Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

Дифференциальные уравнения второго порядка

Определение: Дифференциальным уравнением второго порядка называется уравнение, которое связывает между собой независимую переменную х, искомую функцию у(х) и её первую и вторую производные у/ и у// .

В общем виде дифференциальное уравнение 2-го порядка можно представить в виде: F(x,y,y/,y//)=0 (1).

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

Если разрешить его относительно второй производной (2), то получим приведенный вид дифференциального уравнения 2-го порядка.

Решение данного уравнения находится двухкратным интегрированием с появлением двух произвольных констант С1 и С2.

Определение: Общим решением дифференциального уравнения 2-го порядка называется искомая функция у=у(х,С1,С2), которая при любых значениях произвольных констант С1, С2 обращает это уравнение в тождество.

В общем виде дифференциальное уравнение имеет бесконечное множество решений.

Определение Частным решением называется такое решение у=у(х,С10,С20), которое получается из общего решения при конкретных значениях произвольных констант С1=С10 и С2=С20.

Видео:Задача Коши для дифференциальных уравненийСкачать

Задача Коши для дифференциальных уравнений

Геометрический смысл, задача и Теорема коши решения дифференциальных уравнений второго порядка

Геометрически общее решение дифференциального уравнения второго порядка представляет собой двухпараметрическое семейство интегральных кривых у=у(х,С1,С2). Причем через каждую заданную точку М0(х0;у0) проходит целый пучёк интегральных кривых.

Частное решение дифференциального уравнения представляет собой единственную интегральную кривую у=у(х0,С10,С20) с заданными значениями произвольных констант С1=С10 и С2=С20.

Для того, чтобы найти частное решение в виде единственной интегральной кривой, проходящую через заданную точку М0 с координатами х=х0 и у=у0, необходимо задать значение производной, которая определяет угловой коэффициент касательной в заданной точке у/=y/0=kk=tgб0. Координаты х=х0; у=у0 и значение производной у/=y/0 в заданной точке М0 называются начальными условиями.

Нахождение частного решения, удовлетворяющего начальным условиям, сводится к нахождению конкретных значений произвольных констант С1=С10 и С2=С20 из системы уравнений

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

получаемой подстановкой начальных условий в общее решение.

Таким образом, частное решением получается из общего решения при конкретных значениях произвольных констант С1=С10 и С2=С20, для нахождения которых используют два начальных условия:

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

Первое начальное условие определяет точку М0(х0,у0), через которую пройдет интегральная кривая, а второе условие определяет угол наклона касательной y/0=kk=tgб0 к искомой интегральной кривой.

Задача отыскания частного решения, удовлетворяющего начальным условиям, называется задачей Коши.

При решении задачи Коши используют теорему Коши о существовании и единственности решения.

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

Теорема Коши: Если в правой части дифференциального уравнения функция и ее частные производные определены и непрерывны в некоторой области Д, то в любой ее точке существует и причем единственное частное решение у = у(х,С10,С20), удовлетворяющее начальным условиям:

Точки, в которых условие теоремы Коши нарушается, называются особыми точками.

Видео:Задача Коши для ЛНДУ II п. (e^x)Скачать

Задача Коши для ЛНДУ II п.  (e^x)

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

Презентация была опубликована 8 лет назад пользователемСтепан Федюнин

Похожие презентации

Видео:Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать

Задача Коши ➜ Частное решение линейного однородного дифференциального уравнения

Презентация на тему: » < задача Коши — геометрическая интерпретация дифференциального уравнения второго порядка — приемы интегрирования дифференциальных уравнений 2-го порядка." — Транскрипт:

2 Теорема Дифференциальное уравнение второго порядка может иметь вид F(x,y,y,y) = 0 или y = f(x,y,y). Общим решением уравнения является функция y = (x, C 1, C 2 ), существенно зависящая от двух произвольных постоянных и обращающая данное уравнение в тождество при любых значениях этих постоянных. Частное решение получается при закреплении постоянных С 1, С 2. Задача отыскания решения дифференциального уравнения удовлетворяющего заданным начальным условиям y(x 0 ) = y 0, y(x 0 ) = y 0 называется задачей Коши. Если функция f — правая часть дифференциального уравнения d 2 y/dx 2 = f(x,y,dy/dx) непрерывна в некоторой замкнутой трехмерной области D: oxyy и имеет в этой области ограниченные частные производную д f/ д y, д f/ д y, то каждой внутренней точке области D соответствует, и притом единственное, решение, удовлетворяющее заданным начальным условиям.

3 Геометрически это означает, что через каждую точку M 0 (x 0,y 0, y 0 )области D проходит одна и только одна интегральная кривая рассматриваемого уравнения. Данная теорема называется теоремой существования и единственности решения дифференциального уравнения P 0 (x 0,y 0 ) D x y o Y M 0 (x 0,y 0, y 0 )

4 @ Решить дифференциальное уравнение второго порядка, при заданных начальных условиях Решение M( 1,1 ) x y o f y = 0 f y = 1/x C 2 = tg = 1

5 Пусть дано дифференциальное уравнение второго порядка F(x,y,y,y)=0.. Этим уравнением для каждой точки M(x,y) определяется связь между координатами точки, через которую проходит интегральная кривая, производной функции dy/dx — угловым коэффициент касательной к интегральной кривой, и, через вторую производную, кривизной кривой k. y = (x) y = d /dx

6 Метод понижения порядка Тип I Тип II

7 Метод понижения порядка Тип III Тип IV

8 @ Решить дифференциальное уравнение Решение

9 Если точка A движется вдоль заданной кривой, а точка P преследует её, причем вектор направления движения точки P всегда направлен на точку A, и скорости движения точек постоянны, то траектория точки P называется кривой погони. Такая задача впервые была решена французским математиком Pierre Bouguer в 1732 году, впоследствии задачи такого класса исследовались английским математиком Boole. Определить траекторию преследования цели ракетой, если цель движется вдоль прямой, а скорости цели и ракеты равны между собой. P A

10 Уравнение кривой погони выводится при условии, что вектор касательной к траектории в точке P всегда параллелен линии, соединяющей A и P Пусть точка A движется вдоль оси y, тогда уравнение её движения: Уравнение движения точки P в параметрической форме : P A

11 Последнее уравнение может быть переписано в следующем виде

12 Последнее уравнение допускает понижение порядка

13 Начальные условия: в момент времени t = 0 точка P находится в точке плоскости M 0 и имеет скорость V = 1 После подстановки этих величин в общее решение получаем частное решение P A

Видео:Пример 65. Решить задачу Коши (диффуры)Скачать

Пример 65. Решить задачу Коши (диффуры)

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

Данко П. Е., Попов А. Г., Кожевникова Т. Я. Высшая математика в упражнениях и задачах…
Часть II. Глава IV. Обыкновенные дифференциальные уравнения

Видео:Нефёдов Н. Н. - Дифференциальные уравнения - Задача КошиСкачать

Нефёдов Н. Н. - Дифференциальные уравнения - Задача Коши

§ 1. Дифференциальные уравнения первого порядка

1. Основные понятия. Дифференциальным уравнением называется уравнение, связывающее независимые переменные, их функцию и производные (или дифференциалы) этой функции. Если независимая переменная одна, то уравнение называется обыкновенным; если же независимых переменных две или больше, то уравнение называется дифференциальным уравнением в частных производных.

Наивысший порядок производной, входящей в уравнение, называется порядком дифференциального уравнения. Например:

1) х²у’ + 5xy = у² – обыкновенное дифференциальное уравнение первого порядка;

2) Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация – обыкновенное дифференциальное уравнение второго порядка;

3) y’³ + y»y»’ = х – обыкновенное дифференциальное уравнение третьего порядка;

4) F (х, у, у’, у») = 0 – общий вид обыкновенного дифференциального уравнения второго порядка;

5) Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация – уравнение в частных производных первого порядка.

В этом параграфе рассматриваются обыкновенные дифференциальные уравнения первого порядка, т. е. уравнения вида F (х, у, у’) = 0 или (в разрешенном относительно у’ виде) y’ = f(х, у).

Решением дифференциального уравнения называется такая дифференцируемая функция у = φ (x), которая при подстановке в уравнение вместо неизвестной функции обращает его в тождество. Процесс нахождения решения дифференциального уравнения называется интегрированием дифференциального уравнения.

Общим решением дифференциального уравнения первого порядка у’ = f(x, у) в области D называется функция у = φ(x, C), обладающая следующими свойствами: 1) она является решением данного уравнения при любых значениях произвольной постоянной С, принадлежащих некоторому множеству; 2) для любого начального условия у(х0) = у0 такого, что (x0; y0) ∈ 0, существует единственное значение С = С0, при котором решение у = φ(x, C0) удовлетворяет заданному начальному условию.

Всякое решение у = φ(x, C0), получающееся из общего решения у = φ (x, C) при конкретном значении С = С0, называется частным решением.

Задача, в которой требуется найти частное решение уравнения y’ = f(х, у) удовлетворяющее начальному условию у(х0) = y0, называется задачей Коши.

Построенный на плоскости хОу график всякого решения у = φ(х) дифференциального уравнения называется интегральной кривой этого уравнения. Таким образом, общему решению у = φ(х, С) на плоскости хОу соответствует семейство интегральных кривых, зависящее от одного параметра – произвольной постоянной С, а частному решению, удовлетворяющему начальному условию y(x0) = y0, – кривая этого семейства, проходящая через заданную точку М0(x0; у0).

Если функция f(х, у) непрерывна и имеет непрерывную производную Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация в области D, то решение дифференциального уравнения у’= f (х, у) при начальном условии у(х0) = у0 существует и единственно, т. е. через точку (x0; y0) проходит единственная интегральная кривая данного уравнения (теорема Коши).

Особым решением называется такое решение, во всех точках которого условие единственности не выполняется, т. е. в любой окрестности каждой точки (х; у) особого решения существуют по крайней мере две интегральные кривые, проходящие через эту точку.

Особые решения не получаются из общего решения дифференциального управления ни при каких значениях произвольной постоянной С (в том числе и при С = ± ∞).

Особым решением является огибающая семейства интегральных кривых (если она существует), т. е. линия, которая в каждой своей точке касается по меньшей мере одной интегральной кривой.

Например, общее решение уравнения Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация записывается в виде у = sin (х + С). Это семейство интегральных кривых имеет две огибающие: у = 1 и у = -1, которые и будут особыми решениями.

2. Дифференциальные уравнения с разделяющимися переменными. Дифференциальное уравнение вида

относится к типу уравнений с разделяющимися переменными. Если ни одна из функций f1(x), f2(y), φ1(x), φ2(y) не равна тождественно нулю, то в результате деления исходного уравнения на f2 (x) φ1 (y) оно приводится к виду

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

Почленное интегрирование последнего уравнения приводит к соотношению

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

которое и определяет (в неявной форме) решение исходного уравнения. (Решение дифференциального уравнения, выраженное в неявной форме, называют интегралом этого уравнения.)

507. Решить уравнение х(у²-4)dx + y dy = 0.

△ Разделив обе части уравнения на у² – 4 ≠ 0, имеем

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

x² + ln|у² – 4| = ln|C|, или у² – 4 = Сe -λ²

Это общее решение данного дифференциального уравнения.

Пусть теперь у² – 4 = 0, т. е. у = ± 2. Непосредственной подстановкой убеждаемся, что у = ±2 – решение исходного уравнения. Но оно не будет особым решением, так как его можно получить из общего решения при С = 0. ▲

508. Найти частный интеграл уравнения у’ cos х = у / ln у, удовлетворяющий начальному условию y(0) = l.

△ Полагая Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация, перепишем данное уравнение в виде

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

Проинтегрируем обе части уравнения:

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация, или Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

Используя начальное условие у = 1 при х = 0, находим С = 0. Окончательно получаем

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация

509. Найти общий интеграл уравнения у’ = tg x tg y.

△ Полагая Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация и разделяя переменные, приходим к уравнению ctg у dy = tg х dx. Интегрируя, имеем

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация, или ln|sin у| = -ln|cos x| + ln С.

Отсюда находим sin y = C/cos x, или sin y / cos x = С (общий интеграл). ▲

510. Найти частное решение дифференциального уравнения (l + x²)dy + y dx = 0 при начальном условии у(1) = 1.

△ Преобразуем данное уравнение к виду Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация. Интегрируя, получим

Задача коши для дифференциального уравнения второго порядка геометрическая интерпретация, или ln |y| = – arctg x + С

Это и есть общий интеграл данного уравнения.

Теперь, используя начальное условие, найдем произвольную постоянную С; имеем ln 1 = — arctg 1 + С, т. е. С = π/4. Следовательно,

ln у = – arctg х + π/4,

откуда получаем искомое частное решение y = e π/4 – arctg x . ▲

Данко П. Е., Попов А. Г., Кожевникова Т. Я. Высшая математика в упражнениях и задачах… Ч. II. Стр. 117-119.

📽️ Видео

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 2Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 2

Линейное дифференциальное уравнение Коши-ЭйлераСкачать

Линейное дифференциальное уравнение Коши-Эйлера

Дифференциальные уравнения. Задача Коши. Метод Эйлера.Скачать

Дифференциальные уравнения. Задача Коши. Метод Эйлера.

Задача Коши ДУ I п. 1. Caushy`s ProblemСкачать

Задача Коши ДУ I п. 1.  Caushy`s Problem

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентамиСкачать

15. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Видеоурок "Дифференциальные уравнения. Задача Коши"Скачать

Видеоурок "Дифференциальные уравнения. Задача Коши"

Задача Коши для ЛНДУ II п. (cos x)Скачать

Задача Коши для ЛНДУ II п. (cos x)

2.1. Метод характеристик. Задача Коши для гиперболического уравнения на плоскости.Скачать

2.1. Метод характеристик. Задача Коши для гиперболического уравнения на плоскости.

ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

Решаем задачу Коши | УрЧП первого порядка | Дифференциальные уравнения | КАК РЕШАТЬ?Скачать

Решаем задачу Коши | УрЧП первого порядка | Дифференциальные уравнения | КАК РЕШАТЬ?

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 1Скачать

Лукьяненко Д. В. - Дифференциальные уравнения - Лекция 1

Линейное дифференциальное уравнение первого порядка (1-x^2)*y'-xy=1Скачать

Линейное дифференциальное уравнение первого порядка (1-x^2)*y'-xy=1
Поделиться или сохранить к себе: