Зачет 8 составление и решение уравнений

Задание (стр. 7 )
Зачет 8 составление и решение уравненийИз за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7

Зачет 8 составление и решение уравнений

13. Сравните: 558 и 1116.

Зачет № 7. Тема : ОДНОЧЛЕНЫ И МНОГОЧЛЕНЫ

1. Найдите значение выражения 1,5х3 – 2,4у при х = –1, у = 2.

Представьте в виде многочлена (2–4).

Упростите выражение (5–6).

7. Представьте в виде квадрата двучлена выражение 9 + 12х + 4х2.

8. Упростите выражение:

9. Докажите, что Зачет 8 составление и решение уравнений= 4.

10. Найдите значение выражения а2 + Зачет 8 составление и решение уравнений, если аЗачет 8 составление и решение уравнений= 2, Зачет 8 составление и решение уравнений= 3.

1. Найдите значение выражения 2х2 – 0,5у + 6 при х = 4, у = –2.

Представьте в виде многочлена (2–4).

Упростите выражение (5–6).

7. Представьте в виде квадрата двучлена выражение 4а2 – 20ах + 25х2.

8. Докажите, что если х – у – z = 0, то х (уz + 1) – y (xz + 1) – z (xy + 1) =
= –xyz.

9. Выполните возведение в квадрат: (3а2 + 1 – а)2.

10. Найдите значение выражения а2 + b2, если а – b = 6, ab = 10.

Зачет 8. Тема : СОСТАВЛЕНИЕ И РЕШЕНИЕ УРАВНЕНИЙ

1. Лодка проплыла расстояние между пристанями вниз по течению реки и вернулась обратно, затратив на весь путь 5 ч. Собственная скорость лодки равна 10 км/ч, а скорость течения реки – 2 км/ч. Сколько времени лодка плыла по течению реки?

Составьте уравнение по условию задачи, обозначив через х время, которое лодка плыла по течению реки.

2. По условию предыдущей задачи составьте уравнение, обозначив через х расстояние между пристанями.

Решите уравнение (3–4).

5. Площадь прямоугольника на 15 см2 меньше площади квадрата. Одна из сторон прямоугольника равна стороне квадрата, а другая на 3 см меньше ее. Найдите сторону квадрата.

Решите уравнение (6–7).

8. Фабрика предполагала выпустить партию изделий за 36 дней. Однако она выпускала ежедневно на 4 изделия больше, поэтому за 8 дней до срока ей осталось выпустить 48 изделий. Сколько изделий в день предполагалось выпускать первоначально?

1. Из двух пунктов, расстояние между которыми равно 245 км, одновременно навстречу друг другу выехали автобус и автомобиль. Они встретились через 2 Зачет 8 составление и решение уравненийч. С какой скоростью ехал каждый из них, если известно, что скорость автомобиля на 15 км/ч больше скорости автобуса?

Составьте уравнение по условию задачи, обозначив через х скорость автобуса (в км/ч).

2. По условию предыдущей задачи составьте уравнение, обозначив через х скорость автомобиля (в км/ч).

Решите уравнение (3–4).

5. Площадь прямоугольника равна площади квадрата. Одна из сторон прямоугольника на 4 см больше стороны квадрата, а другая – на 3 см меньше ее. Найдите сторону квадрата.

Решите уравнение (6–7).

8. Фабрика должна выпустить партию изделий за 10 дней. Но оказалось, что надо выпустить на 70 изделий больше. Поэтому ежедневно выпускали на 3 изделия больше, чем предполагалось, и работа продолжалась на 2 дня дольше. Сколько изделий в день предполагалось выпускать первоначально?

Зачет 9. Тема : Разложение многочленов на множители

Видео:Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)Скачать

Алгебра 8. Урок 12 - Задачи на составление дробно-рациональных уравнений (Часть 1)

Решение задач с помощью квадратных уравнений

Алгоритм решения текстовых задач с помощью квадратных уравнений

Шаг 1. Проанализировать условие задачи, обозначить одно из неизвестных буквой (переменной). Если это удобно, обозначить все неизвестные разными буквами и выбрать «основную» переменную.

Шаг 2. Выразить другие неизвестные через основную переменную.

Шаг 3. Записать уравнение.

Шаг 4. Решить полученное уравнение.

Шаг 5. Истолковать результат в соответствии с условием задачи.

Найдите периметр прямоугольника, длина которого на 5 см больше ширины, а площадь равна 165 см2.

Шаг 1. Пусть x – ширина прямоугольника (в см).

Шаг 2. Тогда его длина (x+5), и площадь: S = x(x+5)

Шаг 3. По условию получаем уравнение: x(x+5) = 165

$$ x^2+5x-165 = 0 Rightarrow (x+16)(x-11) = 0 Rightarrow left[ begin x_1 = -16 \ x_2 = 11 end right. $$

Шаг 5. Для ширины прямоугольника выбираем положительный корень x = 11.

Тогда длина x+5 = 16. Периметр: P = 2(11+16) = 54 (см).

Примеры

Пример 1. Найдите два числа, если их сумма равна 36, а произведение 315.

Пусть $x_1$ и $x_2$ — искомые числа.

Известно, что $x_1+x_2 = 36, x_1 x_2 = 315$.

По теореме Виета данные два числа являются корнями уравнения

$$ x^2+bx+c = 0, b = -(x_1+x_2 ) = -36, c = x_1 x_2 = 315$$

$$ D = 36^2-4 cdot 315 = 1296-1260 = 36 = 6^2 $$

$$ x = frac = left[ begin x_1 = 15 \ x_2 = 21 end right. $$

Пример 2. Найдите два числа, если их разность равна 9, а произведение 162.

Пусть x и y — искомые числа. Пусть $x gt y$.

По условию $x-y = 9 Rightarrow y = x-9. $

Произведение xy = x(x-9) = 162

$$ D = 9^2-4 cdot (-162) = 81+648 = 729 = 27^2 $$

$$ x = frac = left[ begin x_1 = -9 \ x_2 = 18 end right. $$

Получаем две пары чисел: $ left[ begin <left< begin x_1 = -9 \ y_1=-9-9=-18 end right.> \ <left< begin x_2 = 18 \ y_2 = 18-9=9 end right.> end right. $

Ответ: -9 и-18; или 18 и 9

Пример 3. Задача из «Арифметики» Магницкого (1703 год)

Найдите число, зная, что прибавив к его квадрату 108, получим число в 24 раза больше данного.

Пусть x — искомое число.

По условию $x^2+108 = 24x$

$$ x^2-24x+108 = 0 Rightarrow (x-6)(x-18) = 0 Rightarrow left[ begin x_1 = 6 \ x_2 = 18 end right. $$

Пример 4. Найдите три последовательных целых числа, сумма квадратов которых равна 590.

Пусть n-1,n,n+1 — данные три числа.

$$ 3n^2 = 588 Rightarrow n^2 = 196 Rightarrow n = pm sqrt = pm 13 $$

Получаем две последовательности: -14,-13,-12 или 12,13,14

Ответ: -14,-13,-12 или 12,13,14

Пример 5. Из пункта А в пункт В, расстояние между которыми 700 км, выехал автобус. Из-за непогоды водитель уменьшил обычную скорость на 10 км/ч, и автобус ехал на 1 час 40 минут дольше. Сколько часов автобус обычно тратит на дорогу?

Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Урок алгебры для 8-го класса по теме «Решение задач с помощью квадратных уравнений»

Разделы: Математика

Тема урока: Решение задач с помощью квадратных уравнений.

Цели урока:

  • Закрепить навыки решения текстовых задач с помощью квадратных уравнений;
  • Развивать у учащихся внимание при чтении условия задачи и выборе способа решения уравнения;
  • Воспитание ответственности и коллективизма у учащихся.

Оборудование: мультимедийный проектор, экран, графопроектор, шесть конвертов с шестью карточками, на каждой из которых написана задача.

Структура урока:

  • Организационный момент: замена тетрадей, учащиеся рассаживаются по группам: 6 групп по 5-6 человек в каждой, группы составлены разноуровневые– 3 мин.
  • Мотивация учебной деятельности через осознание учащимися практической значимости применяемых знаний и умений, сообщение темы, цели и задач урока -2 мин
  • Актуализация изученного материала:
    • Вопросы:
      • Какое уравнение называется квадратным?
      • Что показывает дискриминант?
      • Формулы корней квадратного уравнения?
    • Задания для устного решения Презентация 1 – 7 мин:
      • Решить уравнения;
      • Найти натуральный корень уравнения.
  • Решение задач (работа в группах):

Каждой группе предлагается конверт с 6 задачами. Набор задач у каждой группы одинаков. Каждый ученик выбирает себе задачу и решает ее. В первую очередь выбирать задачи № 1-5. Возможно советоваться с ребятами из своей группы. Учитель контролирует процесс и, в случае необходимости, оказывает помощь – 7 мин.
От каждой группы выходят по 1 человеку (те, кто раньше решил свою задачу) и оформляют свои решения на доске (3 чел.), на пленках для графопроектора (2 чел). Учитель контролирует, чтобы задачи были различны (задачи 1-5).
Весь класс сверяет свои решения с теми, которые представлены на доске. Те задачи, которых у учеников нет в тетрадях, они записывают. Для удобства текст проверяемой на доске задачи представлен в виде слайдов Презентации 2.
В ходе проверки задач, записанных на доске, остальные ребята, решавшие эти же задачи, вносят свои коррективы, если необходимо. Задачу 6 проверяет учитель в тетрадях, если есть время, то – разбор на доске. (15 мин.)

  • Подведение итогов урока, обобщение и систематизация результатов выполненных заданий. (4 мин.)
  • Постановка домашнего задания: № 656, 651, составить свою задачу, аналогичную одной из решенных в классе, и решить ее. (2 мин)

Задачи (в порядке разбора их у доски):

1. Несколько подруг решили обменяться фотографиями на память. Чтобы каждая девочка получила по одной фотографии каждой своей подруги, потребовалось 30 фотографий. Сколько было подруг?

Пусть было х подруг, тогда каждая должна получить по (х – 1) фотографии. Всего фотографий было х(х – 1), что по условию задачи равно 30. Составим и решим уравнение:

х(х – 1) = 30
х 2 – х – 30 = 0,
D = 1 + 120 = 121,
х = Зачет 8 составление и решение уравнений,
х1 = – 5 – не удовлетворяет смыслу задачи,
х2 = 6.

По смыслу ясно, что х – натуральное число, и существует только два последовательных натуральных числа, произведение которых равно 30. Итак, х = 6. 6 подруг обменивались фотографиями.

2. Несколько приятелей решили сыграть турнир по шахматам. Кто-то из них подсчитал, что если каждый сыграет с каждым по одной партии, то всего будет сыграно 36 партий. Сколько было приятелей?

Решение:
Пусть х приятелей участвует в турнире, тогда каждый из них сыграет (х – 1) партию, но в этом случае партия каждой пары учтена дважды, значит всего было сыграно Зачет 8 составление и решение уравненийх(х – 1) партий, что по условию задачи равно 36. Составим и решим уравнение:
Зачет 8 составление и решение уравненийх(х – 1) = 36,
х(х – 1) = 72,
х 2 – х – 72 = 0,
D = 1 + 288 = 289,
х = Зачет 8 составление и решение уравнений,
х1 = 9,
х2 = – 8 – не удовлетворяет смыслу задачи.

Рассуждения, аналогичные задаче 1.

9 приятелей участвовало в турнире.

Ответ: 9 приятелей.

3. Задача Диофанта (III в.)

Найти два числа. Зная, что их сумма равна 20, а произведение – 96.

Пусть х – одно из чисел, тогда второе число – (20 – х). Значит х(20 – х) – произведение этих чисел, что по условию задачи равно 96. Составим и решим уравнение:

х(20 – х) = 96,
20хх 2 – 96 = 0,
х 2 – 20х + 96 = 0,
Зачет 8 составление и решение уравнений= 100 – 96 = 4,
х = 10 + 2,
х1 = 12,
х2 = 8.
12 – первое число, тогда 20 – 12 = 8 – второе число;
8 – первое число, тогда 20 – 8 = 12 второе число.

4. Решение Диофанта (показывает учитель):

Пусть числа 10 + х и 10 – х (сумма их равна 20), тогда (10 + х)(10 – х) – их произведение, что равно 96. Имеем:

(10 + х)(10 – х) = 96,
100 – х 2 = 96,
х 2 = 4.
х = + 2.
В обоих случаях искомые числа 12 и 8.

5. Задача Бхаскары, Индия, XII в.

Цветок лотоса возвышается над тихим озером на полфута. Когда порыв ветра отклонил цветок от прежнего места на 2 фута, цветок скрылся под водой. Определите глубину озера.

Зачет 8 составление и решение уравнений

Пусть глубина озера х ф., тогда длина стебля (х + Зачет 8 составление и решение уравнений) ф. Учитывая, что цветок рос вертикально, составим и решим уравнение:
х 2 + 22 = (х + Зачет 8 составление и решение уравнений) 2
х 2 + 4 = х 2 + х + Зачет 8 составление и решение уравнений
х = 3Зачет 8 составление и решение уравнений
3 Зачет 8 составление и решение уравненийфута – глубина озера.
Ответ: 3 Зачет 8 составление и решение уравненийф.

6. В море встретились два корабля. Один из них шел в восточном направлении, другой – в северном. Скорость первого на 10 узлов больше, чем второго. Через 2 часа расстояние между ними оказалось равным 100 милям. Найдите скорость каждого корабля.

Зачет 8 составление и решение уравнений

Пусть х узлов – скорость второго корабля, тогда (х – 10) узлов – скорость первого корабля, за 2 часа они пройдут 2х и 2(х – 10) миль соответственно, т.к. они идут в перпендикулярных направлениях, то, используя теорему Пифагора, составим и решим уравнение:

(2х) 2 + (2(х + 10)) 2 = 100 2
4х 2 + 4(х 2 + 20х + 100) = 10000
2х 2 + 20х + 100 = 2500
х 2 + 10х + 50 – 1250 = 0
х 2 + 10х – 1200 = 0
Зачет 8 составление и решение уравнений= 25 + 1200 = 1225
х = – 5 + 35
х1 = – 40 – не удовлетворяет смыслу задачи,
х2 = 30
30 узлов – скорость корабля, идущего на север, тогда 30 + 10 = 40 (узлов) – скорость корабля, идущего на восток.

Ответ: 30 узлов и 40 узлов.

7. Два равных прямоугольника сложили так, что они образуют букву Т и их общей частью является меньшая сторона одного из прямоугольников. Периметр образовавшейся фигуры равен 42 м, а площадь каждого прямоугольника равна 27 м 2 . Найти стороны прямоугольников.

Зачет 8 составление и решение уравнений

P = 3b + 3a + (ba) = 4b + 2a, a = Зачет 8 составление и решение уравнений– 2b, S = ab
Пусть b см длина прямоугольника, тогда ширина прямоугольника ( Зачет 8 составление и решение уравнений– 2b) м, т.к. P = 42 м, то длина – (21 – 2b)м. Площадь прямоугольника b(21 – 2b), что по условию равно 27 м 2 . Составим и решим уравнение.
b(21 – 2b) = 27
21b – 2b 2 – 27 = 0
2b 2 – 21b + 27 = 0
D = 441 – 4 * 2 * 27 = 441 – 216 = 225
b = Зачет 8 составление и решение уравнений
b1 = 9
b2 = 1Зачет 8 составление и решение уравнений
Если 9 м – длина, тогда 21 – 2 * 9 = 3(м) – ширина.
Если 1Зачет 8 составление и решение уравненийм – длина, тогда 21 – 2 * 1 Зачет 8 составление и решение уравнений= 18(м) – ширина, что не удовлетворяет смыслу задачи.

🎦 Видео

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Алгебра 8 класс (Урок№29 - Решение задач с помощью квадратных уравнений.)Скачать

Алгебра 8 класс (Урок№29 - Решение задач с помощью квадратных уравнений.)

Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью квадратных уравнений. Алгебра, 8 класс

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

8 класс. Составление уравнений химических реакций.Скачать

8 класс. Составление уравнений химических реакций.

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать

Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Расчеты по уравнениям химических реакций. 1 часть. 8 класс.Скачать

Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

Решение квадратных уравнений. Метод разложения на множители. 8 класс.

Решение задач с помощью рациональных уравнений. Алгебра, 8 классСкачать

Решение задач с помощью рациональных уравнений. Алгебра, 8 класс

8 класс, 28 урок, Рациональные уравнения как математические модели реальных ситуацийСкачать

8 класс, 28 урок, Рациональные уравнения как математические модели реальных ситуаций
Поделиться или сохранить к себе: