворяет уравнение.

Ответ. а) Уравнение корней не имеет;

б) уравнение имеет бесконечное множество корней.

Пример:

Найдите два числа, полусумма которых вдвое больше их полуразности, которая равна 35.

Решение:

Если полуразность чисел равна 35, то разность будет вдвое больше, а именно — 70. Обозначим меньшее число буквой х, тогда большее будет равно

70 + х. По условию задачи Задачи линейное уравнение одной переменнойили Задачи линейное уравнение одной переменной, отсюда х = 35 — меньшее число, 70 + 35 = 105 — большее число. Ответ. 35 и 105.

Решение задач с помощью уравнений

Чтобы решить задачу с помощью уравнения, сначала надо составить соответствующее этой задаче уравнение. Образно говоря, надо перевести задачу с обычного языка на язык алгебры, то есть составить математическую модель данной задачи. Как это можно сделать, покажем на нескольких примерах.

Пример:

На двух токах 1000т зерна. Сколько зерна на каждом току, если на первом его на 200т меньше, чем на втором?

Решение:

Пусть на первом току Задачи линейное уравнение одной переменнойзерна. Тогда на втором — Задачи линейное уравнение одной переменнойа на обоих — Задачи линейное уравнение одной переменнойИмеем уравнение:

Задачи линейное уравнение одной переменной

отсюда Задачи линейное уравнение одной переменной

Ответ. Задачи линейное уравнение одной переменной

Уравнение Задачи линейное уравнение одной переменнойсоставленное по условию задачи, — это математическая модель данной задачи.

Составить уравнения часто помогает рисунок или схема (рис. 10)

Задачи линейное уравнение одной переменной

Данную задачу можно решить и другими способами.

Если на втором току есть у т зерна, то на первом Задачи линейное уравнение одной переменной. Так как на втором току зерна на 200 т больше, то Задачи линейное уравнение одной переменнойотсюда Задачи линейное уравнение одной переменной

Рисунок 10, рисунок 11., уравнение Задачи линейное уравнение одной переменной— это три разные математические модели прикладной задачи 1. В математике прикладными называют задачи, условия которых содержат не математические понятия.

Модель всегда подобна оригиналу. В ней отображаются те или иные важные свойства исследуемого объекта. Такими являются уменьшенные модели автомобиля, самолёта, строения. Глобус — модель Земли, кукла — модель человека. Если модель создана на основе уравнений, формул или других математических понятий, её называют математической моделью.

Для решения задач на движение также используют разные модели. Надо помнить, что при равномерном движении пройденное телом расстояние равно произведению скорости на время Задачи линейное уравнение одной переменнойПри этом все значения величин следует выражать в соответствующих единицах измерения. Например, если время дано в часах, а расстояние — в километрах, то скорость надо выражать в километрах в час. Если тело движется при наличии течения, то его скорость движения по течению (против течения) равна сумме (разности) его собственной скорости и скорости течения. С помощью схем многие задачи на движение можно решить устно (№ 124). Для решения некоторых сложных задач требуется построение нескольких моделей.

Рассмотрим задачу, составить уравнение к которой помогает таблица — ещё один вид математических моделей.

Пример:

Катер должен был пройти расстояние между городами со скоростью 15 км/ч, а на самом деле шёл со скоростью 12 км/ч и потому опоздал на 3 ч. Найдите расстояние между городами.

Ответ. Построим таблицу и заполним её в соответствии с условием задачи.

Задачи линейное уравнение одной переменной

Катер шёл на 3 ч дольше, чем должен был идти. Этому условию соответствует уравнение:

Задачи линейное уравнение одной переменнойРешим уравнение:

Задачи линейное уравнение одной переменнойОтвет. 180 км.

Решив задачу с помощью уравнения, нужно всегда анализировать полученное значение неизвестного. Может получиться, что найденный корень уравнения не соответствует условию задачи.

Пример:

Периметр треугольника равен 17 см. Найдите его стороны, если одна из них короче другой на 2 см, а третьей — на б см.

Решение:

Пусть длина самой короткой стороны треугольника равна х см. Тогда длины других сторон соответственно будут равны Задачи линейное уравнение одной переменной.Получим уравнение: Задачи линейное уравнение одной переменной

Решим его: Задачи линейное уравнение одной переменной

Если длина первой стороны 3 см, то вторая и третья соответственно будут равны 5 и 9 см.

Существует ли треугольник с такими сторонами? Нет, так как каждая сторона треугольника короче суммы двух других, аЗадачи линейное уравнение одной переменной

Ответ. Задача не имеет решения.

Решение прикладных задач методом математического моделирования состоит из трёх этапов:

  1. создание математической модели данной задачи;
  2. решение соответствующей математической задачи;
  3. анализ ответа.

Иногда с помощью уравнения решают не всю задачу, а только её часть.

Покажем, например, как можно заполнять пустые клеточки магического квадрата — таблицы чисел с одинаковым количеством строк столбцов, с одинаковой суммой чисел во всех строках, столбцах и по диагоналям.

Пример:

Перерисуйте в тетрадь рисунок 12 и в его пустые клеточки впишите такие числа, чтобы получился магический квадрат.

Решение:

Обозначим буквой х число в правой верхней клеточке Тогда сумма всех чисел первой строки будет равна 5+6+x, или 11 + x Такими же должны быть суммы и в каждой диагонали, и в среднем столбце поэтому в нижней строке следует написать 4, x — 2 , x — 1 (рис. 13). Та как сумма чисел должна быть равна 11 + х, то составим уравнение:

Задачи линейное уравнение одной переменной

Подставим вместо х его значение 10, после чего пустые клеточки рисунка 14 заполнить нетрудно. Задачи линейное уравнение одной переменнойВ данном случае уравнение Задачи линейное уравнение одной переменной— модель части сформулированной задачи, дающая возможность вычислит только значение х.

Пример:

Катер прошёл расстояние между пристанями по течению реки за 2 ч, а обратно — за 2,5 ч. Найдите собственную скорость катера, если скорость течения равна 2 км/ч.

Решение:

Пусть собственная скорость катера равна x км/ч. Тогда:

Задачи линейное уравнение одной переменной— его скорость по течению;

Задачи линейное уравнение одной переменной— скорость катера против течения;

Задачи линейное уравнение одной переменной— такое расстояние катер прошёл по течению;

Задачи линейное уравнение одной переменной— такое расстояние катер прошёл против течения.

Расстояния Задачи линейное уравнение одной переменнойравны. Итак, получим уравнение

Задачи линейное уравнение одной переменной

Пример:

Решите математический кроссворд (рис. 15).

Решение:

В кружки следует вписать два числа так, чтобы их сумма была равна 200, а разность — 10. Если второе число обозначим буквой х, то первое будет равно 200 — х. Их разность равна 10, следовательно, Задачи линейное уравнение одной переменной, отсюда 2 Задачи линейное уравнение одной переменнойОтвет на рисунке 16.

Задачи линейное уравнение одной переменной

Исторические сведения:

Уравнения первой степени с одной переменной люди научились решать очень давно. Египетские учёные почти четыре тысячи лет тому назад искомое неизвестное число называли «аха» (в переводе — «куча») и обозначали специальным знаком. В папирусе, дошедшем до нас, есть такая задача: «Куча и её седьмая часть составляют 19. Найдите кучу». Теперь бы мы сформулировали её так: «Сумма неизвестного числа и его седьмой части равна 19. Найдите неизвестное число».

Задача сводится к уравнению Задачи линейное уравнение одной переменной

Подобные задачи умели решать учёные Древней Греции, древних Индии, Китая. Древнегреческий математик Диофант (III в.) решал и более сложные уравнения, в частности такие, которые в современных символах имеют вид Задачи линейное уравнение одной переменнойУ Диофанта уравнение Задачи линейное уравнение одной переменнойзаписывалось таким способом:

Аль-Хорезми и многие его преемники все уравнения записывали словами, не используя математических знаков.

От фамилии аль-Хорезми происходит ещё один важный для современной науки термин — алгоритм. Так называют совокупность правил, пользуясь которыми можно решить любую задачу из определённого класса задач. Например, известный вам способ умножения чисел «столбиком», способ определения наибольшего общего делителя двух или нескольких чисел — это алгоритмы. В современной науке понятие «алгоритм» играет огромную роль, существует даже специальная область математики — теория алгоритмов. Подробнее с алгоритмами вы ознакомитесь в старших классах.

Сначала алгеброй называли науку, изучающую различные способы решения уравнений. Со временем она значительно расширилась, обогатилась новыми идеями. Теперь уравнение — только одна из составляющих алгебры.

Напомню:

Уравнение — это равенство, которое содержит неизвестные числа, обозначенные буквами.

Числа, удовлетворяющие уравнение, — его корни. Решить уравнение — это значит найти все его корни или показать, что их не существует.

Два уравнения называют равносильными, если каждое из них имеет те же корни, что и другое. Уравнения, которые не имеют корней, также считают равносильными друг другу.

Основные свойства уравнений.

  1. В любой части уравнения можно привести подобные слагаемые или раскрыть скобки, если они есть.
  2. Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.
  3. Обе части уравнения можно умножить или разделить на одно и то же число, отличное от нуля.

Уравнение вида ах = b, где а и b — произвольные числа, называют линейным уравнением с переменной х. Если Задачи линейное уравнение одной переменной, то уравнение ах = b называют уравнением первой степени с одной переменной.

Каждое уравнение первой степени ах = b имеет один корень Задачи линейное уравнение одной переменной. Линейное уравнение может иметь один корень, бесконечно много корней или не иметь ни одного корня.

Решение прикладных задач методом математического I моделирования состоит из трёх этапов:

  1. создание математической модели данной задачи;
  2. решение соответствующей математической задачи;
  3. анализ ответа.

Линейное уравнение с одной переменной

Рассмотрим три уравнения:

Задачи линейное уравнение одной переменной

Очевидно, что число -1,5 является единственным корнем первого уравнения.

Поскольку произведение любого числа на нуль равно нулю, то корнем второго уравнения является любое число.

Понятно, что третье уравнение корней не имеет.

Несмотря на существенное различие полученных ответов, приведенные уравнения внешне похожи: все они имеют вид Задачи линейное уравнение одной переменнойгде Задачи линейное уравнение одной переменной— переменная, Задачи линейное уравнение одной переменной— некоторые числа.

Уравнение вида Задачи линейное уравнение одной переменнойгде Задачи линейное уравнение одной переменной— переменная, Задачи линейное уравнение одной переменной— некоторые числа, называют линейным уравнением с одной переменной.

Вот еще примеры линейных уравнений: Задачи линейное уравнение одной переменнойЗадачи линейное уравнение одной переменной

Текст, выделенный жирным шрифтом, разъясняет смысл термина «линейное уравнение». В математике предложение, раскрывающее суть нового термина (слова, понятия, объекта), называют определением.

Итак, мы сформулировали (или говорят: «дали») определение линейного уравнения.

Заметим, что, например, уравнения Задачи линейное уравнение одной переменной Задачи линейное уравнение одной переменнойлинейными не являются.

Если Задачи линейное уравнение одной переменнойто, разделив обе части уравнения Задачи линейное уравнение одной переменнойна Задачи линейное уравнение одной переменнойполучим Задачи линейное уравнение одной переменной. Отсюда следует: если Задачи линейное уравнение одной переменнойто уравнение Задачи линейное уравнение одной переменнойимеет единственный корень, равный Задачи линейное уравнение одной переменной

Если же Задачи линейное уравнение одной переменнойто линейное уравнение приобретает такой вид: Задачи линейное уравнение одной переменнойЗдесь возможны два случая: Задачи линейное уравнение одной переменной

В первом случае получаем уравнение Задачи линейное уравнение одной переменнойТогда, если Задачи линейное уравнение одной переменнойто уравнение Задачи линейное уравнение одной переменнойимеет бесконечно много корней: любое число является его корнем.

Во втором случае, когда Задачи линейное уравнение одной переменнойпри любом значении Задачи линейное уравнение одной переменнойполучим неверное равенство Задачи линейное уравнение одной переменнойОтсюда, если Задачи линейное уравнение одной переменнойи Задачи линейное уравнение одной переменнойто уравнение Задачи линейное уравнение одной переменнойкорней не имеет.

Следующая таблица подытоживает приведенные рассуждения.Задачи линейное уравнение одной переменной

Пример:

1) Задачи линейное уравнение одной переменной

Решение:

1) Так как произведение нескольких множителей равно нулю, когда хотя бы один из множителей равен нулю, получаем:Задачи линейное уравнение одной переменной

2) Учитывая, что модуль только чисел 4 и -4 равен числу 4, имеем: Задачи линейное уравнение одной переменной

Обратим ваше внимание на то, что рассмотренные уравнения не являются линейными, однако решение каждого из них сводится к решению линейных уравнений.

Пример:

Задачи линейное уравнение одной переменной

Решение:

1) При Задачи линейное уравнение одной переменнойуравнение принимает вид Задачи линейное уравнение одной переменнойВ этом случае корней нет. При Задачи линейное уравнение одной переменнойимеем Задачи линейное уравнение одной переменной

Ответ: если Задачи линейное уравнение одной переменной, то уравнение не имеет корней; если Задачи линейное уравнение одной переменной, то Задачи линейное уравнение одной переменной

2) При Задачи линейное уравнение одной переменнойуравнение принимает вид Задачи линейное уравнение одной переменнойВ этом случае корнем уравнения является любое число. При Задачи линейное уравнение одной переменнойимеем Задачи линейное уравнение одной переменной

Ответ: если Задачи линейное уравнение одной переменной, то Задачи линейное уравнение одной переменной— любое число; если Задачи линейное уравнение одной переменной, то Задачи линейное уравнение одной переменной

Решение задач с помощью уравнений

Вам много раз приходилось решать задачи с помощью составления уравнений (текстовые задачи). И разнообразие решенных задач является лучшим подтверждением эффективности и универсальности этого метода. В чем же заключается секрет его силы?

Дело в том, что условия непохожих друг на друга задач удается записать математическим языком. Полученное уравнение — это результат перевода условия задачи с русского языка на математический.

Часто условие задачи представляет собой описание какой-то реальной ситуации. Составленное по этому условию уравнение называют математической моделью этой ситуации.

Конечно, чтобы получить ответ, уравнение надо еще решить. Для этого в алгебре разработаны различные методы и приемы. С некоторыми из них вы уже знакомы, многие другие вам еще предстоит изучить.

Найденный корень — это еще не ответ задачи. Следует выяснить, не противоречит ли полученный результат реальной ситуации, описанной в условии.

Рассмотрим, например, такие задачи:

  1. За 4 ч собрали 6 кг ягод. Сколько ягод собирали за каждый час?
  2. Несколько мальчиков собрали 6 кг ягод. Каждый из них собрал по 4 кг. Сколько мальчиков собирали ягоды?

Обе задачи приводят к одному и тому же уравнению Задачи линейное уравнение одной переменной, корнем которого является число 1,5. Но в первой задаче решение «полтора килограмма ягод за час» является приемлемым, а во второй — «ягоды собирали полтора мальчика» — нет.

При решении задач на составление уравнений удобно пользоваться следующей схемой:

  1. по условию задачи составить уравнение (сконструировать математическую модель задачи);
  2. решить уравнение, полученное на первом шаге;
  3. выяснить, соответствует ли найденный корень смыслу задачи, и дать ответ.

Эту последовательность действий, состоящую из трех шагов, можно назвать алгоритмом решения текстовых задач.

Пример:

Рабочий должен был выполнить заказ за 8 дней. Однако, изготавливая ежедневно 12 деталей сверх нормы, он уже за 6 дней работы не только выполнил заказ, но и изготовил дополнительно 22 детали. Сколько деталей ежедневно изготавливал рабочий?

Решение:

Пусть рабочий изготавливал ежедневно Задачи линейное уравнение одной переменнойдеталей. Тогда по плану он должен был изготавливать ежедневно Задачи линейное уравнение одной переменнойдеталей, а всего их должно было быть изготовлено Задачи линейное уравнение одной переменнойНа самом деле он изготовил Задачи линейное уравнение одной переменнойдеталей. Так как по условию задачи значение выражения Задачи линейное уравнение одной переменнойна 22 больше значения выражения Задачи линейное уравнение одной переменнойто

Задачи линейное уравнение одной переменной

Задачи линейное уравнение одной переменной

Ответ: 37 деталей.

Пример:

Велосипедист проехал 65 км за 5 ч. Часть пути он проехал со скоростью 10 км/ч, а оставшийся путь — со скоростью 15 км/ч. Сколько времени он ехал со скоростью 10 км/ч и сколько — со скоростью 15 км/ч?

Решение:

Пусть велосипедист ехал Задачи линейное уравнение одной переменнойч со скоростью 10 км/ч. Тогда со скоростью 15 км/ч он ехал Задачи линейное уравнение одной переменнойч. Первая часть пути составляет Задачи линейное уравнение одной переменнойкм, а вторая — Задачи линейное уравнение одной переменнойкм. Имеем:

Задачи линейное уравнение одной переменной

Следовательно, со скоростью 10 км/ч велосипедист ехал 2 ч, а со скоростью 15 км/ч — 3 ч.

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Что такое уравнение, линейное уравнение, что значит решить уравнение

Алгебра длительное время была частью арифметики — одной из древнейших математических дисциплин. Слово «арифметика» в переводе с греческого означает «искусство чисел». Алгебру же после выделения ее в отдельную науку рассматривали как искусство решать уравнения.

В данном разделе мы выясним, что такое уравнение, линейное уравнение, что значит решить уравнение, как решать задачи с помощью уравнений.

Что такое уравнение

Масса 4 больших и 15 малых деталей равна 270 г. Масса большой детали в три раза больше массы малой. Какова масса малой детали?

Задачи линейное уравнение одной переменной

Пусть масса малой детали равна Задачи линейное уравнение одной переменнойг, тогда масса большой — Задачи линейное уравнение одной переменнойг. Масса 15 малых деталей равна Задачи линейное уравнение одной переменнойг, а 4 больших — Задачи линейное уравнение одной переменной(г). По условию задачи сумма этих масс равна 270 г:

Задачи линейное уравнение одной переменной.

Мы пришли к равенству, которое содержит неизвестное число, обозначенное буквой Задачи линейное уравнение одной переменной(еще говорят: равенство содержит переменную Задачи линейное уравнение одной переменной). Чтобы решить задачу, нужно найти значение Задачи линейное уравнение одной переменной, при котором равенство Задачи линейное уравнение одной переменнойявляется верным числовым равенством.

Равенство с неизвестным значением переменной называют уравнением с одной переменной (или уравнением с одним неизвестным).

Корень уравнения

Рассмотрим уравнение Задачи линейное уравнение одной переменной. Подставляя вместо переменной Задачи линейное уравнение одной переменнойнекоторые числа, будем получать числовые равенства, которые могут быть верными или неверными. Например:

  • при Задачи линейное уравнение одной переменнойполучим равенство Задачи линейное уравнение одной переменной, которое является верным;
  • при Задачи линейное уравнение одной переменнойполучим равенство Задачи линейное уравнение одной переменной, которое является неверным.

Значение переменной, при котором уравнение превращается в верное числовое равенство, называют корнем, или решением уравнения.

Итак, число 3 является корнем уравнения Задачи линейное уравнение одной переменной, а число 4 — нет.

Количество корней уравнения

Уравнения могут иметь разное количество корней. Например:

  • уравнение Задачи линейное уравнение одной переменнойимеет только один корень — число 3;
  • уравнение Задачи линейное уравнение одной переменнойимеет два корня — числа 2 и 6;

уравнению Задачи линейное уравнение одной переменнойудовлетворяет любое число Задачи линейное уравнение одной переменной; говорят, что это уравнение имеет бесконечно много корней.

Уравнение может и не иметь корней. Рассмотрим, например, уравнение Задачи линейное уравнение одной переменной. Для любого числа Задачи линейное уравнение одной переменнойзначение левой части уравнения на 1 больше значения правой части. Следовательно, какое бы число Задачи линейное уравнение одной переменноймы не взяли, равенство Задачи линейное уравнение одной переменнойбудет неверным. Поэтому это уравнение не имеет корней.

Решить уравнение — значит найти все его корни или доказать, что корней нет.

Решим уравнение, составленное выше по условию задачи о больших и малых деталях:

Задачи линейное уравнение одной переменной Задачи линейное уравнение одной переменной Задачи линейное уравнение одной переменнойЗадачи линейное уравнение одной переменной

Таким образом, масса малой детали равна 10 г.

Примеры решения уравнений:

Пример №86

Является ли число 2,5 корнем уравнения Задачи линейное уравнение одной переменной?

Решение:

Если Задачи линейное уравнение одной переменной, то:

значение левой части уравнения равно: Задачи линейное уравнение одной переменной; значение правой части равно: Задачи линейное уравнение одной переменной. Значения обеих частей уравнения равны, поэтому Задачи линейное уравнение одной переменной— корень данного уравнения.

Пример №87

а) Задачи линейное уравнение одной переменной; б) Задачи линейное уравнение одной переменной; в) Задачи линейное уравнение одной переменной.

а) Задачи линейное уравнение одной переменной; Задачи линейное уравнение одной переменной; Задачи линейное уравнение одной переменной; Задачи линейное уравнение одной переменной; Задачи линейное уравнение одной переменной. Ответ. 11.

б) Произведение равно нулю только тогда, когда хотя бы один из множителей равен нулю. Следовательно, Задачи линейное уравнение одной переменнойили Задачи линейное уравнение одной переменной; Задачи линейное уравнение одной переменнойили Задачи линейное уравнение одной переменной. Ответ.-0,5; 2.

в) Задачи линейное уравнение одной переменной; Задачи линейное уравнение одной переменной; Задачи линейное уравнение одной переменной. Квадрат числа не может быть равен отрицательному числу. Поэтому данное уравнение корней не имеет. Ответ. Уравнение корней не имеет.

Решение уравнений. Свойства уравнений

Решение любого уравнения сводится к выполнению определенных преобразований, в результате которых данное уравнение заменяют более простым.

Решим, например, уравнение:

Задачи линейное уравнение одной переменной. (1)

1. Раскроем скобки:

Задачи линейное уравнение одной переменной. (2)

2. Приведем подобные слагаемые в левой части уравнения:

Задачи линейное уравнение одной переменной. (3)

3. Перенесем слагаемые с переменной Задачи линейное уравнение одной переменнойв левую часть уравнения, а без переменной — в правую, изменив их знаки на противоположные:

Задачи линейное уравнение одной переменной. (4)

4. Приведем подобные слагаемые в каждой части уравнения:

Задачи линейное уравнение одной переменной. (5)

5. Разделим обе части уравнения на 2:

Задачи линейное уравнение одной переменной.

Таким образом, уравнение (1) имеет единственный корень — число 4.

При решении уравнения (1) мы выполняли некоторые преобразования: раскрывали скобки, приводили подобные слагаемые, переносили слагаемые из одной части уравнения в другую, делили обе части уравнения на число. С этими преобразованиями связаны следующие основные свойства уравнений:

Свойство 1. В любой части уравнения можно раскрыть скобки или привести подобные слагаемые.

Свойство 2. Любое слагаемое можно перенести из одной части уравнения в другую, изменив при этом его знак на противоположный.

Свойство 3. Обе части уравнения можно умножить или разделить на одно и то же число, отличное от нуля.

Если в некотором уравнении выполнить одно из преобразований, указанных в свойствах 1, 2 или 3, то получим уравнение, имеющее те же корни, что и начальное уравнение.

Решая уравнение (1), мы последовательно получали уравнения (2), (3), (4), (5). Все они вместе с уравнением (1) имеют один и тот же корень — число 4.

Для тех, кто хочет знать больше

Свойства уравнений можно обосновать, используя следующие свойства числовых равенств:

Если а — b — верное числовое равенство и с — некоторое число, то:

Задачи линейное уравнение одной переменной

Если к обеим частям верного числового равенства прибавить одно и то же число, то получим верное числовое равенство.

Задачи линейное уравнение одной переменной

Если обе части верного числового равенства умножить на одно и то же число, то получим верное числовое равенство.

Задачи линейное уравнение одной переменной

Если обе части верного числового равенства разделить на одно и то же число. отличное от нуля то получим верное числовое равенство.

Из первого свойства числовых равенств можно получить такое следствие: если из одной части верного числового равенства перенести в другую часть слагаемое, изменив его знак на противоположный, то получим верное числовое равенство.

Используя свойства числовых равенств, докажем, например, что уравнение

Задачи линейное уравнение одной переменной(6)

имеет тс же корни, что и уравнение

Задачи линейное уравнение одной переменной. (7)

(Это свойство 2 для уравнения Задачи линейное уравнение одной переменной.)

• Пусть Задачи линейное уравнение одной переменной— произвольный корень уравнения (6). Тогда Задачи линейное уравнение одной переменной— верное числовое равенство. Перенесем слагаемое Задачи линейное уравнение одной переменнойв левую часть равенства, изменив его знак на противоположный. Получим верное числовое равенство Задачи линейное уравнение одной переменной, из которого следует, что Задачи линейное уравнение одной переменнойявляется корнем уравнения (7). Мы доказали, что произвольный корень уравнения (6) является корнем уравнения (7).

Наоборот, пусть Задачи линейное уравнение одной переменной— произвольный корень уравнения (7). Тогда числовое равенство Задачи линейное уравнение одной переменнойявляется верным. Перенесем слагаемое Задачи линейное уравнение одной переменнойв правую часть равенства, изменив его знак на противоположный. Получим верное числовое равенство Задачи линейное уравнение одной переменной, из которого следует, что Задачи линейное уравнение одной переменнойявляется корнем уравнения (6). Мы доказали, что произвольный корень уравнения (7) является корнем уравнения (6). Таким образом, уравнения (6) и (7) имеют одни и тс же корни. • Уравнения, имеющие одни и те же корни, называют равносильными. Следовательно, уравнения (6) и (7) являются равносильными.

Примеры решения уравнений:

Пример №88

Решить уравнение Задачи линейное уравнение одной переменной.

Решение:

Умножив обе части уравнения на 14, получим:

Задачи линейное уравнение одной переменной; Задачи линейное уравнение одной переменной; Задачи линейное уравнение одной переменной;

Задачи линейное уравнение одной переменной

Пример №89

Решить уравнение Задачи линейное уравнение одной переменной.

Решение:

Разделив обе части уравнения на 25, получим:

Задачи линейное уравнение одной переменной

Линейные уравнения с одной переменной

Линейные уравнения с одной переменной

Задачи линейное уравнение одной переменной

Левая часть каждого из этих уравнений является произведением некоторого числа и переменной, а права часть — некоторым числом. Такие уравнения называют линейными уравнениями с одной переменной.

Определение:

Уравнение вида Задачи линейное уравнение одной переменной, где Задачи линейное уравнение одной переменной— некоторые известные числа, а Задачи линейное уравнение одной переменной— переменная, называют линейным уравнением с одной переменной.

Числа а и b называют коэффициентами линейного уравнения.

Когда при решении уравнения выполняют некоторые преобразования, приводя данное уравнение к более простому, то во многих случаях этим «простым» уравнением является именно линейное уравнение.

Выясним, сколько корней может иметь линейное уравнение. Для этого рассмотрим сначала три следующих уравнения:

1) Задачи линейное уравнение одной переменной; 2) Задачи линейное уравнение одной переменной; 3) Задачи линейное уравнение одной переменной.

  1. Чтобы решить уравнение Задачи линейное уравнение одной переменной, достаточно обе его части разделить на 3. Получим один корень: Задачи линейное уравнение одной переменной
  2. В уравнении Задачи линейное уравнение одной переменнойзначение левой части равно 0 для любого числа Задачи линейное уравнение одной переменной. Правая же часть уравнения не равна нулю. Следовательно, данное уравнение корней не имеет.
  3. Равенство Задачи линейное уравнение одной переменнойявляется верным для любого числа Задачи линейное уравнение одной переменной. Поэтому корнем уравнения Задачи линейное уравнение одной переменнойявляется любое число (уравнение имеет бесконечно много корней).

В общем случае для линейного уравнения Задачи линейное уравнение одной переменной получим:

  • если Задачи линейное уравнение одной переменной, то уравнение имеет единственный корень Задачи линейное уравнение одной переменной;
  • если Задачи линейное уравнение одной переменной, a Задачи линейное уравнение одной переменной, то уравнение корней не имеет;
  • если Задачи линейное уравнение одной переменнойи Задачи линейное уравнение одной переменной, то корнем уравнения является любое число (уравнение имеет бесконечно много корней).

Итог: количество корней линейного уравнения

Задачи линейное уравнение одной переменной— линейное

КоэффициентыКорниЗадачи линейное уравнение одной переменной Задачи линейное уравнение одной переменной— единственный корень Задачи линейное уравнение одной переменнойи Задачи линейное уравнение одной переменнойкорней нет Задачи линейное уравнение одной переменнойи Задачи линейное уравнение одной переменнойкорнем является любое число (уравнение имеет бесконечно много корней)

Уравнения с модулями

Напомним, что модулем положительного числа и числа 0 является это же число, модулем отрицательного числа является противоположное ему число:

Задачи линейное уравнение одной переменной

Так, Задачи линейное уравнение одной переменной. Модуль любого числа Задачи линейное уравнение одной переменной является неотрицательным числом, то есть Задачи линейное уравнение одной переменной.

Уравнения Задачи линейное уравнение одной переменнойсодержат переменную под знаком модуля. Такие уравнения называют уравнениями с модулем.

Уравнение вида Задачи линейное уравнение одной переменной. Решая уравнение вида Задачи линейное уравнение одной переменной, где а — некоторое известное число, можно использовать геометрический смысл модуля числа: модуль числа Задачи линейное уравнение одной переменной — это расстояние от начала отсчета до точки, изображающей число Задачи линейное уравнение одной переменной на координатной прямой.

Рассмотрим уравнение Задачи линейное уравнение одной переменной. На координатной прямой существуют две точки, расположенные на расстоянии 2 единицы от начала отсчета. Это точки, соответствующие числам 2 и -2 (рис. I). Поэтому уравнение Задачи линейное уравнение одной переменнойимеет два корня: 2 и -2.

Задачи линейное уравнение одной переменной

Уравнение Задачи линейное уравнение одной переменнойимеет один корень — число 0, а уравнение Задачи линейное уравнение одной переменнойне имеет корней (модуль любого числа Задачи линейное уравнение одной переменной является неотрицательным числом и не может быть равен -2).

В общем случае уравнение Задачи линейное уравнение одной переменной:

  • имеет два корня а и , если Задачи линейное уравнение одной переменной;
  • имеет один корень 0, если Задачи линейное уравнение одной переменной;
  • не имеет корней, если Задачи линейное уравнение одной переменной

Решение уравнений с модулями, исходя из определения модуля числа

Задачи линейное уравнение одной переменной(1)

Это уравнение нельзя привести к виду Задачи линейное уравнение одной переменной, где а — некоторое число. Для его решения рассмотрим два случая.

1. Если Задачи линейное уравнение одной переменной — неотрицательное число (Задачи линейное уравнение одной переменной), то Задачи линейное уравнение одной переменнойи уравнение (1) принимает вид Задачи линейное уравнение одной переменной, откуда Задачи линейное уравнение одной переменной. Число 1 — неотрицательное (удовлетворяет неравенству Задачи линейное уравнение одной переменной), поэтому оно является корнем уравнения (1).

2. Если Задачи линейное уравнение одной переменной — отрицательное число (Задачи линейное уравнение одной переменной), то Задачи линейное уравнение одной переменнойи уравнение (1) принимает вид Задачи линейное уравнение одной переменной, откуда Задачи линейное уравнение одной переменной. Число 2 не является отрицательным (не удовлетворяет неравенству Задачи линейное уравнение одной переменной), поэтому оно не является корнем уравнения (1).

Таким образом, уравнение Задачи линейное уравнение одной переменнойимеет один корень Задачи линейное уравнение одной переменной.

Примеры выполнения заданий:

Пример №90

Решить уравнение Задачи линейное уравнение одной переменной.

Решение:

Задачи линейное уравнение одной переменной

Пример №91

Решить уравнение Задачи линейное уравнение одной переменной.

Решение:

Задачи линейное уравнение одной переменной Задачи линейное уравнение одной переменнойЗадачи линейное уравнение одной переменной

Ответ. Уравнение корней не имеет.

Пример №92

Решить уравнение Задачи линейное уравнение одной переменной

Решение:

Задачи линейное уравнение одной переменной Задачи линейное уравнение одной переменнойЗадачи линейное уравнение одной переменной

Ответ. Корнем уравнения является любое число.

Пример №93

Решить уравнение Задачи линейное уравнение одной переменной.

Решение:

Умножив обе части уравнения на 36 (36 — наименьшее общее кратное знаменателей дробей), получим:

Задачи линейное уравнение одной переменной Задачи линейное уравнение одной переменной Задачи линейное уравнение одной переменной Задачи линейное уравнение одной переменнойЗадачи линейное уравнение одной переменной

Итог. При решении уравнения нужно придерживаться следующей схемы:

  1. Если в уравнении есть выражения с дробными коэффициентами, то умножить обе его части на наименьший общий знаменатель дробей.
  2. Раскрыть скобки.
  3. Перенести все слагаемые, содержащие переменную, в одну часть уравнения (как правило, в левую), а слагаемые, не содержащие переменной, — в другую часть (в правую).
  4. Привести подобные слагаемые.
  5. Разделить обе части уравнения на коэффициент при переменной, если он не равен нулю. Если же он равен 0, то уравнение или не имеет корней, или его корнем является любое число.
Пример №94

Решить уравнение Задачи линейное уравнение одной переменной.

Решение:

Задачи линейное уравнение одной переменной

Если модуль числа равен 3, то этим числом является 3 или -3. Поэтому возможны два случая:

1) Задачи линейное уравнение одной переменной2) Задачи линейное уравнение одной переменной

Пример №95

Решить уравнение Задачи линейное уравнение одной переменной.

Решение:

Задачи линейное уравнение одной переменной

Решение задач с помощью уравнений

При решении задач с помощью уравнений в большинстве случаев придерживаются следующей схемы:

  1. выбирают неизвестное и обозначают его буквой Задачи линейное уравнение одной переменной (или какой-нибудь другой буквой);
  2. используя условие задачи, составляют уравнение;
  3. решают уравнение и отвечают на вопросы, поставленные в задаче.
Пример №96

В двух цистернах находится 66 т бензина, причем в первой бензина в 1,2 раза больше, чем во второй. Сколько бензина в каждой цистерне?

Задачи линейное уравнение одной переменной

Решение:

Пусть во второй цистерне Задачи линейное уравнение одной переменнойт бензина, тогда в первой — Задачи линейное уравнение одной переменнойт. В двух цистернах вместе находится Задачи линейное уравнение одной переменнойт бензина, что по условию равно 66 т. Получаем уравнение:

Задачи линейное уравнение одной переменной

Решим это уравнение: Задачи линейное уравнение одной переменной.

Таким образом, во второй цистерне 30 т бензина, а в первой — 1,2 • 30 = 36 (т).

Ответ. 36 т, 30 т.

Примечание. Чтобы решить задачу 1, можно рассуждать и так. Пусть во второй цистерне Задачи линейное уравнение одной переменнойт бензина, тогда в первой — Задачи линейное уравнение одной переменнойт. В первой цистерне бензина в 1,2 раза больше, чем во второй, поэтому Задачи линейное уравнение одной переменной. Остается решить это уравнение и записать ответ задачи.

Пример №97

Из. города А в город В выехал грузовой автомобиль. Через 30 мин навстречу ему из города В выехал легковой автомобиль, скорость которого на 25 км/ч больше скорости грузового. Автомобили встретились через 1,3 ч после выезда грузового автомобиля из города А. Найти расстояние между городами, если за все время движения грузовой автомобиль проехал на 10 км больше, чем легковой.

Решение:

Пусть скорость грузового автомобиля Задачи линейное уравнение одной переменной км/ч, тогда скорость легкового — Задачи линейное уравнение одной переменнойкм/ч.

До момента встречи грузовой автомобиль был в пути 1,3 ч, а легковой на 30 мин = 0,5 ч меньше: 1,3 ч — 0,5 ч = 0,8 ч. За 1,3 ч грузо&ой автомобиль проехал 1,3Задачи линейное уравнение одной переменной км, а легковой за 0,8 ч — 0,8 Задачи линейное уравнение одной переменнойкм. Поскольку грузовой автомобиль проехал на 10 км больше, чем легковой, то разность расстояний 1,3Задачи линейное уравнение одной переменной км и 0,8 Задачи линейное уравнение одной переменнойкм равна 10 км.

Скорость, км/чВремя, чПуть, км
Грузовой автомобильЗадачи линейное уравнение одной переменной1,31,3Задачи линейное уравнение одной переменной
Легковой автомобильЗадачи линейное уравнение одной переменной0,8Задачи линейное уравнение одной переменной

Получили уравнение: Задачи линейное уравнение одной переменной

Решим это уравнение:

Задачи линейное уравнение одной переменной

Итак, скорость грузового автомобиля равна 60 км/ч.

Расстояние между городами равно сумме расстояний, которые проехали оба автомобиля, то есть Задачи линейное уравнение одной переменнойкм. Поскольку Задачи линейное уравнение одной переменной = 60, то получим:

Задачи линейное уравнение одной переменной

Примечание. Опираясь на решение задач 1 и 2, проанализируем первые два шага приведенной выше схемы решения задач с помощью уравнений.

1) Выбор неизвестного, которое мы обозначали буквой, в решениях этих задач был разным. В задаче 1 мы обозначили через Задачи линейное уравнение одной переменной т одну из искомых величин (массу бензина во второй цистерне). В задаче 2 искомой величиной является расстояние между городами. Если эту величину обозначить через Задачи линейное уравнение одной переменной км, то при составлении уравнения рассуждения будут довольно сложными. Мы же через Задачи линейное уравнение одной переменной км/ч обозначили неизвестную скорость грузового автомобиля, выразили через Задачи линейное уравнение одной переменной расстояния, пройденные автомобилями, и составили уравнение, зная, что разность расстояний равна 10 км.

Таким образом, обозначать через Задачи линейное уравнение одной переменной(или какую-нибудь другую букву) желательно ту неизвестную величину, через которую легче выражаются величины, значения которых можно приравнять.

2) Чтобы составить уравнение, сначала выражаем через Задачи линейное уравнение одной переменнойте величины, значения которых будем приравнивать. После этого записываем уравнение.

Математическая модель:

Вам, наверное, уже приходилось видеть модели корабля, самолета, автомобиля, изготавливать модели куба, прямоугольного параллелепипеда. Каждая модель, в зависимости от ее предназначения, отображает некоторые свойства оригинала.

Математическая модель — это описание некоторого реального объекта или процесса на языке математики.

Опишем на языке математики задачу 2. Определяя скорость грузового автомобиля в этой задаче, мы обозначили ее через Задачи линейное уравнение одной переменнойкм/ч. Скорость легкового автомобиля на 25 км/ч больше, чем скорость грузового, что на языке математики записывают так: скорость легкового автомобиля равна Задачи линейное уравнение одной переменнойкм/ч.

На языке математики расстояние, пройденное грузовым автомобилем, записывают: 1,3 Задачи линейное уравнение одной переменнойкм, а расстояние, пройденное легковым автомобилем, — Задачи линейное уравнение одной переменнойкм.

По условию задачи грузовой автомобиль проехал на 10 км больше, чем легковой, что на языке математики можно выразить так: разность расстояний, пройденных грузовым и легковым автомобилями, равна 10 км, и записать: Задачи линейное уравнение одной переменной.

Полученное уравнение и является математической моделью задачи на движение автомобилей. Построив математическую модель, мы свели задачу на движение к математической задаче — решить уравнение.

Кроме уравнений, есть и другие виды математических моделей, с которыми ми познакомимся в процессе изучения алгебры.

Интересно знать. История науки знает немало примеров, когда в рамках удачно построенной математической модели с помощью вычислений, как говорят, «на кончике пера», удавалось предвидеть существование новых физических объектов и явлений. Так, опираясь на математические модели, астрономы Дж. Адамс (Англия) в 1845 году и У. Леверье (Франция) в 1846 году независимо друг от друга пришли к выводу о существовании неизвестной тогда еще планеты и указали ее расположение на небе. По расчетам Леверье астроном Г. Галле (Германия) нашел эту планету. Ее назвали Нептуном.

Интересно знать

На протяжении многих столетий алгебра была наукой об уравнениях и способах их решения. Линейные уравнения умели решать еще древние египтяне и вавилоняне (1 тысячелетие до н. э.).

О состоянии математики в Древнем Египте свидетельствуют математические тексты, написанные на особой бумаге — папирусе, изготовленном из стеблей растения, которое имеет такое же название. Написание некоторых папирусов относят к XVIII в. до н. э., хотя описанные в них математические факты были известны древним египтянам задолго до их изложения.

Один из таких папирусов был найден в 1872 году в одной из египетских пирамид. Его приобрел английский коллекционер древностей Райнд, и сейчас >тот папирус — папирус Райнда — хранится в Лондоне.

В папирусе Райнда особое место занимают задачи на «аха» («хау»).

Это задачи, которые решаются с помощью линейных уравнений с одним нечестным. «Аха» («хау») означает «совокупность», «куча» (неизвестная величина). Пример такой задачи: «Куча. ЕеЗадачи линейное уравнение одной переменной, ее Задачи линейное уравнение одной переменной, ее Задачи линейное уравнение одной переменнойи ее целое. Это 33». Если обозначить «кучу» — неизвестную величину — через Задачи линейное уравнение одной переменной, то получим уравнение: Задачи линейное уравнение одной переменной.

Более заметные успехи в создании начал алгебры были достигнуты в Древнем Вавилоне. До нашего времени сохранились вавилонские глиняные плитки с комбинациями клиновидных черточек — клинописью. Такие плитки имели в Вавилоне то же значение, что и папирусы в Египте. На плитках встречаются и и клинописные математические тексты, которые свидетельствуют, что уже более 4000 лет гому назад в Вавилоне могли решать уравнения, содержащие квадрат неизвестного.

Начиная с VII в. до н. э., древние греки после знакомства с достижениями египтян и вавилонян в сфере математики продолжили их науку. При этом достаточно мало греческих ученых при решении задач использовали уравнения. Одним из тех, кто использовал уравнения, был древнегреческий математик Диофант.

Задачи линейное уравнение одной переменной

О Диофанте известно мало, даже точно не установлены годы его жизни. Кое-что о жизни Диофанта и о том, сколько он прожил лет, можно узнать из надписи на его могильной плите.

Надпись на плитеЯзыком алгебры
Путник! Здесь погребен Диофант. И числа поведать могут, о чудо, сколь долог был век его жизни.Задачи линейное уравнение одной переменной
Часть шестую его представляло прекрасное детство.Задачи линейное уравнение одной переменной
Двенадцатая часть протекла его жизни — покрылся пухом тогда подбородок.Задачи линейное уравнение одной переменной
Седьмую в бездетном браке провел Диофант.Задачи линейное уравнение одной переменной
Прошло пятилетие; он был осчастливлен рождением прекрасного первенца-сына,5
коему рок дал половину лишь жизни прекрасной и светлой на земле по сравнению с отцом.Задачи линейное уравнение одной переменной
И в печали глубокой старец земного удела конец воспринял, переживши года четыре с тех пор, как сына лишился.4
Скажи, сколько лет жизни достигнув, смерть воспринял Диофант?Задачи линейное уравнение одной переменной

Греческую науку в Средневековье заимствовали ученые Востока — индийцы и арабы. Именно на Востоке в IX в. алгебра становится самостоятельной математической наукой.

Происхождение слова «алгебра» также связано с Востоком.

Город Багдад в VII-IX в. был столицей могущественного Арабского халифата. Багдадские халифы оказывали содействие развитию природоведения и математических наук. За годы правления халифа Гаруна аль-Рашида в Багдаде была оборудована большая библиотека, а халиф аль-Мамун организовал своеобразную академию — «Дом мудрости» и построил хорошо оборудованную обсерваторию.

При дворе аль-Мамуна жил и работал ученый Мухаммед бен Муса аль-Хорезми (около 780 — около 850). Он собрал и систематизировал способы решения уравнений и описал их в работе «Китаб аль-джебр аль-мукабала», что дословно означает «Книга о восстановлении и противопоставлении». В то время отрицательные числа считались «ненастоящими», и, когда в процессе решения уравнения в какой-то его части появлялось отрицательное число, его нужно было перенести в другую часть. Эту операцию называли восстановлением (аль-джебр), то есть переведением «ненастоящих» (отрицательных) чисел в «настоящие» (положительные). С помощью противопоставления (аль-мукабала) отбрасывали одинаковые слагаемые в обеих частях уравнения.

Задачи линейное уравнение одной переменной

В XII в. сочинение аль-Хорезми перевели на латинский язык, сохранив в его названии только слово «аль-джебр», которое вскоре стали произносить как алгебра.

Постепенно сформировалась современная алгебра, которая охватывает не только теорию решения уравнений, а и способы проведения операций (действий) с разнообразными объектами (в частности, с числами).

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Целые выражения
  • Одночлены
  • Многочлены
  • Формулы сокращенного умножения
  • Отношения и пропорции
  • Рациональные числа и действия над ними
  • Делимость натуральных чисел
  • Выражения и уравнения

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

🎦 Видео

Линейное уравнение с одной переменнойСкачать

Линейное уравнение с одной переменной

Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать

Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)

Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

Линейное уравнение с одной переменной. Практическая часть. 6 класс.

ЛИНЕЙНЫЕ УРАВНЕНИЯ с одной переменной. §2 алгебра 7 классСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ с одной переменной. §2 алгебра 7 класс

Линейные уравнения с одной переменной . Алгебра . 7 класс .Скачать

Линейные уравнения с одной переменной . Алгебра . 7 класс .

Линейное уравнение с одной переменной - как решать?Скачать

Линейное уравнение с одной переменной - как решать?

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Контрольная №1 7 класс. ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Контрольная №1 7 класс.  ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Линейное уравнение с одной переменной. Практическая часть. 6 класс.Скачать

Линейное уравнение с одной переменной. Практическая часть. 6 класс.

Урок 79 Решение текстовых задач с помощью линейных уравнений (7 класс)Скачать

Урок 79  Решение текстовых задач с помощью линейных уравнений (7 класс)

Линейное уравнение с одной переменной | Алгебра 7 класс #17 | ИнфоурокСкачать

Линейное уравнение с одной переменной | Алгебра 7 класс #17 | Инфоурок
Поделиться или сохранить к себе: