Являются ли данные функции решениями данных дифференциальных уравнений y c1e 2x c2e 2x

Производная (c1*e^(-2*x))+(c2*e^(2*x))

Решение

Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

Производная само оно.

Затем примените цепочку правил. Умножим на :

Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

В силу правила, применим: получим

Таким образом, в результате:

В результате последовательности правил:

Таким образом, в результате:

Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

Производная само оно.

Затем примените цепочку правил. Умножим на :

Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

Видео:Решение дифференциальных уравнений. Практическая часть. 11 класс.Скачать

Решение дифференциальных уравнений. Практическая часть. 11 класс.

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Видео:Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядкаСкачать

Решите уравнение ★ y'-2y=e^(2x) ★ Линейное дифференциальное уравнение 1-го порядка

Дифференциальные уравнения по-шагам

Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать

18+ Математика без Ху!ни. Дифференциальные уравнения.

Результат

Примеры дифференциальных уравнений

  • Простейшие дифференциальные ур-ния 1-порядка
  • Дифференциальные ур-ния с разделяющимися переменными
  • Линейные неоднородные дифференциальные ур-ния 1-го порядка
  • Линейные однородные дифференциальные ур-ния 2-го порядка
  • Уравнения в полных дифференциалах
  • Решение дифференциального уравнения заменой
  • Смена y(x) на x в уравнении
  • Другие

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

🔍 Видео

Видеоурок "Системы дифференциальных уравнений"Скачать

Видеоурок "Системы дифференциальных уравнений"

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Откуда появляются дифференциальные уравнения и как их решатьСкачать

Откуда появляются дифференциальные уравнения и как их решать

Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать

Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменными

Дифференциал функцииСкачать

Дифференциал функции

Линейная алгебра. Алексей Савватеев и Александр Тонис. Лекция 3.5. Линеаризация систем диф.уровСкачать

Линейная алгебра. Алексей Савватеев и Александр Тонис. Лекция 3.5. Линеаризация систем диф.уров

Часть 5: Понятие Дифференциала функцииСкачать

Часть 5: Понятие Дифференциала функции

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать

Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

11. Уравнения в полных дифференциалахСкачать

11. Уравнения в полных дифференциалах

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать

2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.

Показать, что функция y=e^(-x)sinx удовлетворяет дифференциальному уравнению. Как решать?Скачать

Показать, что функция y=e^(-x)sinx удовлетворяет дифференциальному уравнению. Как решать?

Линейное дифференциальное уравнение. Метод БернуллиСкачать

Линейное дифференциальное уравнение. Метод Бернулли

1. Что такое дифференциальное уравнение?Скачать

1. Что такое дифференциальное уравнение?

ЛОДУ 2 порядка c постоянными коэффициентамиСкачать

ЛОДУ 2 порядка c постоянными коэффициентами

Системы дифференциальных уравнений. Часть 2Скачать

Системы дифференциальных уравнений. Часть 2

21. Дифференциал функцииСкачать

21. Дифференциал функции
Поделиться или сохранить к себе: