Явное уравнение линии на плоскости

Уравнение прямой, виды уравнения прямой на плоскости

В прошлом материале мы рассмотрели основные моменты, касающиеся темы прямой на плоскости. Теперь же перейдем к изучению уравнения прямой: рассмотрим, какое уравнение может называться уравнением прямой, а также то, какой вид имеет уравнение прямой на плоскости.

Видео:9 класс, 5 урок, Уравнение линии на плоскостиСкачать

9 класс, 5 урок, Уравнение линии на плоскости

Определение уравнения прямой на плоскости

Допустим, что есть прямая линия, которая задана в прямоугольной декартовой системе координат O х у .

Прямая линия – это геометрическая фигура, которая состоит из точек. Каждая точка имеет свои координаты по осям абсцисс и ординат. Уравнение, которое описывает зависимость координат каждой точки прямой в декартовой системе O x y , называется уравнением прямой на плоскости.

Фактически, уравнение прямой на плоскости – это уравнение с двумя переменными, которые обозначаются как x и y . Уравнение обращается в тождество при подстановке в него значений любой из точек прямой линии.

Давайте посмотрим, какой вид будет иметь уравнение прямой на плоскости. Этому будет посвящен весь следующий раздел нашей статьи. Отметим, что существует несколько вариантов записи уравнения прямой. Объясняется это наличием нескольких способов задания прямой линии на плоскости, и также различной спецификой задач.

Видео:Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)Скачать

Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)

Общее уравнение прямой линии

Познакомимся с теоремой, которая задает вид уравнения прямой линии на плоскости в декартовой системе координат O x y .

Уравнение вида A x + B y + C = 0 , где x и y – переменные, а А , В и C – это некоторые действительные числа, из которых A и B не равны нулю, задает прямую линию в декартовой системе координат O x y . В свою очередь, любая прямая линия на плоскости может быть задана уравнением вида A x + B y + C = 0 .

Таким образом, общее уравнение прямой на плоскости имеет вид A x + B y + C = 0 .

Поясним некоторые важные аспекты темы.

Посмотрите на рисунок.

Явное уравнение линии на плоскости

Линия на чертеже определяется уравнением вида 2 x + 3 y — 2 = 0 , так как координаты любой точки, составляющей эту прямую, удовлетворяют приведенному уравнению. В то же время, определенное количество точек плоскости, определяемых уравнением 2 x + 3 y — 2 = 0 , дают нам прямую линию, которую мы видим на рисунке.

Общее уравнение прямой может быть полным и неполным. В полном уравнении все числа А , В и C отличны от нуля. Во всех остальных случаях уравнение считается неполным. Уравнение вида A x + B y = 0 определяет прямую линию, которая проходит через начало координат. Если A равно нулю, то уравнение A x + B y + C = 0 задает прямую, расположенную параллельно оси абсцисс O x . Если B равно нулю, то линия параллельна оси ординат O y .

Вывод: при некотором наборе значений чисел А , В и C с помощью общего уравнения прямой можно записать любую прямую линию на плоскости в прямоугольной системе координат O х у .

Прямая, заданная уравнением вида A x + B y + C = 0 , имеет нормальный вектор прямой с координатами A , B .

Все приведенные уравнения прямых, которые мы рассмотрим ниже, могут быть получены из общего уравнения прямой. Также возможен и обратный процесс, когда любое из рассматриваемых уравнений может быть приведено к общему уравнению прямой.

Разобраться во всех нюансах темы можно в статье «Общее уравнение прямой». В материале мы приводим доказательство теоремы с графическими иллюстрациями и подробным разбором примеров. Особое внимание в статье уделяется переходам от общего уравнения прямой к уравнениям других видов и обратно.

Видео:Лекция 23. Виды уравнений прямой на плоскости.Скачать

Лекция 23. Виды уравнений прямой на плоскости.

Уравнение прямой в отрезках

Уравнение прямой в отрезках имеет вид x a + y b = 1 , где a и b – это некоторые действительные числа, которые не равны нулю. Абсолютные величины чисел a и b равны длине отрезков, которые отсекаются прямой линией на осях координат. Длина отрезков отсчитывается от начала координат.

Благодаря уравнению можно легко построить прямую линию на чертеже. Для этого необходимо отметить в прямоугольной системе координат точки a , 0 и 0 , b , а затем соединить их прямой линией.

Построим прямую, которая задана формулой x 3 + y — 5 2 = 1 . Отмечаем на графике две точки 3 , 0 , 0 , — 5 2 , соединяем их между собой.

Явное уравнение линии на плоскости

Дополнительно рекомендуем ознакомиться с материалом, изложенным в статье «Уравнение прямой в отрезках».

Видео:УРАВНЕНИЕ ПРЯМОЙ на плоскости 8 и 9 классСкачать

УРАВНЕНИЕ ПРЯМОЙ на плоскости 8 и 9 класс

Уравнение прямой с угловым коэффициентом

Эти уравнения, имеющие вид y = k · x + b должны быть нам хорошо известны из курса алгебры. Здесь x и y – это переменные, k и b – это некоторые действительные числа, из которых k представляет собой угловой коэффициент. В этих уравнениях переменная у является функцией аргумента x .

Дадим определение углового коэффициента через определение угла наклона прямой к положительному направлению оси O x .

Для обозначения угла наклона прямой к положительному направлению оси O x в декартовой системе координат введем величину угла α . Угол отсчитывается от положительного направления оси абсцисс до прямой линии против хода часовой стрелки. Угол α считается равным нулю в том случае, если линия параллельна оси O x или совпадает с ней.

Угловой коэффициент прямой – это тангенс угла наклона этой прямой. Записывается это следующим образом k = t g α . Для прямой, которая располагается параллельно оси O y или совпадает с ней, записать уравнение прямой с угловым коэффициентом не представляется возможным, так как угловой коэффициент в этом случае превращается в бесконечность (не существует).

Прямая, которая задана уравнением y = k · x + b , проходит через точку 0 , b на оси ординат. Это значит, что уравнение прямой с угловым коэффициентом y = k · x + b , задает на плоскости прямую линию, которая проходит через точку 0 , b и образует угол α с положительным направлением оси O x , причем k = t g α .

Изобразим прямую линию, которая определяется уравнением вида y = 3 · x — 1 .

Эта линия должна пройти через точку ( 0 , — 1 ) . Угол наклона α = a r c t g 3 = π 3 равен 60 градусов к положительному направлению оси O x . Угловой коэффициент равен 3

Явное уравнение линии на плоскости

Обращаем ваше внимание, что с помощью уравнения прямой с угловым коэффициентом очень удобно искать уравнение касательной к графику функции в точке.

Больше материала по теме можно найти в статье «Уравнение прямой с угловым коэффициентом». Помимо теории там размещено большое количество графических примеров и подробный разбор задач.

Видео:Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Каноническое уравнение прямой на плоскости

Данный вид уравнения имеет вид x — x 1 a x = y — y 1 a y , где x 1 , y 1 , a x , a y — это некоторые действительные числа, из которых a x и a y не равны нулю.

Прямая линия, заданная каноническим уравнением прямой, проходит через точку M 1 ( x 1 , y 1 ) . Числа a x и a y в знаменателях дробей представляют собой координаты направляющего вектора прямой линии. Это значит, что каноническое уравнение прямой линии x — x 1 a x = y — y 1 a y в декартовой системе координат O x y соответствует линии, проходящей через точку M 1 ( x 1 , y 1 ) и имеющей направляющий вектор a → = ( a x , a y ) .

Изобразим в системе координат O x y прямую линию, которая задается уравнением x — 2 3 = y — 3 1 . Точка M 1 ( 2 , 3 ) принадлежит прямой, вектор a → ( 3 , 1 ) является направляющим вектором этой прямой линии.

Явное уравнение линии на плоскости

Каноническое уравнение прямой линии вида x — x 1 a x = y — y 1 a y может быть использовано в случаях, когда a x или a y равно нулю. Наличие ноля в знаменателе делает запись x — x 1 a x = y — y 1 a y условной. Уравнение можно записать следующим образом a y ( x — x 1 ) = a x ( y — y 1 ) .

В том случае, когда a x = 0 , каноническое уравнение прямой принимает вид x — x 1 0 = y — y 1 a y и задает прямую линию, которая расположена параллельно оси ординат или совпадает с этой осью.

Каноническое уравнение прямой при условии, что a y = 0 , принимает вид x — x 1 a x = y — y 1 0 . Такое уравнение задает прямую линию, расположенную параллельно оси абсцисс или совпадающую с ней.

Больше материала на тему канонического уравнения прямой смотрите здесь. В статье мы приводим целый ряд решений задач, а также многочисленные примеры, которые позволяют лучше овладеть темой.

Видео:Уравнение линии на плоскости | Геометрия 7-9 класс #89 | ИнфоурокСкачать

Уравнение линии на плоскости | Геометрия 7-9 класс #89 | Инфоурок

Параметрические уравнения прямой на плоскости

Данные уравнения имеют вид x = x 1 + a x · λ y = y 1 + a y · λ , где x 1 , y 1 , a x , a y — это некоторые действительные числа, из которых a x и a y не могут быть одновременно равны нулю. В формулу вводится дополнительный параметр λ , который может принимать любые действительные значения.

Назначение параметрического уравнения в том, чтобы установить неявную зависимости между координатами точек прямой линии. Для этого и вводится параметр λ .

Числа x , y представляют собой координаты некоторой точки прямой. Они вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра λ .

Предположим, что λ = 0 .

Тогда x = x 1 + a x · 0 y = y 1 + a y · 0 ⇔ x = x 1 y = y 1 , т. е. точка с координатами ( x 1 , y 1 ) принадлежит прямой.

Обращаем ваше внимание на то, что коэффициенты a x и a y при параметре λ в данном виде уравнений представляют собой координаты направляющего вектора прямой линии.

Рассмотрим параметрические уравнения прямой линии вида x = 2 + 3 · λ y = 3 + λ . Прямая, заданная уравнениями, в декартовой системе координат проходит через точку ( x 1 , y 1 ) и имеет направляющий вектор a → = ( 3 , 1 ) .

Больше информации ищите в статье «Параметрические уравнения прямой на плоскости».

Видео:Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 1. Уравнение с угловым коэффициентом.

Нормальное уравнение прямой

Нормальное уравнение прямой имеет вид , A x + B y + C = 0 , где числа А , В , и C таковы, что длина вектора n → = ( A , B ) равна единице, а C ≤ 0 .

Нормальным вектором линии, заданной нормальным уравнением прямой в прямоугольной системе координат O х у , является вектор n → = ( A , B ) . Эта прямая проходит на расстоянии C от начала координат в направлении вектора n → = ( A , B ) .

Еще одним вариантом записи нормального уравнения прямой линии является cos α · x + cos β · y — p = 0 , где cos α и cos β — это два действительных числа, которые представляют собой направляющие косинусы нормального вектора прямой единичной длины. Это значит, что n → = ( cos α , cos β ) , справедливо равенство n → = cos 2 α + cos 2 β = 1 , величина p ≥ 0 и равна расстоянию от начала координат до прямой.

Рассмотрим общее уравнение прямой — 1 2 · x + 3 2 · y — 3 = 0 . Это общее уравнение прямой является нормальным уравнением прямой, так как n → = A 2 + B 2 = — 1 2 2 + 3 2 = 1 и C = — 3 ≤ 0 .

Уравнение задает в декартовой системе координат 0ху прямую линию, нормальный вектор которой имеет координаты — 1 2 , 3 2 . Линия удалена от начала координат на 3 единицы в направлении нормального вектора n → = — 1 2 , 3 2 .

Явное уравнение линии на плоскости

Обращаем ваше внимание на то, что нормальное уравнение прямой на плоскости позволяет находить расстояние от точки до прямой на плоскости.

Если в общем уравнении прямой A x + B y + C = 0 числа А , В и С таковы, что уравнение A x + B y + C = 0 не является нормальным уравнением прямой, то его можно привести к нормальному виду. Подробнее об этом читайте в статье «Нормальное уравнение прямой».

Видео:Уравнение прямой на плоскостиСкачать

Уравнение прямой на плоскости

Уравнение линии — определение с примерами решения

Содержание:

Множества:

Под множеством X = понимается собрание (совокупность) некоторых элементов х, х х’ . . Если х есть элемент множества X, то пишут х € X (читается: х принадлежит X); если у не является элементом множества X, то пишут у t X (читается: у не принадлежит множеству X).

Пример:

X — множество всех студентов в данной аудитории.

Пример:

Х = — множество натуральных чисел.

Удобно ввести понятие пустого множества Явное уравнение линии на плоскости

Пример:

Множество трехголовых людей пусто.

Множества X и X’ считаются равными, т. е. X = X’, если они состоят из одних и тех же элементов.

Определение: Множество У, состоящее из части элементов множества X или совпадающее с ним, называется подмножеством множества X; в этом случае пишут

Явное уравнение линии на плоскости

Условились считать, что пустое множество есть подмножество любого множества.

Если множества изображать «логическими фигурами», то соотношению (1) соответствует рис. 10.

Если под символом V понимать «для любого», то соотношение (1) эквивалентно следующему:

Явное уравнение линии на плоскости

где стрелка Явное уравнение линии на плоскостизаменяет слово «следует».

Пример:

Пусть X — множество всех студентов первого курса, У — множество студенток первого курса. Очевидно, Явное уравнение линии на плоскости

Явное уравнение линии на плоскости

Явное уравнение линии на плоскости

Определение: Под объединением (суммой) двух множеств X и Y понимается множество X U У (U — знак объединения), состоящее из всех элементов, принадлежащих хотя бы одному из данных множеств, т. е. входящих или в X, или в У, или в X и в У одновременно (рис. 11).

Аналогично определяется объединение большего числа множеств. Так, под объединением X U У U Z трех множеств понимается множество всех элементов, принадлежащих хотя бы одному из множеств X, У, Z. Логически знак объединения множеств соответствует союзу «или» (соединительному).

Определение: Под пересечением (произведением) двух множеств X и У понимается множество Явное уравнение линии на плоскостизнак пересечения), состоящее из всех элементов, принадлежащих как одному у так и другому множествам, т. е. входящих ив множество X, и в множество У (общая часть множеств) (рис. 11).

Явное уравнение линии на плоскости

Таким образом, знак пересечения множеств логически соответствует союзу «и». Если множества X и У не имеют общих элементов, то их пересечение пусто:

Явное уравнение линии на плоскости

Аналогично определяется пересечение большего числа множеств. Так, под пересечением Явное уравнение линии на плоскоститрех множеств понимается множество всех элементов, принадлежащих одновременно множествам X, Y и Z.

Например: Явное уравнение линии на плоскости = = .

Определение: Для множеств X и У под их разностью ХУ понимается множество, содержащее все элементы множества X, не входящие в множество У (рис. 12).

Явное уравнение линии на плоскости

Если У X, то множество Ус = ХУ называется дополнением множества У до множества X (рис. 13).

Очевидно, Явное уравнение линии на плоскости.

Например: = . Явное уравнение линии на плоскости

Видео:Уравнения прямой на плоскости | Векторная алгебраСкачать

Уравнения прямой на плоскости | Векторная алгебра

Метод координат на плоскости

Раздел математики, занимающийся изучением свойств геометрических фигур с помощью алгебры, носит название аналитической геометрии, а использование для этой цели координат называется методом координат.

Выше мы применили метод координат для решения ряда важных, но частных задач. Теперь мы приступим к систематическому изложению того, как в аналитической геометрии решается общая задача, состоящая в исследовании методами математического анализа формы, расположения и свойств данной линии.

Пусть мы имеем некоторую линию на плоскости (рис. 14). Координаты х и у точки М, лежащей на этой линии, не могут быть вполне произвольными; они должны быть подчинены известным ограничениям, обусловленным геометрическими свойствами данной линии. Тот факт, что числа х и у являются координатами точки, лежащей на данной линии, аналитически записывается в виде некоторого уравнения. Это уравнение называется уравнением линии на плоскости.

Явное уравнение линии на плоскости

Сущность метода координат на плоскости заключается в том, что всякой плоской линии сопоставляется ее уравнение1*, а затем свойства этой линии изучаются путем аналитического исследования соответствующего уравнения.

Линия как множество точек

Линия на плоскости обычно задается как множество точек, обладающих некоторыми геометрическими свойствами, исключительно им присущими.

Пример:

Окружность радиуса R (рис. 15) есть множество всех точек плоскости, удаленных на расстояние R от некоторой ее точки О (центр окружности).

Иными словами, на окружности расположены те и только те точки, расстояние которых от центра окружности равно ее радиусу.

Явное уравнение линии на плоскости

Пример:

Биссектриса угла ABC (рис. 16) есть множество всех точек, лежащих внутри угла и равноудаленных от его сторон. Этим утверждается, что: 1) для каждой точки М, лежащей на биссектрисе BZ), длины перпендикуляров MP и MQ, опущенных соответственно на стороны ВА и ВС угла, равны между собой: MP = MQ, и 2) всякая точка, находящаяся внутри угла ABC и не лежащая на его биссектрисе, будет ближе к одной стороне угла, чем к другой.

Явное уравнение линии на плоскости

Видео:§1 Линии на плоскостиСкачать

§1 Линии на плоскости

Уравнение линии на плоскости

Сформулируем теперь точнее определение уравнения линии1* на плоскости.

Определение: Уравнением линии (уравнением кривой) на плоскости Оху называется уравнение, которому удовлетворяют координаты х и у каждой точки данной линии и не удовлетворяют координаты любой точки, не лежащей на этой линии.

Таким образом, для того чтобы установить, что данное уравнение является уравнением некоторой линии К, необходимо и достаточно: 1) доказать, что координаты .любой точки, лежащей на линии К у удовлетворяют этому уравнению, и 2) доказать, обратно, что если координаты некоторой точки удовлетворяют этому уравнению, то точка обязательно лежит на линии К.

Отсюда уже автоматически будет следовать, что: 1′) если координаты какой-нибудь точки не удовлетворяют данному уравнению, то точка эта не лежит на линии К, и 2′) если точка не лежит на линии К, то ее координаты не удовлетворяют данному уравнению.

Если точка М (*, у) передвигается по линии К, то ее координаты х и у, изменяясь, все время удовлетворяют уравнению этой кривой. Поэтому координаты точки М (х, у) называются текущими координатами точки линии К.

На плоскости Оху текущие координаты точки М данной кривой К обычно обозначаются через х и у, причем первая из них есть абсцисса точки М, а вторая — ее ордината. Однако, если это целесообразно, текущие координаты точки М можно обозначать.

Линию мы часто будем называть кривой независимо от того, прямолинейна она или не прямолинейна любыми буквами, например М (X, У) или М Явное уравнение линии на плоскостии т. п. Так, например, уравнения

где точки N (х, у) и N (X, У) расположены на плоскости Оху, представляют собой уравнение одной и той же прямой на этой плоскости.

Основное понятие аналитической геометрии — уравнение линии — поясним на ряде примеров.

Пример:

Составить уравнение окружности данного радиуса R с центром в начале координат.

Решение:

Возьмем на окружности (рис. 17) произвольную точку М (х, у) и соединим ее с центром О. По определению окружности имеем ОМ = R,

т. е. Явное уравнение линии на плоскости, откуда

Явное уравнение линии на плоскости

Явное уравнение линии на плоскости

Уравнение (1) связывает между собой координаты х и у каждой точки данной окружности. Обратно, если координаты точки М (х, у) удовлетворяют уравнению (1), то, очевидно, ОМ = R и, следовательно, эта точка лежит на нашей окружности. Таким образом, уравнение (1) представляет собой уравнение окружности радиуса R с центром в начале координат.

Пример:

Составить уравнения биссектрис координатных углов.

Решение:

Рассмотрим сначала биссектрису I и III координатных углов (рис. 18, а). Возьмем на ней произвольную точку М (х, у). Если точка М лежит в I квадранте, то абсцисса и ордината ее обе положительны и равны между собой (по свойству биссектрисы). Если же точка М (jc, у) лежит в III квадранте, то абсцисса и ордината будут обе отрицательны, а модули их равны, поэтому будут равны и координаты хм у этой точки. Следовательно, в обоих случаях имеем

Явное уравнение линии на плоскости

Обратно, если координаты х и у какой-нибудь точки М (х, у) удовлетворяют уравнению (2), то эта точка, очевидно, лежит на биссектрисе Явное уравнение линии на плоскости

I и III координатных углов. Поэтому уравнение (2) представляет собой уравнение биссектрисы I и III координатных углов.

Рассмотрим теперь биссектрису II и IV координатных углов (рис. 18, б). Возьмем на ней произвольную точку N (х, у). В каком бы квадранте — II или IV — ни была расположена эта точка, координаты ее х и у равны по модулю и отличаются знаками.

Следовательно, в обоих случаях имеем

Явное уравнение линии на плоскости

Обратно, если для какой-нибудь точки N (,х, у) выполнено уравнение (3), то эта точка, очевидно, лежит на биссектрисе II и IV координатных углов. Таким образом, уравнение (3) есть уравнение биссектрисы II и IV координатных углов.

Пример:

Составить уравнение прямой, параллельной оси ординат.

Решение:

Пусть прямая АВ || О у и пусть отрезок OA = а (рис. 19, а). Тогда для любой точки М (х, у) прямой АВ ее абсцисса х равна а:

Обратно, если абсцисса некоторой точки М (х, у) равна а, то эта точка лежит на прямой АВ.

Таким образом, уравнение (4) представляет собой уравнение прямой, параллельной оси Оу и отстоящей от нее на расстоянии, равном числовому значению а; при этом если прямая расположена справа от оси Оу, то а положительно; если же прямая расположена слева от оси Оу, то а отрицательно.

В частности, при а = 0 получаем уравнение оси ординат: х = 0.

Пример:

Составить уравнение прямой, параллельной оси абсцисс.

Решение:

Совершенно аналогично, если прямая CD || Ох и ОС = Ь (рис. 19, б), то ее уравнение будет

Явное уравнение линии на плоскости

при этом если прямая CD расположена выше оси Оху то Ъ положительно, если же прямая CD расположена ниже оси Ох, то b отрицательно.

В частности, при b = 0 получаем уравнение оси абсцисс: у = 0. Явное уравнение линии на плоскости

Пример:

Найти линию, расстояние точек которой от точки В (12, 16) в два раза больше, чем от точки А (3, 4).

Решение:

Если М (х, у) — произвольная точка искомой линии, то согласно условию задачи имеем

Явное уравнение линии на плоскости

Чтобы составить уравнение этой линии, надо выразить AM и ВМ через координаты х и у точки М. На основании формулы расстояния между двумя точками имеем

Явное уравнение линии на плоскости

откуда, согласно соотношению (5),

Явное уравнение линии на плоскости

Это и есть уравнение искомой линии.

Но в таком виде трудно судить, какую линию представляет это уравнение, поэтому упростим его. Возведя обе части в квадрат и раскрыв скобки, получим

Явное уравнение линии на плоскости

или после несложных преобразований имеем равносильное уравнение

Явное уравнение линии на плоскости

Сравнивая полученное уравнение с уравнением (1), мы видим, что искомая линия является окружностью радиуса 10 с центром в начале координат.

Видео:§8.1 Общее уравнение прямой на плоскостиСкачать

§8.1 Общее уравнение прямой на плоскости

Построение линии по ее уравнению

Если переменные х и у связаны некоторым уравнением, то множество точек М (х, у), координаты которых удовлетворяют этому уравнению, представляет собой, вообще говоря, некоторую линию на плоскости (геометрический образ уравнения).

В частных случаях эта линия может вырождаться в одну или несколько точек. Возможны также случаи, когда уравнению не соответствует никакое множество точек.

Явное уравнение линии на плоскости

соответствует единственная точка (1, 2), так как этому уравнению удовлетворяет единственная пара значений: х = 1 и у = 2.

Явное уравнение линии на плоскости

не соответствует никакое множество точек, так как этому уравнению нельзя удовлетворить никакими действительными значениями x и у.

Зная уравнение линии, можно по точкам построить эту линию.

Пример:

Построить линию, выражаемую уравнением

Явное уравнение линии на плоскости

(обычно говорят короче: построить линию у = х 2 ).

Решение:

Давая абсциссе х в уравнении (1) числовые значения и вычисляя соответствующие значения ординаты у, получим следующую таблицу:Явное уравнение линии на плоскости

Нанося соответствующие точки на плоскость, мы видим, что конфигурация этих точек определяет начертание некоторой линии; при этом чем гуще построена сеть точек, тем отчетливее выступает ее контур. Соединяя построенные точки линией, характер которой учитывает положение промежуточных точек1*, мы и получаем линию, определяемую данным уравнением (1) (рис. 20). Эта линия называется параболой.

Явное уравнение линии на плоскости

Некоторые элементарные задачи с решением

Если известно уравнение линии, то легко могут быть решены простейшие задачи, связанные с расположением этой линии на плоскости.

Задача 1. Заданы уравнение линии К и координаты точки М (а, Ь). Определить, лежит точка М на линии К или нет.

Иными словами, требуется узнать, проходит линия К через точку М или не проходит.

На основании понятия уравнения линии получаем правило:

чтобы определить, лежит ли точка М на данной линии К, нужно в уравнение этой линии подставить координаты нашей точки. Если при этом уравнение удовлетворится (т. е. в результате подстановки получится тождество), то точка лежит на линии; в противном случае, если координаты точки не удовлетворяют уравнению линии, данная точка не лежит на линии.

Для того чтобы иметь возможность судить о положении промежуточных точек линии, мы должны предварительно изучить общие свойства уравнения этой линии (подробнее см. в гл. XI).

В частном случае линия проходит через начало координат тогда и только тогда, когда уравнение линии удовлетворяется при х = 0 и у — 0.

Пример:

Явное уравнение линии на плоскости

Определить, лежат ли на ней точки М (-3, 4) и N (4, -2).

Решение:

Подставляя координаты точки М в уравнение (1), получаем тождество

Явное уравнение линии на плоскости

Следовательно, точка М лежит на данной окружности.

Аналогично, подставляя координаты точки N в уравнение (1), будем иметь

Явное уравнение линии на плоскости

Следовательно, точка N не лежит на данной окружности.

Задача 2. Найти точку пересечения двух линий, заданных своими уравнениями.

Точка пересечения одновременно находится как на первой линии, так и на второй. Следовательно, координаты этой точки удовлетворяют уравнениям обеих линий. Отсюда получаем правило:

чтобы найти координаты точки пересечения двух линий, достаточно совместно решить систему их уравнений.

Если эта система не имеет действительных решений, то линии не пересекаются.

Пример:

Найти точки пересечения параболы у = х2 и прямой у — 4.

Решение:

Явное уравнение линии на плоскости

получаем две точки пересечения: А (-2, 4) и В (2, 4).

Задача 3. Найти точки пересечения данной линии с осями координат.

Эта задача является частным случаем задачи 2. Учитывая, что уравнение оси Ох есть у = 0, получаем правило: ‘

чтобы найти абсциссы точек пересечения данной линии с осью Ох, в уравнении этой линии нужно положить у = 0 и решить полученное уравнение относительно х.

Аналогично, так как уравнение оси Оу есть х — 0, то получаем правило:

чтобы найти ординаты точек пересечения данной линии с осью Оу, нужно в уравнении этой линии положить д: = 0 и решить полученное уравнение относительно у.

Пример:

Найти точки пересечения окружности Явное уравнение линии на плоскостис осями координат.

Решение:

Полагая у = 0 в уравнении (2), получаем х2= 1, т. е. х1 = -1 и х2 = 1. Отсюда находим две точки пересечения данной окружности с осью Ох (рис. 21): А (-1, 0) и В (1, 0).

Аналогично, полагая х = 0 в уравнении (2), получаем у2 = 1, т. е. ух = -1 и у2 = 1. Следовательно, имеются две точки пересечения данной окружности с осью Оу (рис. 21): С (0, -1) и D (0, 1).

Явное уравнение линии на плоскости

Видео:9 класс, 7 урок, Уравнение прямойСкачать

9 класс, 7 урок, Уравнение прямой

Две основные задачи аналитической геометрии на плоскости

Резюмируя содержание этой главы, можно сказать, что всякой линии на плоскости соответствует некоторое уравнение между текущими координатами (х, у) точки этой линии. Наоборот, всякому уравнению между х и г/, где х и у — координаты точки на плоскости, соответствует, вообще говоря, некоторая линия, свойства которой вполне определяются данным уравнением.

Отсюда, естественно, возникают две основные задачи аналитической геометрии на плоскости.

Задача 1 .Дана линия, рассматриваемая как множество точек. Составить уравнение этой линии.

Задача 2. Дано уравнение некоторой линии. Изучить по этому уравнению ее геометрические свойства (форму и расположение).

Алгебраические линии

Определение: Линия называется линией (или кривой) n-го порядка(п = 1, 2. ), если она определяется уравнением п-й степени относительно текущих прямоугольных координат.

Такие линии называются алгебраическими. Например, линии

Явное уравнение линии на плоскости

являются кривыми соответственно первого, второго и третьего порядков.

Общий вид кривых первого порядка есть

где коэффициенты А и Б не равны нулю одновременно, т. е. Явное уравнение линии на плоскостиКак будет доказано ниже (см. гл. III), все кривые первого порядка — прямые линии.

Общий вид кривых второго порядка следующий:

Явное уравнение линии на плоскости

где коэффициенты А, Б и С не равны нулю одновременно, т. е. Явное уравнение линии на плоскости

Заметим, что не всякому уравнению второго порядка соответствует действительная кривая. Например, уравнению Явное уравнение линии на плоскостине отвечает никакая кривая на плоскости Оху, так как, очевидно, нет действительных чисел х и z/, удовлетворяющих этому уравнению.

В следующих главах мы подробно изучим кривую первого порядка (прямую линию) и рассмотрим важнейшие представители кривых второго порядка (окружность, эллипс, гипербола, парабола).

Уравнение кривой n-го порядка может быть записано в следующем виде:

Явное уравнение линии на плоскости

где хотя бы один из старших коэффициентов apqt т. е. таких, что p + q = п, отличен от нуля ( Явное уравнение линии на плоскости— знак суммирования).

Отметим важное свойство: порядок кривой (1) не зависит от выбора прямоугольной системы координат.

Действительно, выбирая другую систему прямоугольных координат О’х’уна основании формул перехода имеем

Явное уравнение линии на плоскости

где Явное уравнение линии на плоскости— некоторые постоянные коэффициенты.

Отсюда уравнение кривой (1) в новых координатах О’х’у’ будет иметь вид

Явное уравнение линии на плоскости

где п’ — порядок преобразованной кривой. Очевидно, что п’

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Геометрия

План урока:

Видео:Видеоурок "Общее уравнение прямой"Скачать

Видеоурок "Общее уравнение прямой"

Уравнение линии в координатах

Если какое-то уравнение содержит две переменные – х и у, то какие-то пары значений этих чисел будут являться его решением, а какие-то нет. Однако каждой такой паре чисел можно сопоставить точку на координатной плоскости. Все вместе такие точки могут образовать линию, которую можно обозначить буквой L. В таком случае исходное уравнение называют уравнением линии L.

Мы уже рассматривали некоторые уравнения линий на плоскости, когда изучали графики функций. Если некоторую функцию у = у(х) рассматривать как уравнение, то тогда график функции у(х) будет той самой линией, которая задается уравнением. Например, парабола может быть задана уравнением у = х 2 .

Однако уравнение линии не обязательно выглядит как функция. Наиболее простой задачей является определение факта, принадлежит ли та или иная точка той линии, которая задана уравнением.

Задание. Какие из точек А (2;1), В (3; 2), С (– 2; 5) и D(0; 0) принадлежат линии, заданной уравнением:

Решение. Надо просто подставить координаты точек в уравнение и посмотреть, превратится ли оно при этом в верное равенство. Сначала подставляем точку А (2; 1):

Получилось верное равенство, значит, А принадлежит заданной линии. Теперь подставляем координаты В (3; 2):

Равенство неверное, следовательно, В на заданной линии не лежит. Проверяем третью точку С (– 2; 5):

Получили, что и С не является частью линии. Проверяем последнюю точку D (0; 0):

Справедливость равенства означает, что D принадлежит линии.

Использование координат и уравнений линии порождает две обратные друг другу задачи:

1) по заранее заданному уравнению определить геометрический вид линии;

2) для заданной геометрической фигуры, построенной на координатной плоскости, найти уравнение линии.

Геометрия занимается в первую очередь решением второй задачи. Первая же задача рассматривается по большей части в курсе алгебры при изучении графиков функций.

Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать

Как составить уравнение прямой, проходящей через две точки на плоскости | Математика

Уравнение окружности

Попытаемся составить уравнение окружности, про которую нам известен ее радиус (обозначим его буквой r) и координаты центра окруж-ти(х0; у0). Пусть некоторая точка М с координатами (х; у) лежит на окруж-ти. Тогда, по определению окруж-ти, расстояние между С и М равно радиусу r:

Но расстояние между точками М и С может быть вычислено по формуле

Если же точка М НЕ лежит на окруж-ти, то длина отрезка МС не будет равна r, и потому координаты М не будут удовлетворять уравнению (1). Получается, что (1) как раз и является уравнением окруж-ти.

Задание. Составьте уравнение окружности, имеющей радиус 5, если ее центр находится в точке (6; 7), и проверьте, лежат на ней точки H(2; 10)и Р(3; 8).

Решение. Сначала запишем уравнение окруж-ти в общем виде

Это и есть уравнение окруж-ти. При желании можно раскрыть скобки в правой части, но делать это необязательно. Теперь будем подставлять в полученное уравнение координаты точек Н и Р:

Проверка показала, что Н находится на окруж-ти, а Р – нет.

Задание. Начертите окружность, заданную уравнением

Именно эти значения и являются параметрами окруж-ти, которые нужны нам для ее построения. Ее центр находится в точке (х0; у0), то есть в (1; – 2), радиус равен r, то есть 2. В итоге выглядеть она будет так:

Особый случай представляет окруж-ть, центр которой находится в начале координат, то есть в точке (0; 0). В этом случае параметры x0 и y0 окруж-ти равны нулю, и уравнение

Например, окруж-ть с радиусом 4, если ее центр совпадает с началом координат, описывается уравнением:

Если при подстановке координат точки в уравнение получилось неверное равенство, то возможны два случая: либо точка находится внутри окруж-ти, либо она находится вне нее. Заметим, что в уравнении окруж-ти

левая часть представляет собой квадрат расстояния между точкой (х; у) и центром окруж-ти (х0; у0). Если оно больше квадрата радиуса, то точка находится вне окруж-ти, а если меньше – то внутри нее.

Задание. Определите для точек M(3; 4), N(2; 3), F(4; 4), лежат ли они на окруж-ти

внутри нее или за пределами окруж-ти.

Решение.Снова подставляем координаты точек в уравнение окруж-ти:

Это ошибочное равенство, ведь в реальности левая часть больше:

Это значит, что F(4; 4) лежит вне окруж-ти. Убедиться в правильности сделанных выводов можно, построив заданную окруж-ть и отметив точки M, N и F:

Рассмотрим несколько более сложных задач по данной теме.

Задание.Запишите уравнение окружности с центром С(– 4; 2), и окруж-ть проходит через точку А(0; 5).

Решение. В данном случае радиус окруж-ти явно не указан, и его надо найти. Подставим в уравнение окруж-ти известные нам данные:

Задание. Даны точки К (– 2; 6) и М (2; 0). Запишите уравнение окруж-ти, в которой КМ будет являться диаметром.

Решение. Для составления уравнения нужно знать радиус окруж-ти и координаты ее центра. Обозначим центр буквой С. Ясно, что центр окруж-ти делит любой ее диаметр пополам, на два одинаковых радиуса, то есть является серединой диаметра. То есть С – середина КМ, а потому для поиска координат С используем формулы:

Итак, координаты центра теперь известны, это (0; 3). Чтобы найти радиус, поступим также, как и в предыдущей задаче – подставим координаты точек С и, например, К, в уравнение окруж-ти

Обратите внимание, что нам необязательно вычислять радиус, ведь для уравнении окруж-ти нужна его величина, возведенная в квадрат, и мы ее нашли. Теперь можем записать уравнение окончательно

Задание. Дано уравнение окружности

(x — 2) 2 + (y — 4) 2 = 9

Найдите точки этой окруж-ти, абсцисса которых равна 2.

Решение. Напомним, что абсцисса – это координат х точки. Она нам уже известна, х = 2. Остается только найти ординату, то есть координату у. Для этого подставим известное нам значение абсциссы в уравнение и решим его:

Обратите внимание, что у квадратного уравнения нашлось сразу 2 корня, они соответствуют двум точкам, (2; 1) и (2; 7).

Ответ: (2; 1) и (2; 7).

Задание. Составьте уравнение окружности, проходящей через точки D(3; 8), L(6; 7) и K(7; 0).

Решение. Эта задача сложнее предыдущих и потребует громоздких вычислений. Нам надо найти радиус окруж-ти r и ее центр (х0; у0). Запишем для точки D(3; 8) уравнение окруж-ти:

Далее раскроем скобки в левой части, используя формулу квадрата разности (это необходимо для упрощения дальнейших расчетов):

В итоге нам удалось составить три уравнения, которые содержат три переменные: r, х0 и у0.Вместе они образуют систему уравнений, которую можно попробовать решить:

Далее можно, например, вычесть из (2) уравнение (3):

Нам удалось найти одно из интересующих нас чисел, у0. С помощью (5) легко найдем и х0:

x0 = 7y0 — 18 = 7*3 — 18 = 21 — 18 = 3

Итак, центр окруж-ти находится в точке (3; 3). Осталось найти радиус окруж-ти. Для этого подставим в уравнение окруж-ти вычисленные нами координаты центра, а также координаты одной из точек из условия, например, K(7; 0):

Радиус окруж-ти равен 5. Теперь мы можем окончательно записать уравнение окруж-ти

Чтобы убедиться в правильности найденного решения, можно подставить в полученное уравнение координаты трех точек из условия и посмотреть, обращают ли они его в верное равенство. Вместо этого мы для наглядности просто построим в координатной плоскости получившуюся окруж-ть и отметим на ней точки из условия:

Ответ: (х – 3) 2 + (у – 3) 2 = 25

Видео:Видеоурок "Общие уравнения прямой"Скачать

Видеоурок "Общие уравнения прямой"

Уравнение прямой

Пусть на координатной плоскости построена произвольная прямая m. Для составления его уравнения отметим две точки А(х1; у1) и В(х2; у2) так, чтобы прямая m оказалась серединным перпендикуляром для отрезка АВ:

Тогда, согласно свойству серединного перпендикуляра,про любую точку М(х; у), лежащую на m, можно сказать, что она равноудалена от А и В, и наоборот, любая точка, НЕ лежащая на m, НЕ равноудалена от А и В. Это означает, что для точки M, если она лежит на m, должно выполняться равенство:

Квадратные корни равны, если одинаковы их подкоренные выражения, поэтому

Заметим, что так как точки А и В – различные, то хотя бы одна из разностей (2х2 – 2х1) и (2у2 – 2у1) будет не равна нулю, поэтому в (2) хотя бы один их коэффициентов а и b точно ненулевой. Это означает, что уравнение (2) является уравнением первой степени. Заметим, что (2) называют общим уравнением прямой, так как оно описывает любую прямую на плоскости. При более глубоком изучении геометрии вы познакомитесь с множеством других видов уравнений прямой (нормальным, каноническим, тангенциальным, параметрическим и т. п.).

В последнем примере коэффициент с равен нулю, поэтому его просто не записали.

Заметим важный аспект – одна и та же прямая может описываться различными уравнениями вида (2). Например, пусть уравнение прямой выглядит так:

Это уравнение равносильно предыдущему, хотя у них и различны коэффициенты а, b и c. Это значит, что однозначно определить эти коэффициенты при решении задач в большинстве случаев невозможно. Поэтому удобней рассмотреть два отдельных случая.

1) Если коэффициент b в уравнении прямой (2) не равен нулю, то его можно привести к виду:

Из курса алгебры мы помним, что ее графиком как раз является прямая. В большинстве случаев уравнение прямой удобно записывать именно в таком виде. Напомним, что число k называется угловым коэффициентом прямой.Поэтому (3) так и называют – уравнением прямой с угловым коэффициентом. В качестве примера подобных уравнений можно привести:

Каждое из них описывает вертикальную прямую, параллельную оси Оу.

Задание. Прямая задана уравнением

Постройте ее на координатной плоскости

Решение. Для построения прямой надо всего лишь найти две различные точки, лежащие на ней, и соединить их. Мы будем брать произвольные значения координаты х, подставлять их в уравнение и находить соответствующее им значение координаты у. Подставим х = 1:

Получили другую точку (– 1; – 1). Осталось отметить эти две точки на и соединить их:

Задание. Составьте уравнение прямой, проходящей через точки D(1; 10) и Е(– 1; – 4).

Решение. Задачу можно решить разными способами.

Способ 1 – универсальный и более сложный.

В общем виде уравнение прямой выглядит так:

Нам надо найти коэффициенты а, b и c. Для этого просто подставляем координаты известных точек в уравнение. Начнем с координат D:

Нам удалось выразить коэффициента двумя различными выражениями (1) и (2). Так как в них одинаковы левые части, то можно приравнять и правые части:

Мы можем взять любое значение коэффициента с (кроме нуля), и при этом получатся различные, но равносильные друг другу уравнения. Удобно взять с = 3, тогда в уравнении исчезнут дроби:

Это и есть ответ задания.

Далее рассмотрим более простой способ, который, однако, может потребовать анализа различных вариантов.

Уравнение прямой может иметь либо вид

если прямая является графиком линейной функции, либо вид

если прямая параллельна оси Оу. Во втором случае у всех точек прямой абсцисса должна быть одинакова, однако у точек D(1; 10) и Е(– 1; – 4) она различна, поэтому ее точно можно описать уравнением

Надо найти коэффициенты k и d. Подставим в уравнение координаты D(1; 10):

Итак, уравнение можно записать так:

Задание. Запишите уравнение прямой, если ей принадлежат точки:

Подставим сюда уже известное нам значение d:

В (1) и (2) мы выразили d с помощью разных выражений, которые теперь можно приравнять:

То, что коэффициент k оказался нулевым, означает, что прямая параллельна оси Ох.

в) Попытаемся сделать те же действия, что и в двух предыдущих примерах, подставляя точки в уравнение у = kx + d:

На этот раз мы не смогли найти коэффициент k, а вместо этого получили ошибочное равенство. То есть уравнение просто не имеет решений. Что же это значит? Из этого факта следует, что в этом примере уравнение прямой НЕ может иметь вид

Значит, оно имеет другой вид:

Действительно, у обеих точек (2; 7) и (2; 8) одинаковы абсциссы. Это значит, что прямая, проходящая через них, вертикальная. Коэффициент С как раз равен значению этой абсциссы, так что уравнение выглядит так:

Ответ а) у = 1,5х + 3; б) у = 8; в) х = 2.

Задание. Найдите площадь треугольника MON, изображенного на рисунке, если известно, что M и N лежат на прямой, задаваемой уравнением:

Решение. ∆MON – прямоугольный, и для вычисления его площади нужно найти длины OM и ON. По рисунку видно, что М лежит на оси Ох, то есть у неё ордината нулевая:

Зная это, легко найдем и абсциссу М, ведь координаты М при их подстановке в уравнение прямой должны давать верное равенство:

Далее рассмотрим точку N. Она уже лежит на Оу, а потому у нее нулевой оказывается абсцисса:

Напомним, что площадь прямоугольного треугольника может быть вычислена по формуле:

Видео:Уравнение линии на плоскости. Уравнение окружности. Уравнение прямойСкачать

Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой

Задачи на пересечение двух фигур

Метод координат помогает находить точки, в которых пересекаются те или иные геометрические фигуры. В большинстве случаев надо просто составить систему из уравнений, задающих эти фигуры, и найти их общее решение. В курсе алгебры мы уже рассматривали как решение простых, в основном линейных систем, так и решение более сложных, нелинейных систем. Рассмотрим несколько задач на эту тему.

Задание. Две прямые заданы уравнениями:

Определите, в какой точке они пересекаются.

Решение. Если точка пересечения прямых существует, то ее координаты являются решением каждого из двух уравнений. Таким, образом, нам надо просто решить систему:

Мы нашли единственное решение системы – это пара чисел (3; – 2). Эта же пара определяет координаты искомой нами точки.

Задание. Найдите точки пересечения окруж-ти и прямой, если они задаются уравнениями

Решаем квадратное уравнение, используя дискриминант:

Мы нашли два различных значения у. Это значит, что прямая пересекается с окруж-тью в двух различных точках, а найденные нами числа – их ординаты. Отметим, что возможны случаи, когда корень только один (и тогда у окруж-ти с прямой одна общая точка, то есть они касаются), и когда корней вовсе нет (тогда окруж-ть и прямая не пересекаются). В нашем же примере осталось найти абсциссы точек. Для этого используем уравнение (3):

Получили в итоге пары точек (3; 8) и (6; 7), в которых заданная окруж-ть и прямая пересекаются.

Ответ: (3; 8) и (6; 7).

Задание. Две окруж-ти заданы уравнениями:

Для ее решения сначала раскроем скобки в обоих уравнениях и приведем подобные слагаемые:

Нам удалось выразить у через х. Теперь снова запишем одно из исходных уравнений окруж-ти, но заменим в нем у с помощью только что найденного выражения:

Мы нашли абсциссы точек пересечения окруж-тей, теперь можно вернуться к (1), чтобы найти и ординаты:

Получили точки (5; 2) и (4; 3).

В конце решим одну задачу чуть более высокого уровня сложности.

Задание. К окруж-ти радиусом 5, чей центр совпадает с началом координат, построена касательная в точке (3; 4). Составьте уравнение этой касательной.

Решение. Сначала составим уравнение окруж-ти. Так как ее центр находится в начале координат, а радиус имеет длину 5, то оно примет вид:

Нам надо найти коэффициенты k и d, а для этого надо составить какие-нибудь уравнения с этими переменными. Нам известно, что касательная проходит через точку (3; 4), а потому эти координаты можно подставить в (2):

Обратите внимание, что мы получили квадратное уравнение относительно переменной х. Если бы нам были известны k и d, то мы смогли бы его решить, и тогда мы определили бы точки пересечения прямой и окруж-ти. В этой задаче k и d нам неизвестны, но мы знаем, что окруж-ть и прямая касаются, то есть имеют ровно одну общую точку. Но тогда и квадратное уравнение (4) должно иметь только одно решение! Это означает, что его дискриминант равен нулю. Сначала выпишем коэффициенты квадратного уравнения, используемые при вычислении дискриминанта:

Теперь у нас есть два уравнения, (3) и (5), которые содержат только переменные k и d. Осталось лишь совместно решить их. Для этого подставим (3) в (5):

В рамках урока мы выяснили, как выглядят уравнения окруж-ти и прямой, а также научились решать несколько типовых заданий, в которых эти уравнения необходимо использовать. Хотя формулы, используемые при этом, могут показаться слишком сложными, главное – просто набить руку в их применении, решая как можно больше задач.

📹 Видео

Видеоурок "Уравнение прямой с угловым коэффициентом"Скачать

Видеоурок "Уравнение прямой с угловым коэффициентом"

Написать канонические и параметрические уравнения прямой в пространствеСкачать

Написать канонические и параметрические уравнения прямой в пространстве
Поделиться или сохранить к себе: