Являются ли равносильными уравнения х2 81 и х2 1 х 9

Равносильные уравнения. Равносильные преобразования уравнений
Содержание
  1. Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.
  2. Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.
  3. Основные равносильные преобразования уравнений:
  4. Равносильные уравнения и уравнения следствия
  5. Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.
  6. 9 класс равносильные уравнения урок 1
  7. Просмотр содержимого документа «9 класс равносильные уравнения урок 1»
  8. Решение задач по математике онлайн
  9. Калькулятор онлайн. Решение показательных уравнений.
  10. Немного теории.
  11. Показательная функция, её свойства и график
  12. Показательные уравнения
  13. 📽️ Видео

Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.

  • Уравнения (x+2=7) и (2x+1=11) равносильны, так как каждое из них имеет единственный корень – число (5).
  • Равносильны и уравнения (x^2+1=0) и (2x^2+3=1) — ни одно из них не имеет корней.
  • А вот уравнения (x-6=0) и (x^2=36) неравносильны, поскольку первое имеет только один корень (6), второе имеет два корня: (6) и (-6).

Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Основные равносильные преобразования уравнений:

  1. Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.

Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.

Применение всех формул и свойств, которые есть в математике.

Возведение в нечетную степень обеих частей уравнения.

Извлечение корня нечетной степени из обеих частей уравнения.

Видео:Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 классСкачать

Равносильность уравнений и неравенств. Видеоурок 7. Алгебра 10 класс

Равносильные уравнения и уравнения следствия

Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:

Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.

Пример (ОГЭ). Решите уравнение (x^2-2x+sqrt=sqrt+3)

Перенесем оба слагаемых из правой части в левую.

Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .

Сверяем корни с ОДЗ и исключаем неподходящие.

(↑) не подходит под ОДЗ

Запишем ответ.

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

Решение:

В пункте a) применялось равносильное преобразование 1.

В пункте b) перешли к уравнению следствию, так как (sqrt) «ушло», то ОДЗ расширилось;

В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;

В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;

В пункте e) умножили обе части уравнения на (2) т.е. равносильно преобразовали;

В пункте f) перешли от вида (a^=a^) к виду (f(x) =g(x)), что тоже является равносильным преобразованием.

Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

9 класс равносильные уравнения урок 1

Являются ли равносильными уравнения х2 81 и х2 1 х 9

Просмотр содержимого документа
«9 класс равносильные уравнения урок 1»

Являются ли равносильными уравнения х2 81 и х2 1 х 9

Являются ли равносильными уравнения х2 81 и х2 1 х 9

Два уравнения с одной переменной f (х) = g (х) и р(х) = h (х)

называют равносильными , если множества их корней совпадают.

Являются ли равносильными уравнения х2 81 и х2 1 х 9

Пример 1. Выяснить, являются ли уравнения х 2 – 1 = 0 и х –1 = 0 равносильными?

Ответ: уравнения х 2 – 1 = 0 и х – 1 = 0 не являются равносильными.

Являются ли равносильными уравнения х2 81 и х2 1 х 9

Пример 2. Выяснить, являются ли уравнения х 2 – 9 = 0 и (х + 3)(2 х – 8) = 0 равносильными?

Ответ: уравнения х 2 – 9 = 0 и (х + 3)(2 х – 8) = 0 являются равносильными.

Являются ли равносильными уравнения х2 81 и х2 1 х 9

х 2 + 3 = 0 – не имеет корней;

Являются ли равносильными уравнения х2 81 и х2 1 х 9

Если каждый корень уравнения f ( x ) = g (х) (1)

является в то же время корнем уравнения р(х) = h (х) (2)

то уравнение (2) называют следствием уравнения (1).

Являются ли равносильными уравнения х2 81 и х2 1 х 9

Пример 4. Выяснить, какое из уравнений х – 2 = 0 и х 2 – 5х + 6 = 0

является следствием другого?

Ответ: уравнение х 2 – 5х + 6 = 0 является следствием

уравнения х – 2 = 0.

Являются ли равносильными уравнения х2 81 и х2 1 х 9

Пример 5. Выяснить, какое из уравнений х 2 – 4х + 3 = 0 и х 2 – 5х + 6 = 0

является следствием другого?

Ответ: ни одно из уравнений не является следствием другого.

Являются ли равносильными уравнения х2 81 и х2 1 х 9

Запомни: если каждое из двух уравнений является следствием другого, то такие два уравнения равносильны .

Видео:11 класс, 26 урок, Равносильность уравненийСкачать

11 класс, 26 урок, Равносильность уравнений

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Видео:Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)Скачать

Алгебра 7 класс (Урок№47 - Равносильность уравнений и систем уравнений.)

Калькулятор онлайн.
Решение показательных уравнений.

Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение

Видео:§8 Равносильные уравнения и неравенстваСкачать

§8 Равносильные уравнения и неравенства

Немного теории.

Видео:Рациональные уравнения. Равносильные уравнения. Алгебра 8кл. Мерзляк #208Скачать

Рациональные уравнения. Равносильные уравнения. Алгебра 8кл. Мерзляк #208

Показательная функция, её свойства и график

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m

4) (ab) n = a n b n

7) a n > 1, если a > 1, n > 0

8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, ( a neq 1)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, ( a neq 1), не имеет корней, если ( b leqslant 0), и имеет корень при любом b > 0.

3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, ( a neq 1), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, ( a neq 1) равны тогда и только тогда, когда равны их показатели.

Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2

Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2

Решить уравнение 3 х = 7 х
Так как ( 7^x neq 0 ) , то уравнение можно записать в виде ( frac = 1 ), откуда ( left( frac right) ^x = 1 ), х = 0
Ответ х = 0

Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
( left( frac right) ^ = 1 )
x — 2 = 0
Ответ х = 2

Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, ( 3 neq 1), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1

📽️ Видео

Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Как решить уравнение #россия #сша #америка #уравненияСкачать

Как решить уравнение #россия #сша #америка #уравнения

Равносильные уравнения, неравенстваСкачать

Равносильные уравнения, неравенства

Свойства квадратного корня. Уравнение х2=а, 8 классСкачать

Свойства квадратного корня. Уравнение х2=а, 8 класс

Равносильные уравнения. Рациональные уравнения - 8 класс алгебраСкачать

Равносильные уравнения. Рациональные уравнения - 8 класс алгебра

Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать

Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

11 класс, 28 урок, Равносильность неравенствСкачать

11 класс, 28 урок, Равносильность неравенств

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 классСкачать

РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ. §7 алгебра 8 класс

Рациональные уравнения. Равносильные уравнения. Алгебра 8клСкачать

Рациональные уравнения. Равносильные уравнения. Алгебра 8кл

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА
Поделиться или сохранить к себе: