Разделы: Физика
Класс: 11
Задачи урока: ознакомить учащихся с ядерными реакциями, с процессами изменения атомных ядер, превращением одних ядер в другие под действием микрочастиц. Подчеркнуть, что это отнюдь не химические реакции соединения и разъединения атомов элементов между собой, затрагивающие только электронные оболочки, а перестройка ядер как систем нуклонов, превращение одних химических элементов в другие.
Урок сопровождается презентацией в размере 21 слайда (Приложение).
Ход урока
Повторение
1. Каков состав атомных ядер?
ЯДРО (атомное)– это положительно заряженная центральная часть атома, в которой сосредоточено 99,96% его массы. Радиус ядра
10 –15 м, что приблизительно в сто тысяч раз меньше радиуса всего атома, определяемого размерами его электронной оболочки.
Атомное ядро состоит из протонов и нейтронов. Их общее количество в ядре обозначают буквой А и называют массовым числом. Число протонов в ядре Z определяет электрический заряд ядра и совпадает с атомным номером элемента в периодической системе элементов Д.И. Менделеева. Число нейтронов в ядре может быть определено как разность между массовым числом ядра и числом протонов в нем. Массовое число – это число нуклонов в ядре.
2. Как объяснить стабильность атомных ядер?
ЯДЕРНЫЕ СИЛЫ – это мера взаимодействия нуклонов в атомном ядре. Именно эти силы удерживают одноименно заряженные протоны в ядре, не давая им разлететься под действием электрических сил отталкивания.
3. Назовите свойства ядерных сил.
Ядерные силы обладают рядом специфических свойств:
- Ядерные силы на 2–3 порядка интенсивнее электромагнитных.
- Ядерные силы имеют короткодействующий характер: радиус их действия R
10 –15 м (т.е. совпадает по порядку величины с радиусом атомного ядра).
Ядерные силы являются силами притяжения на расстояниях
10 –15 м, но на существенно меньших расстояниях между нуклонами переходят в силы отталкивания.
4. Что такое энергия связи ядра?
ЭНЕРГИЯ СВЯЗИ АТОМНОГО ЯДРА – это минимальная энергия, которая необходима для полного расщепления ядра на отдельные нуклоны. Разность между суммой масс нуклонов (протонов и нейтронов) и массой состоящего из них ядра, умноженная на квадрат скорости света в вакууме, и есть энергия связи нуклонов в ядре. Энергия связи, приходящаяся на один нуклон, называется удельной энергией связи.
5. Почему масса ядра не равна сумме масс протонов и нейтронов, входящих в него?
При образовании ядра из нуклонов происходит уменьшение энергии ядра, что сопровождается уменьшением массы, т. е. масса ядра должна быть меньше суммы масс отдельных нуклонов, образующих это ядро.
6. Что такое радиоактивность?
Изучение нового материала.
ЯДЕРНАЯ РЕАКЦИЯ – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры A (a, b) B или А + а → В + b.
Что общего и в чем различие ядерной реакции и радиоактивного распада?
Общим признаком ядерной реакции и радиоактивного распада является превращение одного атомного ядра в другое.
Но радиоактивный распад происходит самопроизвольно, без внешнего воздействия, а ядерная реакция вызывается воздействием бомбардирующей частицы.
Виды ядерных реакций:
- через стадию образования составного ядра;
- прямая ядерная реакция (энергия больше 10 МэВ);
- под действием различных частиц: протонов, нейтронов, …;
- синтез ядер;
- деление ядер;
- с поглощением энергии и с выделением энергии.
Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер. Резерфорд бомбардировал атомы азота α-частицами. При соударении частиц происходила ядерная реакция, протекавшая по следующей схеме:
14 7N + 4 2He → 17 8O + 1 1H
Условия протекания ядерных реакций
Для осуществления ядерной реакции под действием положительно заряженной частицы необходимо, чтобы частица обладала кинетической энергией, достаточной для преодоления действия сил кулоновского отталкивания. Незаряженные частицы, например нейтроны, могут проникать в атомные ядра, обладая сколь угодно малой кинетической энергией. Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы).
Первая реакция бомбардировки атомов быстрыми заряженными частицами была осуществлена с помощью протонов большой энергии, полученных на ускорителе, в 1932 году:
7 3Li + 1 1H → 4 2He + 4 2He
Однако наиболее интересными для практического использования являются реакции, протекающие при взаимодействии ядер с нейтронами. Так как нейтроны лишены заряда, они беспрепятственно могут проникать в атомные ядра и вызывать их превращения. Выдающийся итальянский физик Э. Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения вызываются не только быстрыми, но и медленными нейтронами, движущимися с тепловыми скоростями.
Для осуществления ядерной реакции под действием положительно заряженной частицы необходимо, чтобы частица обладала кинетической энергией, достаточной для преодоления действия сил кулоновского отталкивания. Незаряженные частицы, например нейтроны, могут проникать в атомные ядра, обладая сколь угодно малой кинетической энергией.
Ускорители заряженных частиц (сообщение ученика)
Чтобы проникнуть в тайны микромира, человек изобрел микроскоп. Со временем выяснилось, что возможности оптических микроскопов весьма ограничены – они не позволяют «заглянуть» с глубь атомов. Для этих целей более подходящими оказались не световые лучи, а пучки заряженных частиц. Так, в знаменитых опытах Э.Резерфорда использовался поток α-частиц, испускаемых радиоактивным препаратами. Однако природные источники частиц (радиоактивные вещества) дают пучки очень малой интенсивности, энергия частиц оказывается относительно невысокой, к тому же эти источники неуправляемы. Поэтому возникла проблема создания искусственных источников ускоренных заряженных частиц. К ним относятся, в частности, электронные микроскопы, в которых используются пучки электронов с энергиями порядка 10 5 эВ.
В начале 30-х годов 20-го столетия появились первые ускорители заряженных частиц. В этих установках заряженные частицы (электроны или протоны), двигаясь в вакууме под действием электрических и магнитных полей, приобретают большой запас энергии (ускоряются). Чем больше энергия частицы, тем меньше ее длина волны, поэтому такие частицы в большей степени подходят для «прощупывания» микрообъектов. В то же время с возрастанием энергии частицы расширяется число вызываемых ею взаимопревращений частиц, приводящих к рождению новых элементарных частиц. Следует иметь в виду, что проникновение в мир атомов и элементарных частиц обходится недешево. Чем выше конечная энергия ускоряемых частиц, тем более сложными и крупными оказываются ускорители; их размеры могут достигать нескольких километров. Существующие ускорители позволяют получать пучки заряженных частиц с энергиями от нескольких МэВ до сотен ГэВ. Интенсивность пучков частиц достигает 10 15 – 10 16 частиц в секунду; при этом пучок может быть сфокусирован на мишени площадью всего нескольких квадратных миллиметров. В качестве ускоряемых частиц чаще всего используются протоны и электроны.
Наиболее мощные и дорогостоящие ускорители строятся с чисто научными целями – чтобы получать и исследовать новые частицы, изучать взаимопревращения частиц. Ускорители относительно невысоких энергий широко применяются в медицине и технике – для лечения онкологических больных, для производства радиоактивных изотопов, для улучшения свойств полимерных материалов и для многих других целей.
Многообразие существующих типов ускорителей можно разбить на четыре группы: ускорители прямого действия, линейные ускорители, циклические ускорители, ускорители на встречных пучках.
Где находятся ускорители? В Дубне (Объединенный институт ядерных исследований) под руководством В.И.Векслера в 1957 году построен синхрофазотрон. В Серпухове – синхрофазотрон, длина его кольцевой вакуумной камеры, находящейся в магнитном поле, составляет 1,5 км; энергия протонов 76 ГэВ. В Новосибирске (институт ядерной физики) под руководством Г.И.Будкера введены в действие ускорители на встречных электрон-электронных и электрон-позитронных пучках (пучки по 700 МэВ и 7 ГэВ). В Европе (ЦЕРН, Швейцария – Франция) работают ускорители со встречными протонными пучками по 30 ГэВ и с протон-антипротонными пучками по 270 ГэВ. В настоящее время в ходе сооружения Большого адронного коллайдера (БАК) на границе Швейцарии и Франции завершен ключевой этап строительных работ – монтаж сверхпроводящих магнитов ускорителя элементарных частиц.
Коллайдер строится в туннеле с периметром 26650 метров на глубине около ста метров. Первые тестовые столкновения в коллайдере планировалось провести в ноябре 2007 года, однако происшедшая в ходе испытательных работ поломка одного из магнитов, приведет к некоторой задержке в графике ввода установки в строй. Большой адронный коллайдер предназначен для поиска и изучения элементарных частиц. После запуска БАК будет самым мощным ускорителем элементарных частиц в мире, почти на порядок превосходя своих ближайших конкурентов. Сооружение научного комплекса Большого адронного коллайдера ведется более 15 лет. В этой работе участвуют более 10 тысяч человек из 500 научных центров всего мира.
Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина:
Q = (MA + MB – MC – MD)c 2 = ΔMc 2 , где MA и MB – массы исходных продуктов, MC и MD – массы конечных продуктов реакции. Величина ΔM называется дефектом масс. Ядерные реакции могут протекать с выделением (Q > 0) или с поглощением энергии (Q -12 с.
Законы сохранения при ядерных реакциях
При ядерных реакциях выполняется несколько законов сохранения: импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т.е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.
- Что такое ядерная реакция?
- В чем отличие ядерной реакции от химической?
- Почему образовавшиеся ядра гелия разлетаются в противоположные стороны?
7 3Li + 1 1H → 4 2He + 4 2He - Является ли ядерной реакция испускания α –частицы ядром?
- Допишите ядерные реакции:
- 9 4Be + 1 1H → 10 5B + ?
- 14 7N + ? → 14 6C + 1 1p
- 14 7N + 4 2He → ? + 1 1H
- 27 13Al + 4 2He → 30 15P + ? (1934 г. Ирен Кюри и Фредерик Жолио-Кюри получили радиоактивный изотоп фосфора)
- ? + 4 2He → 30 14Si + 1 1p
- Определите энергетический выход ядерной реакции.
14 7N + 4 2He → 17 8O + 1 1H
Масса атома азота 14,003074 а.е.м., атома кислорода 16,999133а.е.м., атома гелия 4,002603 а.е.м., атома водорода 1,007825 а.е.м.
Самостоятельная работа
Вариант 1
1. Напишите уравнения следующих ядерных реакций:
- алюминий ( 27 13Al) захватывает нейтрон и испускает α-частицу;
- азот ( 14 7N) бомбардируется α-частицами и испускает протон.
2. Закончите уравнение ядерных реакций:
3. Определите энергетический выход реакций:
Вариант 2
1. Напишите уравнения следующих ядерных реакций:
- фосфор( 31 15Р) захватывает нейтрон и испускает протон;
- алюминий ( 27 13Al) бомбардируется протонами и испускает α-частицу.
2. Закончите уравнение ядерных реакций:
3. Определите энергетический выход реакций:
После выполнения самостоятельной работы проводится самопроверка.
Домашнее задание: № 1235 – 1238. (А.П.Рымкевич)
Видео:Строение атомного ядра. Ядерные силы | Физика 11 класс #51 | ИнфоурокСкачать
Физика. 11 класс
Конспект урока
Физика, 11 класс
Урок 28. Ядерные реакции
Перечень вопросов, рассматриваемых на уроке:
1) Ядерные реакции, цепные ядерные реакции;
2) энергетический выход ядерной реакции;
3) коэффициент размножения нейтронов;
4) критическая масса отражение;
6) термоядерная реакция.
Глоссарий по теме:
Период полураспада – время, за которое распадается половина начального числа радиоактивных атомов.
Закон радиоактивного распада:
Ядерные реакции — это превращение атомных ядер при взаимодействии их с элементарными частицами или друг с другом.
Энергетический выход ядерной реакции- разность энергий покоя ядер и частиц до реакции и после реакции, а также разность кинетических энергий частиц, участвующих в реакции.
Цепная ядерная реакция- реакция, в которой частицы, вызывающие её (нейтроны), образуются как продукты этой реакции.
Коэффициент размножения нейтронов — отношение числа нейтронов в каком-либо «поколении» к числу нейтронов предшествующего «поколения».
Ядерный реактор- устройство, в котором осуществляется управляемая реакция деления ядер.
Критическая масса — наименьшая масса делящегося вещества, при которой ещё может протекать цепная ядерная реакция.
Реакторы –размножители — это реакторы, воспроизводящие делящийся материал.
Термоядерные реакции – это реакции слияния лёгких ядер, происходящие при очень высокой температуре.
Изотопы – элементы с одинаковыми химическими свойствами, но различающиеся массами.
Доза поглощённого излучения – это отношение поглощённой телом энергии ионизирующего излучения к массе облучаемого тела.
Эквивалентная доза поглощённого излучения определяется произведением дозы поглощённого излучения на коэффициент качества.
Основная и дополнительная литература по теме урока:
1. Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2014. – С. 318 – 352.
2.Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.:Дрофа,2009. – С.155-162.
Основное содержание урока
Ядерные реакции — это превращение атомных ядер при взаимодействии их с элементарными частицами или друг с другом.
Энергетический выход ядерной реакции— разность энергий покоя ядер и частиц до реакции и после реакции, а также разность кинетических энергий частиц, участвующих в реакции.
Цепная ядерная реакция— реакция, в которой частицы, вызывающие её (нейтроны), образуются как продукты этой реакции.
Ядерный реактор— устройство, в котором осуществляется управляемая реакция деления ядер.
Критическая масса — наименьшая масса делящегося вещества, при которой ещё может протекать цепная ядерная реакция.
Реакторы –размножители — это реакторы, воспроизводящие делящийся материал.
Термоядерные реакции – это реакции слияния лёгких ядер, происходящие при очень высокой температуре.
Изотопы – элементы с одинаковыми химическими свойствами, но различающиеся массами.
Воздействие излучений на живые организмы характеризуется: дозой поглощённого излучения.
Разбор тренировочных заданий
1. Ядро претерпело ряд α- и β-распадов. В результате образовалось ядро . Определите число α- и β –распадов.
При альфа-распаде зарядовое число уменьшается на 2 единицы, а зарядовое — на 4 единицы. При бета-распаде заряд ядра увеличивается на единицу, а его масса не меняется. При превращении ядра урана в ядро свинца масса уменьшается на 238 − 206 = 32 а.е.м., а заряд на 92 − 82 = 10 зарядов электрона, и тогда заряд ядра уменьшается на 8 · 2 − 6 = 10 единиц заряда электрона, а масса уменьшается на 8 · 4 = 32 а.е.м.
Правильный ответ: 8 альфа-распадов и 6 бета-распадов.
2. Закончите уравнение ядерной реакции, с клавиатуры впишите численные значения ответа в пустые клеточки.
Учитывая законы сохранения электрического заряда и массы, получаем:
Таким образом, получаем элемент с порядковым номером 16 и массовым числом 34 (сера S)
Ответ:
Видео:Ядерные реакции. Деление ядер урана | Физика 11 класс #52 | ИнфоурокСкачать
Конспект урока по физике на тему «Ядерные реакции» 11 класс
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
КОНСПЕКТ УРОКА ПО ТЕМЕ: «ЯДЕРНЫЕ РЕАКЦИИ»
ознакомить учащихся с ядерными реакциями, с процессами изменения атомных ядер, превращением одних ядер в другие под действием микрочастиц.
подчеркнуть, что это отнюдь не химические реакции соединения и разъединения атомов элементов между собой, затрагивающие только электронные оболочки, а перестройка ядер как систем нуклонов, превращение одних химических элементов в другие.
1. Каков состав атомных ядер?
ЯДРО (атомное) – это положительно заряженная центральная часть атома, в которой сосредоточено 99,96% его массы. Радиус ядра
10 –15 м, что приблизительно в сто тысяч раз меньше радиуса всего атома, определяемого размерами его электронной оболочки.
Атомное ядро состоит из протонов и нейтронов. Их общее количество в ядре обозначают буквой А и называют массовым числом. Число протонов в ядре Z определяет электрический заряд ядра и совпадает с атомным номером элемента в периодической системе элементов Д.И. Менделеева. Число нейтронов в ядре может быть определено как разность между массовым числом ядра и числом протонов в нем. Массовое число – это число нуклонов в ядре.
2. Как объяснить стабильность атомных ядер?
ЯДЕРНЫЕ СИЛЫ – это мера взаимодействия нуклонов в атомном ядре. Именно эти силы удерживают одноименно заряженные протоны в ядре, не давая им разлететься под действием электрических сил отталкивания.
3. Назовите свойства ядерных сил.
Ядерные силы обладают рядом специфических свойств:
Ядерные силы на 2–3 порядка интенсивнее электромагнитных.
Ядерные силы имеют короткодействующий характер: радиус их действия R
10 –15 м (т.е. совпадает по порядку величины с радиусом атомного ядра).
Ядерные силы являются силами притяжения на расстояниях
10 –15 м, но на существенно меньших расстояниях между нуклонами переходят в силы отталкивания.
Ядерные силы нецентральны; на классическом (неквантовом) языке это означает, что они направлены под некоторым углом к прямой, соединяющей взаимодействующие частицы (силы такого типа называют тензорными силами).
Ядерные силы обладают зарядовой независимостью, т. е. силы, действующие между нейтроном и нейтроном, между протоном и протоном, а также между нейтроном и протоном, одинаковы.
Ядерные силы обладают свойством насыщения: каждый нуклон в ядре притягивает к себе лишь небольшое число своих соседей, отталкивая при этом остальные частицы.
Наряду с обычными (парными) ядерными силами существуют и так называемые тройные (и вообще многочастичные) ядерные силы, радиус действия которых примерно вдвое меньше радиуса действия обычных парных сил. (Под тройными имеют в виду силы между тремя частицами, обращающиеся в нуль при удалении на бесконечность хотя бы одной из этих частиц)
Ядерные силы, по крайней мере частично, имеют обменный характер. Согласно мезонной теории ядерных сил взаимодействие между нуклонами осуществляется путем испускания и поглощения этими частицами квантов особого пионного поля – пи-мезонов. Полной законченной теории ядерных сил, которая объясняла бы и предсказывала все их свойства, пока еще не создано.
4. Что такое энергия связи ядра?
ЭНЕРГИЯ СВЯЗИ АТОМНОГО ЯДРА – это минимальная энергия, которая необходима для полного расщепления ядра на отдельные нуклоны. Разность между суммой масс нуклонов (протонов и нейтронов) и массой состоящего из них ядра, умноженная на квадрат скорости света в вакууме, и есть энергия связи нуклонов в ядре. Энергия связи, приходящаяся на один нуклон, называется удельной энергией связи.
5. Почему масса ядра не равна сумме масс протонов и нейтронов, входящих в него?
При образовании ядра из нуклонов происходит уменьшение энергии ядра, что сопровождается уменьшением массы, т. е. масса ядра должна быть меньше суммы масс отдельных нуклонов, образующих это ядро.
6. Что такое радиоактивность?
2. ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА.
ЯДЕРНАЯ РЕАКЦИЯ – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры A (a, b) B или А + а → В + b.
Что общего и в чем различие ядерной реакции и радиоактивного распада?
Общим признаком ядерной реакции и радиоактивного распада является превращение одного атомного ядра в другое .
Но радиоактивный распад происходит самопроизвольно , без внешнего воздействия, а ядерная реакция вызывается воздействием бомбардирующей частицы.
Виды ядерных реакций:
через стадию образования составного ядра;
прямая ядерная реакция (энергия больше 10 МэВ);
под действием различных частиц: протонов, нейтронов, …;
с поглощением энергии и с выделением энергии.
Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер. Резерфорд бомбардировал атомы азота α-частицами. При соударении частиц происходила ядерная реакция, протекавшая по следующей схеме:
14 7 N + 4 2 He → 17 8 O + 1 1 H
Условия протекания ядерных реакций
Для осуществления ядерной реакции под действием положительно заряженной частицы необходимо, чтобы частица обладала кинетической энергией, достаточной для преодоления действия сил кулоновского отталкивания. Незаряженные частицы, например нейтроны, могут проникать в атомные ядра, обладая сколь угодно малой кинетической энергией. Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы).
Первая реакция бомбардировки атомов быстрыми заряженными частицами была осуществлена с помощью протонов большой энергии, полученных на ускорителе, в 1932 году:
7 3 Li + 1 1 H → 4 2 He + 4 2 He
Однако наиболее интересными для практического использования являются реакции, протекающие при взаимодействии ядер с нейтронами. Так как нейтроны лишены заряда, они беспрепятственно могут проникать в атомные ядра и вызывать их превращения. Выдающийся итальянский физик Э. Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения вызываются не только быстрыми, но и медленными нейтронами, движущимися с тепловыми скоростями.
Для осуществления ядерной реакции под действием положительно заряженной частицы необходимо, чтобы частица обладала кинетической энергией , достаточной для преодоления действия сил кулоновского отталкивания . Незаряженные частицы, например нейтроны, могут проникать в атомные ядра, обладая сколь угодно малой кинетической энергией.
Механизм ядерных реакций
Два этапа ядерной реакции:
поглощение частицы ядром и образование возбужденного ядра. Энергия распределяется между всеми нуклонами ядра, на долю каждого из них при этом приходится энергия, меньшая удельной энергии связи, и они не могут проникнуть в ядро. Нуклоны обмениваются между собой энергией, и на одном из них или на группе нуклонов может сконцентрироваться энергия, достаточная для преодоления сил ядерной связи и освобождения из ядра.
испускание частицы ядром происходит подобно испарению молекулы с поверхности капли жидкости. Промежуток времени от момента поглощения ядром первичной частицы до момента испускания вторичной частицы составляет примерно 10 -12 с.
Законы сохранения при ядерных реакциях
При ядерных реакциях выполняется несколько законов сохранения : импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т.е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.
Энергетическим выходом ядерной реакции называется разность энергий покоя ядер и частиц до и после реакции.
Данная энергия выражается в Джоулях, но нам предстоит ее выражать в МэВ. Для этого наша формула будет выглядеть следующим образом:
А теперь давайте рассчитаем энергетический выход реакции Уолтона и Кокрофта.
На самом деле эта реакция проходит с выделением энергии 17,6 МэВ, у нас значение данной энергии получилось меньше, так как мы не учитывали кинетическую энергию протона, так как он был разогнан на ускорителе.
Самостоятельная работа по карточкам.
1. Напишите уравнения следующих ядерных реакций:
алюминий ( 27 13 Al) захватывает нейтрон и испускает α-частицу;
азот ( 14 7 N) бомбардируется α-частицами и испускает протон.
2. Закончите уравнение ядерных реакций:
📹 Видео
Физика 11 класс (Урок№28 - Ядерные реакции.)Скачать
Цепные ядерные реакции. Ядерный реактор | Физика 11 класс #53 | ИнфоурокСкачать
ВСЯ Ядерная физика за 15 минут - ВПР / ОГЭ / ЕГЭ 2023 #global_eeСкачать
Ядерные реакции. Энергетический выход ядерных реакций. Физика 11 классСкачать
Урок 471. Ядерные реакции. Энергетический выход ядерной реакцииСкачать
Термоядерные реакции. Применение ядерной энергии | Физика 11 класс #54 | ИнфоурокСкачать
11 класс, 26 урок, Состав атомных ядер. Ядерные реакцииСкачать
Физика, 11 класс: Ядерные реакцииСкачать
Ядерные реакции. Простой и понятный советский научный фильм.Скачать
Ядерные реакции. 10 класс.Скачать
Физика 11 класс (Урок№27 - Строение атомного ядра.)Скачать
Уравнения ядерных реакций для разных видов распада (видео 19)| Квантовая физика | ФизикаСкачать
11 класс, 28 урок, Энергетический выход ядерных реакцийСкачать
Ядерная физика на ЕГЭ за 7 минутСкачать
Физика 11 класс (Урок№2 - Механические волны.)Скачать
Физика 11 класс (Урок№5 - Электромагнитная индукция.)Скачать