Понятие квадратного уравнения:
Уравнение — это равенство, содержащее переменную, значение которой нужно найти.
Например, х + 8 = 12 — это уравнение, содержащее переменную х.
Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.
Например, если х = 5, то при подстановке в уравнение мы получим:
13 = 12 — противоречие.
Значит, х = 5 не является корнем уравнения.
Если же х = 4, то при подстановке в уравнение мы получим:
12 = 12 — верное равенство.
Значит, х = 4 является корнем уравнения.
Решить уравнение — значит найти все его корни или доказать, что их не существует.
Квадратное уравнение — это уравнение вида ax^2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Если все коэффициенты в уравнении отличны от нуля, то уравнение называется полным.
Такое уравнение можно решить с помощью формулы дискриминанта.
Видео:КВАДРАТНОЕ УРАВНЕНИЕ дискриминантСкачать
Понятие дискриминанта
Дискриминант квадратного уравнения — это выражение, равное b^2 − 4ac. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.
Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.
Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Как решать квадратные уравнения через дискриминант
Алгоритм решения квадратного уравнения ax^2 + bx + c = 0:
Определим, чему равны коэффициенты a, b, c.
Вычислим значение дискриминанта по формуле D = b^2 − 4ac.
Если дискриминант D 0, то у уравнения две корня, равные
Чтобы запомнить алгоритм решения полных квадратных уравнений и с легкостью его использовать, сохраните себе шпаргалку:
Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать
Примеры решения квадратных уравнений с помощью дискриминанта
Пример 1. Решить уравнение: 3x^2 — 4x + 2 = 0.
- Определим коэффициенты: a = 3, b = -4, c = 2.
- Найдем дискриминант: D = b^2 — 4ac = (-4) 2 — 4 * 3 * 2 = 16 — 24 = -8.
Ответ: D 2 — 6x + 9 = 0.
- Определим коэффициенты: a = 1, b = -6, c = 9.
- Найдем дискриминант: D = b^2 — 4ac = (-6) 2 — 4 * 1 * 9 = 36 — 36 = 0.
D = 0, значит уравнение имеет один корень:
Ответ: корень уравнения 3.
Пример 3. Решить уравнение: x^2 — 4x — 5 = 0.
- Определим коэффициенты: a = 1, b = -4, c = -5.
- Найдем дискриминант: D = 2^b — 4ac = (-4) 2 — 4 * 1 * (-5) = 16 + 20 = 36.
D > 0, значит уравнение имеет два корня:
Ответ: два корня x1 = 5, x2 = -1.
Видео:Квадратное уравнение, дискриминант, формула корнейСкачать
Дискриминант квадратного уравнения
Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.
Вид уравнения | Формула корней | Формула дискриминанта |
---|---|---|
ax 2 + bx + c = 0 | b 2 — 4ac | |
ax 2 + 2kx + c = 0 | k 2 — ac | |
x 2 + px + q = 0 | ||
p 2 — 4q |
Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:
Вид уравнения | Формула |
---|---|
ax 2 + bx + c = 0 | , где D = b 2 — 4ac |
ax 2 + 2kx + c = 0 | , где D = k 2 — ac |
x 2 + px + q = 0 | , где D = |
, где D = p 2 — 4q |
Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:
- Если дискриминант больше нуля, то уравнение имеет два корня.
- Если дискриминант равен нулю, то уравнение имеет один корень.
- Если дискриминант меньше нуля, то уравнение не имеет корней.
Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:
так как она относится к формуле:
,
которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.
Видео:Как решить квадратное уравнение за 30 секунд#математика #алгебра #уравнение #дискриминант #репетиторСкачать
Решение квадратных уравнений через дискриминант
Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.
Пример 1. Решить уравнение:
Определим, чему равны коэффициенты:
D = b^2 — 4ac = (-4) 2 — 4 · 3 · 2 = 16 — 24 = -8,
Определим, чему равны коэффициенты:
D = b^2 — 4ac = (-6) 2 — 4 · 1 · 9 = 36 — 36 = 0,
Уравнение имеет всего один корень:
Определим, чему равны коэффициенты:
D = b^2 — 4ac = (-4) 2 — 4 · 1 · (-5) = 16 + 20 = 36,
📸 Видео
Решение квадратных уравнений. Дискриминант. Практическая часть. 1ч. 8 класс.Скачать
Как решать квадратные уравнения через дискриминант. Простое объяснениеСкачать
5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать
МАТЕМАТИКА 8 класс - Полные Квадратные Уравнения. Как решать Полные Квадратные Уравнения?Скачать
8 класс, 25 урок, Формула корней квадратного уравненияСкачать
Как решать квадратные уравнения без дискриминантаСкачать
Квадратное уравнение. Как решить? | Математика ОГЭ 2023 | УмскулСкачать
Формула корней квадратного уравнения. Алгебра, 8 классСкачать
8 класс. Нахождение корней дискриминанта.Скачать
Квадратные уравнения #shorts Как решать квадратные уравненияСкачать
МАТЕМАТИКА 8 класс - Квадратные Уравнения. Как решать Квадратные Уравнения? Формула КорнейСкачать
Как решать квадратные уравнения. 8 класс. Вебинар | МатематикаСкачать
Алгебра 8. Урок 9 - Квадратные уравнения. Полные и неполныеСкачать
Теорема Виета за 30 сек🦾Скачать
Как решать квадратные уравнения через дискриминант | МатематикаСкачать