Являются ли системы уравнений которые не имеют решений равносильными

Равносильные системы уравнений, равносильные преобразования

В этой статье мы поговорим про равносильные системы уравнений. Здесь мы дадим соответствующее определение, а также разберем, какие существуют преобразования, позволяющие переходить от исходной системы уравнений к равносильной ей системе.

Навигация по странице.

Видео:Система уравнений не имеет решений или имеет бесчисленное множество решенийСкачать

Система уравнений не имеет решений или имеет бесчисленное множество решений

Определение равносильных систем уравнений

В учебниках [1, с. 199; 2, с. 74] дается определение равносильных систем уравнений с двумя переменными:

Две системы уравнений с двумя переменными называются равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

В старших классах оно обобщается на системы с любым числом уравнений и переменных [3, с. 265] :

Две системы уравнений называются равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

Примеры равносильных и неравносильных систем приведем в следующем пункте.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Равносильны ли данные системы уравнений?

Чтобы сделать вывод о равносильности или неравносильности данных систем уравнений на основе определения, надо наперед знать решения этих систем. Приведем пример. Пусть нам известно, что системы уравнений Являются ли системы уравнений которые не имеют решений равносильнымии Являются ли системы уравнений которые не имеют решений равносильнымине имеют решений (это достаточно очевидно: первая содержит не имеющее решений уравнение 0·x=4 , а вторая – уравнение |x|=−1 ). А по определению системы уравнений, которые не имеют решений, равносильны.

Чтобы доказать неравносильность систем уравнений, достаточно привести одно частное решение, являющееся решением одной системы, но не являющееся решением другой. Например, легко обосновать, что системы уравнений Являются ли системы уравнений которые не имеют решений равносильнымии Являются ли системы уравнений которые не имеют решений равносильныминеравносильны. Действительно, пара (0, 0) является решением первой системы, при этих значениях переменных оба уравнения системы обращаются в верные числовые равенства 0=0 и 0=−0 , но не является решением второй, так как ее второе уравнение при подстановке этих значений дает неверное равенство 0−0=2 . А по определению решения равносильных систем должны быть одинаковыми.

А как доказать равносильность систем уравнений, если их решения неизвестны? Конечно, можно найти решения, после чего сделать вывод касательно равносильности на основе определения. Но иногда для этого решать системы необязательно, это касается тех случаев, когда видно, что одна система получена из другой при помощи некоторых так называемых равносильных преобразований. Их мы подробно изучим в следующем пункте, а пока приведем пример.

Рассмотрим две системы уравнений Являются ли системы уравнений которые не имеют решений равносильнымии Являются ли системы уравнений которые не имеют решений равносильными. При внимательном взгляде на их записи можно заметить следующие вещи: уравнение второй системы есть результат почленного сложения соответствующих частей уравнений первой системы, а второе уравнение второй системы получено из второго уравнения первой системы посредством переноса слагаемого в другую часть. Описанные преобразования являются равносильными, и в результате их проведения получается система, равносильная исходной. Итак, указанные системы равносильны. А мы переходим к разбору основных равносильных преобразований.

Видео:Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать

Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)

Равносильные преобразования систем уравнений

Существует ряд преобразований, позволяющих преобразовать данную систему уравнений в равносильную ей систему. Они получили название равносильных преобразований, и нашли основное применение при решении систем уравнений. Эти преобразования можно считать свойствами систем уравнений. Рассмотрим и обоснуем основные из них.

Перестановка местами уравнений системы дает равносильную систему уравнений.

Доказательство этого утверждения очевидно. В силу определения решения системы уравнений любое отдельно взятое решение системы уравнений является решением каждого уравнения этой системы. Понятно, что оно является и решением каждого уравнения системы с этими же уравнениями, но переставленными местами, значит, является решением и системы с переставленными местами уравнениями.

К примеру, Являются ли системы уравнений которые не имеют решений равносильнымии Являются ли системы уравнений которые не имеют решений равносильными— равносильные системы.

Если любое уравнение в системе заменить равносильным уравнением, то полученная система будет равносильна исходной.

Доказательство этого факта тоже лежит на поверхности. Любое решение системы уравнений является решением каждого уравнения системы. Мы также знаем, что равносильные уравнения имеют одинаковые решения. Поэтому, любое решение исходной системы уравнений будет решением всех уравнений системы, в которой какое-то уравнение заменено равносильным ему уравнением, а значит, и решением этой системы.

Важность доказанного свойства огромна: оно дает нам право на работу с отдельными уравнениями системы. С ними мы можем проводить всевозможные уже знакомые нам равносильные преобразования, например, перестановку местами слагаемых, перенос слагаемых из одной части в другую с противоположным знаком, умножение или деление обеих частей уравнения на отличное от нуля число и т.д.

Приведем пример. Пусть дана система Являются ли системы уравнений которые не имеют решений равносильными. В ее первом уравнении можно выполнить умножение чисел, то есть, заменить его равносильным уравнением 12·x−y=1 . А во втором уравнении можно собрать все слагаемые в левой части, раскрыть скобки, после чего привести подобные слагаемые. В результате получится равносильная система более простого вида Являются ли системы уравнений которые не имеют решений равносильными.

Если к левой и правой части одного из уравнений системы прибавить соответственно левую и правую часть другого уравнения системы, то полученная система будет равносильна исходной.

Для доказательства покажем, что любое решение изначальной системы уравнений является решением полученной, и обратно, что любое решение полученной системы является решением исходной. Это будет означать равносильность систем.

Любое решение начальной системы является решением каждого ее уравнения, оно обращает все уравнения в верные числовые равенства. Нам известно свойство числовых равенств, которое утверждает, что при почленном сложении верных числовых равенств получается верное равенство. Отсюда следует, что взятое нами решение начальной системы является решением уравнения, полученного в результате почленного прибавления к нему другого уравнения. Поэтому, это решение является решением и полученной системы уравнений, так как является решением каждого ее уравнения.

Теперь обратно. Возьмем любое решение полученной системы, оно является решением каждого ее уравнения, то есть, оно обращает их в верные числовые равенства. Существует свойство, позволяющее выполнять почленное вычитание верных числовых равенств. Вычтем из равенства, соответствующего уравнению, полученному в результате почленного сложения, равенство, соотетствующее прибавленному ранее уравнению. Это даст верное числовое равенство, отвечающее начальному уравнению системы до прибавления к нему другого уравнения. Отсюда следует, что взятое решение будет решением каждого уравнения исходной системы, а значит, и ее решением.

Приведем пример выполнения этого равносильного преобразования. Возьмем систему двух уравнений с двумя переменными Являются ли системы уравнений которые не имеют решений равносильными. Прибавив к левой и правой части первого уравнения соответственно левую и правую часть второго, получим уравнение с одной переменной 3·y=3 , а система примет вид Являются ли системы уравнений которые не имеют решений равносильными. Полученная система уравнений имеет более простой вид, но при этом равносильна исходной.

Понятно, что если система содержит три или большее число уравнений, то можно не ограничиваться почленным прибавлением к левой и правой части выбранного уравнения левой и правой части одного уравнения, а прибавлять левые и правые части двух, трех, да хоть всех остальных уравнений системы. В результате этих действий все равно получится равносильная система уравнений.

На доказанном равносильном преобразовании базируется один из методов решения систем уравнений – метод алгебраического сложения.

Если одно из уравнений системы представляет собой переменную, выраженную через другие переменные, то в любое другое уравнение системы можно подставить вместо этой переменной ее выражение, система, полученная в результате такого преобразования, равносильна исходной.

Приведем пример для пояснения. Возьмем систему Являются ли системы уравнений которые не имеют решений равносильными. В ее первом уравнении переменная x выражена через y . Оставим первое уравнение системы без изменений, а во второе подставим вместо x ее выражение через y , то есть, 2·y−1 . В результате приходим к системе Являются ли системы уравнений которые не имеют решений равносильными, которая равносильна исходной. Обоснуем это.

Пусть пара (x0, y0) – решение исходной системы, тогда x0=2·y0−1 и x0+3·y0−1=0 – верные числовые равенства. Докажем, что при этом равенство (2·y0−1)+3·y0−1=0 тоже верное, что будет доказывать, что (x0, y0) является решением системы, полученной после преобразования, а это будет означать, что полученная система имеет те же решения, что и исходная.

Легко показать, что при условии x0=2·y0−1 значения выражений x0+3·y0−1 и (2·y0−1)+3·y0−1 равны. Для этого составим их разность и покажем, что она равна нулю: x0+3·y0−1−((2·y0−1)+3·y0−1)= (x0−(2·y0−1))+(3·y0−1−(3·y0−1))= x0−(2·y0−1) , а полученное выражение равно нулю в силу равенства x0=2·y0−1 . Итак, справедливо равенство x0+3·y0−1=(2·y0−1)+3·y0−1 , но справедливо и равенство x0+3·y0−1=0 , а из них по свойству транзитивности вытекает справедливость равенства (2·y0−1)+3·y0−1=0 .

Аналогично доказывается, что любое решение системы уравнений Являются ли системы уравнений которые не имеют решений равносильнымиявляется решением исходной системы. В итоге можно сделать вывод, что системы равносильны.

Суть доказательства рассматриваемого утверждения в общем виде та же. То есть, показывается, что любое решение исходной системы является решением системы, полученной после преобразования, и обратно.

Это равносильное преобразование дает разрешение на решение систем уравнений методом подстановки.

В заключение скажем, что обычно при решении систем уравнений разобранные равносильные преобразования используются сообща и иногда по нескольку раз. Дальше на практике Вы увидите это.

Видео:Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Равносильные системы неравенств, преобразование систем, определение

Продолжаем обсуждать термин «равносильные системы». Мы уже обсудили, что он означает применительно к уравнениям. В этой статье мы попробуем разобрать его применительно к неравенствам. План материала выглядит следующим образом: сначала мы введем основные определения, потом преобразуем их возможными способами, а в конце докажем, что получившаяся в итоге преобразований система равносильна той, что была взята первоначально.

Видео:Система уравнений не имеет решений | Системы уравнений | Алгебра 1Скачать

Система уравнений не имеет решений | Системы уравнений | Алгебра 1

Определение равносильной системы неравенств

Понятие равносильной системы неравенств в учебниках алгебры встречается нечасто. Почему-то применительно к уравнениям это термин более употребим. При этом мы можем встретить, что решения систем неравенств записываются следующим образом:

2 · x — 1 > 6 , 5 — 3 · x > — 13 , 2 · x > 7 , — 3 · x > — 18 , x > 3 , 5 , x 6 .

Аналогично определению системы равносильных уравнений мы можем сформулировать схожее и для неравенств. При этом изначальные системы неравенств можно заменить на равносильные, но более простые для понимания. Итак, определение:

Равносильные системы неравенств — это такие системы, у которых одни и те же решения (или эти решения одинаково отсутствуют).

Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 класс

Как понять, равносильны ли данные системы неравенств?

Если мы знаем все решения систем, то можно сразу дать ответ — да или нет, исходя из указанного выше определения.

Допустим, мы знаем, что:

2 · x > 2 , x 4 ≤ — 2 — решений не имеет.

Для системы x > 5 , x — 1 — аналогично.

Если обе системы не имеют решения, то они равносильны.

А если мы не знаем решений? Логично вычислить их и определить это. Но есть способ обойтись и без предварительных расчетов. Для этого нам надо будет провести так называемые равносильные преобразования. Давайте разберем подробнее, что же это такое.

Видео:Равносильность уравнений и систем уравненийСкачать

Равносильность уравнений и систем уравнений

Что такое равносильные преобразования систем неравенств

Для уравнений существует довольно много преобразований, которые могут быть полезны на практике, но для неравенств же их заметно меньше. Разберем два основных способа, которые применяются для решения задач чаще всего:

  1. перестановка компонентов системы неравенств;
  2. замена одного из неравенств системы на равносильное ему.

Также указанные выше понятия можно называть свойствами систем неравенств. Попробуем определить данные свойства.

1) Если мы поменяем местами неравенства, входящие в систему, то итоговая и исходная системы будут равносильны.

Это утверждение логично и не нуждается в обоснованиях: ведь позиция компонента в системе никак не влияет на его решение, следовательно, и на решение всей системы тоже.

Разберем один несложный пример. У нас есть 2 системы неравенств:

x + y > 3 , 2 · x + y 2 + x · y ≥ 1 , x 2 — y 2 12 и 2 · x + y 2 + x · y ≥ 1 , x 2 — y 2 12 , x + y > 3

Они являются равносильными, поскольку вся разница между ними состоит в порядке записи компонентов.

Какова же польза первого свойства на практике? Мы можем с его помощью передвинуть наверх то неравенство, решения у которого очевидно нет. Тогда мы сразу же можем подытожить, что вся система неравенств решения не имеет, ведь это следует из их базового определения.

2) Если заменить одно из неравенств системы равносильным ему, что система, получившаяся в итоге, равносильна изначальной.

Это утверждение также не вызывает вопросов. Если системы, являющиеся равносильными, имеют в итоге одинаковые решения, то упомянутые в формулировке второго свойства системы также решаются одинаково.

Для чего нам может пригодиться такое преобразование? Благодаря ему мы можем работать по отдельности с любым компонентом системы.

Так, возьмем первое из следующей системы:

2 · x 2 + 3 · x — 2 · x — x 2 — x 2 > 3 — 2 , 4 · x — 9 ≤ 0

Заменим его равносильным неравенством, используя способ приведения подобных слагаемых, и в итоге получим более легкую систему:

Видео:огэ математика. №14 Какая система не имеет решений. Сколько решений имеет система?Скачать

огэ математика. №14 Какая система не имеет решений. Сколько решений имеет система?

Алгебра. 7 класс

Конспект урока

Равносильность уравнений и систем уравнений

Перечень вопросов, рассматриваемых в теме:

  • Понятие равносильных уравнений.
  • Изучение равносильных систем уравнений.
  • Практическое применение равносильности систем уравнений.

Уравнение, левой и правой частями которого являются числа или многочлены степени не выше первой относительно х и у, называются линейными уравнением с двумя неизвестными х и у.

Члены многочленов, находящиеся в левой и правой частях линейного уравнения, называют членами этого уравнения.

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

Равносильны два уравнения, каждое из которых не имеет решения.

Две системы уравнений называют равносильными, если любое решение первой системы является решением второй системы и любое решение второй системы является решением первой системы.

Равносильны две системы, если каждая из них не имеет решений.

  1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.
  1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.
  2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.
  3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Уравнение, левой и правой частями которого являются числа или многочлены степени не выше первой относительно х и у, называются линейными уравнением с двумя неизвестными х и у.

Являются ли системы уравнений которые не имеют решений равносильными

Члены многочленов, находящиеся в левой и правой частях линейного уравнения, называют членами этого уравнения.

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

Равносильны такие два уравнения, каждое из которых не имеет решения.

1) Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получим уравнение, равносильное исходному.

Являются ли системы уравнений которые не имеют решений равносильными

2) Если перенести с противоположным знаком член уравнения из одной части в другую, то получим уравнение, равносильное исходному.

Являются ли системы уравнений которые не имеют решений равносильными

3) Если в левой и правой частях линейного уравнения привести подобные члены, то получится уравнение, равносильное исходному:

Являются ли системы уравнений которые не имеют решений равносильными

Доказательство этих утверждений проводится так же, как для линейного уравнения с одним неизвестным.

Являются ли системы уравнений которые не имеют решений равносильными

Две системы уравнений называют равносильными, если любое решение первой системы является решением второй системы и любое решение второй системы является решением первой системы. Равносильны также две системы, если каждая из них не имеет решений.

Очевидно, что если одно из уравнений системы заменить другим, равносильным ему уравнением, то полученная система будет равносильна исходной.

Являются ли системы уравнений которые не имеют решений равносильными

Перенеся свободные члены уравнений этой системы в их правые части, получим следующую равносильную систему:

Являются ли системы уравнений которые не имеют решений равносильными

Пример 2. Решите систему уравнений:

Являются ли системы уравнений которые не имеют решений равносильными

Являются ли системы уравнений которые не имеют решений равносильными

Решим системы способом подстановки.

Пример 3. Решите систему уравнений

Являются ли системы уравнений которые не имеют решений равносильными

Пример 4. Решите систему уравнений

Являются ли системы уравнений которые не имеют решений равносильными

Разбор решения заданий тренировочного модуля.

№1. Тип задания: единичный выбор.

Какие два уравнения называются равносильными?

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

Два уравнения называют равносильными, если любое решение первого уравнения не является решением второго, а любое решение второго не является решением первого.

Два уравнения называют равносильными, если любое решение первого уравнения является продолжением решения второго, и является единственно верным.

Два уравнения называют равносильными, если любое решение первого уравнения является решением второго, а любое решение второго является решением первого.

№2. Тип задания: Восстановление последовательности элементов горизонтальное / вертикальное.

💥 Видео

9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

Алгебраическое определение количества решений системы линейных уравнений | Алгебра IСкачать

Алгебраическое определение количества решений системы линейных уравнений |  Алгебра I

11 класс, 26 урок, Равносильность уравненийСкачать

11 класс, 26 урок, Равносильность уравнений

#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.Скачать

#75 Урок 36. Определение количества решений системы уравнений. Алгебра 7 класс.

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnlineСкачать

Система уравнений VS Система неравенств. ОГЭ по математике №9, 13| Математика TutorOnline

Равносильность уравнений | Алгебра 11 класс #23 | ИнфоурокСкачать

Равносильность уравнений | Алгебра 11 класс #23 | Инфоурок

Методы решения систем уравнений. Видеоурок по алгебре 9 классСкачать

Методы решения систем уравнений. Видеоурок по алгебре 9 класс

12.1. Логарифмические уравнения. Равносильные преобразования (схемы).Скачать

12.1. Логарифмические уравнения. Равносильные преобразования (схемы).

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать

Математика | Система уравнений на желтую звездочку (feat  Золотой Медалист по бегу)
Поделиться или сохранить к себе: