- Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.
- Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.
- Основные равносильные преобразования уравнений:
- Равносильные уравнения и уравнения следствия
- Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.
- 9 класс равносильные уравнения урок 1
- Просмотр содержимого документа «9 класс равносильные уравнения урок 1»
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение показательных уравнений.
- Немного теории.
- Показательная функция, её свойства и график
- Показательные уравнения
- 📽️ Видео
Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.
- Уравнения (x+2=7) и (2x+1=11) равносильны, так как каждое из них имеет единственный корень – число (5).
- Равносильны и уравнения (x^2+1=0) и (2x^2+3=1) — ни одно из них не имеет корней.
- А вот уравнения (x-6=0) и (x^2=36) неравносильны, поскольку первое имеет только один корень (6), второе имеет два корня: (6) и (-6).
Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.
Видео:Дробно-рациональные уравнения. 8 класс.Скачать
Основные равносильные преобразования уравнений:
- Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.
Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.
Применение всех формул и свойств, которые есть в математике.
Возведение в нечетную степень обеих частей уравнения.
Извлечение корня нечетной степени из обеих частей уравнения.
Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать
Равносильные уравнения и уравнения следствия
Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:
Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.
Пример (ОГЭ). Решите уравнение (x^2-2x+sqrt=sqrt+3)
Перенесем оба слагаемых из правой части в левую.
Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.
Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .
Сверяем корни с ОДЗ и исключаем неподходящие.
(↑) не подходит под ОДЗ
Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .
Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.
Решение:
В пункте a) применялось равносильное преобразование 1.
В пункте b) перешли к уравнению следствию, так как (sqrt) «ушло», то ОДЗ расширилось;
В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;
В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;
В пункте e) умножили обе части уравнения на (2) т.е. равносильно преобразовали;
В пункте f) перешли от вида (a^=a^) к виду (f(x) =g(x)), что тоже является равносильным преобразованием.
Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать
9 класс равносильные уравнения урок 1
Просмотр содержимого документа
«9 класс равносильные уравнения урок 1»
Два уравнения с одной переменной f (х) = g (х) и р(х) = h (х)
называют равносильными , если множества их корней совпадают.
Пример 1. Выяснить, являются ли уравнения х 2 – 1 = 0 и х –1 = 0 равносильными?
Ответ: уравнения х 2 – 1 = 0 и х – 1 = 0 не являются равносильными.
Пример 2. Выяснить, являются ли уравнения х 2 – 9 = 0 и (х + 3)(2 х – 8) = 0 равносильными?
Ответ: уравнения х 2 – 9 = 0 и (х + 3)(2 х – 8) = 0 являются равносильными.
х 2 + 3 = 0 – не имеет корней;
Если каждый корень уравнения f ( x ) = g (х) (1)
является в то же время корнем уравнения р(х) = h (х) (2)
то уравнение (2) называют следствием уравнения (1).
Пример 4. Выяснить, какое из уравнений х – 2 = 0 и х 2 – 5х + 6 = 0
является следствием другого?
Ответ: уравнение х 2 – 5х + 6 = 0 является следствием
уравнения х – 2 = 0.
Пример 5. Выяснить, какое из уравнений х 2 – 4х + 3 = 0 и х 2 – 5х + 6 = 0
является следствием другого?
Ответ: ни одно из уравнений не является следствием другого.
Запомни: если каждое из двух уравнений является следствием другого, то такие два уравнения равносильны .
Видео:11 класс, 26 урок, Равносильность уравненийСкачать
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Видео:Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать
Калькулятор онлайн.
Решение показательных уравнений.
Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >> С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение
Видео:§8 Равносильные уравнения и неравенстваСкачать
Немного теории.
Видео:Рациональные уравнения. Равносильные уравнения. Алгебра 8кл. Мерзляк #208Скачать
Показательная функция, её свойства и график
Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m
4) (ab) n = a n b n
7) a n > 1, если a > 1, n > 0
8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.
Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, ( a neq 1)
Показательная функция обладает следующими свойствами
1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.
2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, ( a neq 1), не имеет корней, если ( b leqslant 0), и имеет корень при любом b > 0.
3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.
График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х
Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать
Показательные уравнения
Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, ( a neq 1), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, ( a neq 1) равны тогда и только тогда, когда равны их показатели.
Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2
Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2
Решить уравнение 3 х = 7 х
Так как ( 7^x neq 0 ) , то уравнение можно записать в виде ( frac = 1 ), откуда ( left( frac right) ^x = 1 ), х = 0
Ответ х = 0
Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2
Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
( left( frac right) ^ = 1 )
x — 2 = 0
Ответ х = 2
Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, ( 3 neq 1), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1
📽️ Видео
Решение биквадратных уравнений. 8 класс.Скачать
Как решить уравнение #россия #сша #америка #уравненияСкачать
Равносильные уравнения, неравенстваСкачать
Свойства квадратного корня. Уравнение х2=а, 8 классСкачать
Равносильные уравнения. Рациональные уравнения - 8 класс алгебраСкачать
Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
11 класс, 28 урок, Равносильность неравенствСкачать
РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 классСкачать
Рациональные уравнения. Равносильные уравнения. Алгебра 8клСкачать
РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать