Взаимодействие цезия с водой уравнение реакции

Видео:Реакция цезия с водойСкачать

Реакция цезия с водой

Цезий: способы получения и химические свойства

Цезий Cs — это щелочной металл. Белый, мягкий, весьма легкоплавкий. Чрезвычайно реакционноспособный, сильнейший восстановитель.

Относительная молекулярная масса Mr = 132,905; относительная плотность для твердого состояния d = 1,873; относительная плотность для жидкого состояния d = 1,841; tпл = 28,7º C; tкип = 667,6º C

Видео:Цезий - самый активный металл на Земле!Скачать

Цезий  - самый активный металл на Земле!

Способ получения

1. В результате электролиза жидкого гидроксида цезия образуются цезий, кислород и вода :

4CsOH → 4Cs + O2↑ + 2H2O

2. В результате разложения оксида цезия при 300 — 500º С получается пероксид цезия и цезий:

3. Хлорид цезия подвергают электролизу в воде , в результате чего на выходе образуется гидроксид цезия, хлор и водород:

2CsCl + 2H2O = H2↑ + Cl2↑ + 2CsOH

Видео:Реакции металлов с кислородом и водой. 8 класс.Скачать

Реакции металлов с кислородом и водой. 8 класс.

Качественная реакция

Качественная реакция на цезий — окрашивание пламени горелки в синий цвет.

Взаимодействие цезия с водой уравнение реакции

Видео:РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

Химические свойства

1. Цезий — сильный восстановитель . Поэтому он реагирует почти со всеми неметаллами :

1.1. Цезий легко реагирует с водородом при 300–350º C и повышенным давлением с образованием гидрида цезия:

2Cs + H2 = 2CsH

1.2. Цезий сгорает в кислороде (воздухе) с образованием надпероксида цезия:

а если сгоранием происходит в холодной среде, то образуется оксид цезия:

1.3. Цезий активно реагирует при комнатной температуре с фтором, хлором, бромом и йодом . При этом образуются фторид цезия, хлорид цезия, бромид цезия, йодид цезия :

2Cs + F2 = 2CsF

2Cs + Cl2 = 2CsCl

2Cs + Br2 = 2CsBr

2Cs + I2 = 2CsI

1.4. С серой цезий реагирует при температуре 100–130º C с образованием сульфида цезия:

2Cs + S = Cs2S

2. Цезий активно взаимодействует со сложными веществами:

2.1. Цезий реагирует с водой . Взаимодействие цезия с водой приводит к образованию гидроксида цезия и газа водорода:

2Cs 0 + 2 H2 O = 2 Cs + OH + H2 0

2.2. Цезий взаимодействует с кислотами:

2.2.1. Цезий реагирует с разбавленной соляной кислотой, при этом образуются хлорид цезия и водород :

2Cs + 2HCl = 2CsCl + H2

2.2.2. При взаимодействии с разбавленной и холодной с ерной кислотой образуется сульфат цезия, и смесь продуктов восстановления серной кислоты — оксид серы (IV), осадок сера и вода.

2.2.3. Реагируя с разбавленной и холодной азотной кислотой Цезий образует нитрат цезия, и смесь продуктов восстановления азота — газ оксид азота (II), газ оксид азота (I) или азот и воду.

2.2.4. В результате реакции насыщенной сероводородной кислоты и цезия в бензоле образуется осадок гидросульфид цезия и газ водород:

2Cs + 2H2S = 2CsHS↓ + H2

2.3. Цезий может взаимодействовать с основаниями:

2.3.1. Цезий взаимодействует с гидроксидом цезия при температуре 300-350º С, при этом образуется оксид цезия и водород:

2Cs + 2CsOH = 2Cs2O + H2

2.4. Цезий вступает в реакцию с газом аммиаком при 30-45º С. В результате данной реакции образуется амид цезия и водород:

2.5. Цезий может вступать в реакцию с оксидами :

2.5.1. В результате взаимодействия цезия и оксида кремния при температуре выше 300º С образуется силикат цезия и кремний:

Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать

Составление уравнений химических реакций.  1 часть. 8 класс.

Взаимодействие цезия с водой уравнение реакции

САМОСТОЯТЕЛЬНАЯ РАБОТА ПО ХИМИИ

8 КЛАСС

РЕАКЦИИ ЗАМЕЩЕНИЯ

1. Напишите уравнения реакций взаимодействия цезия и кальция с водой, если при этом образуются водород и соответствующий гидроксид.

Ответ: 2Cs + 2H2O = 2CsOH + H2; Ca + 2H2O = Ca(OH)2 + H2.

2. На лабораторном столе стояли 3 пробирки с разбавленной серной кислотой и 3 пробирки с раствором нитрата кобальта (II). В первые три пробирки поместили металлы Ca, Hg и Al. В оставшиеся три пробирки поместили металлы Pb, Al и Cr. Что наблюдается в каждой из пробирок? Напишите уравнения возможных реакций.

Ответ:

В пробирках с серной кислотой:

Ca + H2SO4 = CaSO4 + H2, кальций растворяется, выделяется бесцветный газ;

в пробирке с Hg изменений нет;

2Al + 3H2SO4 = Al2(SO4)3 + 3H2, алюминий растворяется, выделяется бесцветный газ.

В пробирке с раствором нитрата кобальта (II):

в пробирке с Pb изменений нет;

2Al + 3Co(NO3)2 = 2Al(NO3)3 + 3Co, алюминий растворяется, на поверхности алюминия появляется налет кобальта, раствор обесцвечивается;

2Cr + 3Co(NO3)2 = 2Cr(NO3)3 + 3Co, хром растворяется, на поверхности хрома появляется налет кобальта, раствор изменяет окраску.

3. Определите объем водорода (н.у.), который выделится в результате взаимодействия алюминия с 365 г 15%-ного раствора соляной кислоты.

Видео:Взаимодействие щелочных металлов с водойСкачать

Взаимодействие щелочных металлов с водой

Цезий

Взаимодействие цезия с водой уравнение реакции

Цезий
Очень мягкий, вязкий серебристо-жёлтый металл
Взаимодействие цезия с водой уравнение реакции
Название, символ, номерЦезий / caesium (Cs), 55Атомная масса
(молярная масса)132,9054519(2) а. е. м. (г/моль)Электронная конфигурация[Xe] 6s 1Радиус атома267 пмКовалентный радиус235 пмРадиус иона(+1e) 167 пмЭлектроотрицательность0,79 (шкала Полинга)Электродный потенциал-2,923Степени окисления0; +1Энергия ионизации
(первый электрон)375,5 (3,89) кДж/моль (эВ)Плотность (при н. у.)1,873 г/см³Температура плавления

28,44 °CТемпература кипения667,6 °C ; 688 °C ; 669,2 °CУд. теплота плавления2,09 кДж/мольУд. теплота испарения68,3 кДж/мольМолярная теплоёмкость32,21 Дж/(K·моль)Молярный объём70,0 см³/мольСтруктура решёткикубическая объёмноцентрированнаяПараметры решётки6,140 ÅТемпература Дебая39,2 KТеплопроводность(300 K) 35,9 Вт/(м·К)Номер CAS7440-46-2

Цезий (химический символ — Cs; лат. Caesium ) — элемент главной подгруппы первой группы шестого периода периодической системы химических элементов Д. И. Менделеева, атомный номер — 55. Простое вещество цезий — мягкий щелочной металл серебристо-жёлтого цвета. Своё название цезий получил за наличие двух ярких синих линий в эмиссионном спектре (от лат. caesius — небесно-голубой).

Видео:Химия | Молекулярные и ионные уравненияСкачать

Химия | Молекулярные и ионные уравнения

Содержание

  • 1 История
  • 2 Нахождение в природе. Добыча
  • 3 Геохимия и минералогия
  • 4 Получение
  • 5 Изотопы
  • 6 Физические свойства
  • 7 Химические свойства
  • 8 Применение
    • 8.1 Фотоэлементы, фотоумножители
    • 8.2 Детекторы ионизирующего излучения
    • 8.3 Оптика
    • 8.4 Источники света
    • 8.5 Катализаторы
    • 8.6 Химические источники тока
    • 8.7 Радиационная техника
    • 8.8 Медицина
    • 8.9 Применение цезия в энергетике
    • 8.10 Прочие области применения цезия
  • 9 Биологическая роль
    • 9.1 Цезий в живых организмах

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

История

Цезий открыт в 1860 году немецкими учёными Р. В. Бунзеном и Г. Р. Кирхгофом в водах Бад-Дюркхаймского минерального источника в Германии методом оптической спектроскопии, тем самым, став первым элементом, открытым при помощи спектрального анализа. В чистом виде цезий впервые был выделен в 1882 году шведским химиком К. Сеттербергом при электролизе расплава смеси цианида цезия (CsCN) и бария.

Видео:20 г цезия в воде В этой реакции образуется водород и гидроксид цезияСкачать

20 г цезия в воде  В этой реакции образуется водород и гидроксид цезия

Нахождение в природе. Добыча

Основным цезиевым минералом является поллуцит. В виде примесей цезий входит в ряд алюмосиликатов: лепидолит, флогопит, биотит, амазонит, петалит, берилл, циннвальдит, лейцит, карналлит. Также содержится в редком минерале авогадрите. В качестве промышленного сырья используются поллуцит и лепидолит.

Подтверждённые мировые запасы цезия на начало 2012 года оцениваются в 70 000 тонн .

По добыче цезиевой руды (поллуцита) лидирует Канада — в месторождении Танко (юго-восточная Манитоба, северо-западный берег озера Берник-Лейк) сосредоточено около 70 % мировых запасов цезия. Поллуцит также добывается в Намибии и Зимбабве. В России месторождения поллуцита есть на Кольском полуострове, в Восточном Саяне и Забайкалье. Месторождения поллуцита также имеются в Казахстане, Монголии и Италии (о. Эльба), но они обладают малыми запасами и не имеют важного экономического значения.

Мировая добыча обогащённой руды цезия составляет около 20 тонн в год. Мировой объём производства металлического (чистого) цезия — около 9 тонн в год.

Некоторые источники утверждают, что потребности в цезии более чем в 8,5 раза превышают его добычу, что положение в металлургии цезия ещё более тревожное, чем, например, в металлургии тантала или рения, и производители не могут обеспечить постоянно растущий спрос на металлический цезий.

Взаимодействие цезия с водой уравнение реакции

Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

Геохимия и минералогия

Среднее содержание цезия в земной коре — 3,7 г/т . Наблюдается некоторое увеличение содержания цезия от ультраосновных пород ( 0,1 г/т ) к кислым ( 5 г/т ). Основная его масса в природе находится в рассеянной форме и лишь незначительная часть заключена в собственных минералах цезия (поллуците и др.). Постоянно повышенные количества цезия наблюдаются в морганите (1—4 %), родиците (около 5 %), авогадрите и лепидолите (0,85 %). По кристаллохимическим свойствам цезий наиболее близок к рубидию, калию и таллию. В повышенных количествах цезий находится в калиевых минералах. Цезий, как и рубидий, имеет тенденцию накапливаться на поздних стадиях магматических процессов, и в пегматитах его концентрации достигают наивысших значений. Среднее содержание цезия в гранитных пегматитах около 0,01 %, а в отдельных пегматитовых жилах, содержащих поллуцит, даже достигает 0,4 %, что примерно в 40 раз выше, чем в гранитах. Наиболее высокие концентрации цезия наблюдаются в редкометально замещённых микроклин-альбитовых пегматитах со сподуменом. При пневматолито-гидротермальном процессе повышенные количества цезия связаны с массивами грейзенезированных аляскитов и гранитов с кварц-берилл-вольфрамитовыми жилами, где он присутствует главным образом в мусковитах и полевых шпатах. В зоне гипергенеза (в поверхностных условиях) цезий в небольшом количестве накапливается в глинах, глинистых породах и почвах, содержащих глинистые минералы, иногда в гидроокислах марганца. Максимальное содержание цезия составляет лишь 15 г/т . Роль глинистых минералов сводится к сорбции, цезий вовлекается в межпакетное пространство в качестве поглощённого основания. Активная миграция этого элемента в водах очень ограничена. Основное количество цезия мигрирует «пассивно», в глинистых частичках речных вод. В морской воде концентрация цезия составляет около 0,5 мкг/л . Из числа собственно цезиевых минералов наиболее распространены поллуцит (Cs, Na)[AlSi2O6n H2O (22—36 % Cs2O), цезиевый берилл (пеццоттаит) Be2CsAl2(Si6O18) и авогадрит (KCs)BF4. Последние два минерала содержат до 7,5 % окиси цезия. Из других цезиевых минералов известны также галхаит (Cs,Tl)(Hg,Cu,Zn)6(As,Sb)4S12 и маргаритасит (Cs,K,H3O)2(UO2)2V2O8·H2O.

Видео:Полный разбор варианта ОГЭ | Химия 2023 | УмскулСкачать

Полный разбор варианта ОГЭ | Химия 2023 | Умскул

Получение

При промышленном получении цезий в виде соединений извлекается из минерала поллуцита. Это делается хлоридным или сульфатным вскрытием. Первое включает обработку исходного минерала подогретой соляной кислотой, добавление хлорида сурьмы SbCl3 для осаждения соединения Cs3[Sb2Cl9] и промывку горячей водой или раствором аммиака с образованием хлорида цезия CsCl. При втором — минерал обрабатывается подогретой серной кислотой с образованием алюмоцезиевых квасцов CsAl(SO4)2·12H2O.

Для получения цезия достаточной степени чистоты требуется многократная ректификация в вакууме, очистка от механических примесей на металлокерамических фильтрах, нагревание с геттерами для удаления следов водорода, азота, кислорода и многократная ступенчатая кристаллизация.

Сложности получения цезия обусловливают постоянный поиск его минералов: извлечение этого металла из руд неполное, в процессе эксплуатации материала он рассеивается и потому безвозвратно теряется, Промышленность нуждается именно в очень чистом материале (на уровне 99,9—99,999 %), и это является одной из труднейших задач в металлургии редких элементов.

В России переработка и извлечение солей цезия из поллуцита ведется в Новосибирске на ЗАО «Завод редких металлов».

Существует несколько лабораторных методов получения цезия. Он может быть получен:

  • нагревом в вакууме смеси хромата или дихромата цезия с цирконием;
  • разложением азида цезия в вакууме;
  • нагревом смеси хлорида цезия и специально подготовленного кальция.

Все методы являются трудоёмкими. Второй позволяет получить высокочистый металл, однако является взрывоопасным и требует на реализацию несколько суток.

Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать

Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnline

Изотопы

Известны изотопы цезия с массовыми числами от 112 до 151 (количество протонов 55, нейтронов от 57 до 96), и 22 ядерных изомеров. Природный цезий — моноизотопный элемент, состоящий из единственного стабильного изотопа 133 Cs.

Взаимодействие цезия с водой уравнение реакции

Самым долгоживущим искусственным радиоактивным нуклидом цезия является 135 Cs с периодом полураспада T 1/2 около 2,3 миллиона лет. Другой относительно долгоживущий изотоп 137 Cs ( T 1/2 = 30,17 года ).

Цезий-137 является одним из виновников радиоактивного загрязнения биосферы, так как образуется при делении ядер в ядерных реакторах и при испытаниях ядерного оружия. Цезий-137 претерпевает бета-распад, дочерний изотоп стабильный барий-137.

Видео:Задание 21 – решаем на максимум | Химия ОГЭ 2023Скачать

Задание 21 – решаем на максимум | Химия ОГЭ 2023

Физические свойства

Взаимодействие цезия с водой уравнение реакции

Цезий — мягкий металл, из-за низкой температуры плавления ( T пл = 28,6 °C ) при комнатной температуре находится в полужидком состоянии. Твёрдость цезия по шкале Мооса составляет 0,2.

Металлический цезий представляет собой вещество золотисто-белого цвета, по внешнему виду похожее на золото, но светлее. Расплав представляет подвижную жидкость, при этом его цвет становится более серебристым. Жидкий цезий хорошо отражает свет. Пары цезия окрашены в зеленовато-синий цвет.

Цезий образует кристаллы кубической сингонии (объёмно-центрированная решётка), пространственная группа Im3m, параметры ячейки a = 0,6141 нм , Z = 2 . При высоком давлении может переходить в другие полиморфные модификации. Цезий — парамагнетик.

Цезий растворяется в жидком аммиаке (тёмно-синие растворы) и расплавленном CsOH.

Цезий образует легкоплавкие сплавы с другими щелочными металлами. Его сплав с калием и натрием имеет температуру плавления −78 °С.

Видео:Основания. 8 класс.Скачать

Основания. 8 класс.

Химические свойства

Цезий является наиболее химически активным металлом, за исключением радиоактивного франция, практически отсутствующего в природе. Является сильнейшим восстановителем. На воздухе цезий мгновенно окисляется с воспламенением, образуя надпероксид CsO2. При ограниченном доступе кислорода окисляется до оксида Cs2O. Взаимодействие с водой происходит со взрывом, продуктом взаимодействия являются гидроксид CsOH и водород H2. Цезий вступает в реакцию со льдом (даже при −120 °C), простыми спиртами, галогеноорганическими соединениями, галогенидами тяжёлых металлов, кислотами, сухим льдом (взаимодействие протекает с сильным взрывом). Реагирует с бензолом. Активность цезия обусловлена не только высоким отрицательным электрохимическим потенциалом, но и невысокой температурой плавления и кипения (быстро развивается очень большая контактная поверхность, что увеличивает скорость реакции).

Многие образуемые цезием соли — нитраты, хлориды, бромиды, фториды, йодиды, хроматы, манганаты, азиды, цианиды, карбонаты и т. д. — чрезвычайно легко растворимы в воде и ряде органических растворителей; наименее растворимы перхлораты (что важно для технологии получения и очистки цезия). Несмотря на то, что цезий является весьма активным металлом, он, в отличие от лития, не вступает в реакцию с азотом при обычных условиях и, в отличие от бария, кальция, магния и ряда других металлов, не способен образовать с азотом соединений даже при сильнейшем нагревании.

Гидроксид цезия — сильнейшее основание с высочайшей электропроводностью в водном растворе; так, например, при работе с ним необходимо учитывать, что концентрированный раствор CsOH разрушает стекло даже при обычной температуре, а расплав разрушает железо, кобальт, никель, а также платину, корунд и диоксид циркония, и даже постепенно разрушает серебро и золото (в присутствии кислорода — очень быстро). Единственным устойчивым в расплаве гидроксида цезия металлом является родий и некоторые его сплавы.

Цезий весьма активен и агрессивен по отношению к контейнерным материалам и требует хранения, например, в сосудах из специального стекла в атмосфере аргона или водорода (обычные марки лабораторного стекла цезий разрушает).

Цезий способен присоединяться к этилену с образованием дицезиоэтилена CsCH2CH2Cs.

Видео:Проклятая химическая реакция 😜 #shortsСкачать

Проклятая химическая реакция 😜 #shorts

Применение

Цезий нашёл применение только в начале XX века, когда были обнаружены его минералы и разработана технология получения в чистом виде. В настоящее время цезий и его соединения используются в электронике, радио-, электро-, рентгенотехнике, химической промышленности, оптике, медицине, ядерной энергетике. В основном применяется стабильный природный цезий-133, и ограниченно — его радиоактивный изотоп цезий-137, выделяемый из суммы осколков деления урана, плутония, тория в реакторах атомных электростанций.

Фотоэлементы, фотоумножители

Благодаря крайне низкой работе выхода электрона цезий используется при производстве высокочувствительных и малоинерционных фотоэлектрических приборов — фотоэлементов, фотоумножителей. В фотоэлементах цезий обычно применяется в виде сплавов с сурьмой, кальцием, барием, алюминием или серебром, которые вводятся для повышения эффективности устройства, а также для экономии чрезвычайно дорогого цезия. Такие фотоэлементы способны работать в широком диапазоне длин волн: от дальней инфракрасной, до коротковолновой ультрафиолетовой области электромагнитного излучения, что делает цезиевые фотоэлементы эффективнее рубидиевых.

Детекторы ионизирующего излучения

Иодид цезия в виде монокристаллов (обычно активированный небольшой примесью таллия) является одним из наиболее распространённых сцинтилляторов — веществ, конвертирующих энергию ионизирующего излучения в свет. Это связано с высокой эффективностью поглощения гамма-квантов из-за большого атомного номера обоих основных составляющих йодида цезия, а также с высоким световыходом этого сцинтиллятора. Детекторы заряженных частиц и гамма-излучения на его основе применяются в атомной технике, геологии, медицине, космических исследованиях. Так, например, измерения элементного состава поверхности Марса выполнялись с помощью гамма-спектрометра на основе CsI(Tl), установленного на космическом орбитальном аппарате «Марс-5». Недостатком этого сцинтиллятора является некоторая гигроскопичность, из-за которой он может длительно использоваться без герметичной оболочки лишь в достаточно сухом воздухе. Впрочем, его гигроскопичность на порядки ниже, чем у другого распространённого сцинтиллятора — йодида натрия.

Оптика

Иодид и бромид цезия применяются в качестве оптических материалов в специальной оптике — инфракрасные приборы, очки и бинокли ночного видения, прицелы, обнаружение техники и живой силы противника (в том числе из космоса).

Источники света

В электротехнике цезий применяется в изготовлении светящихся трубок, в виде соединений с цирконием или оловом (метацирконаты и ортостаннаты цезия). Наряду с другими металлами цезий используется для наполнения осветительных газоразрядных металлогалогеновых ламп.

Катализаторы

Цезий нашёл большое применение в производственной химии в качестве катализатора (органический и неорганический синтез). Каталитическая активность цезия используется в процессах получения аммиака, серной кислоты, бутилового спирта, в реакциях дегидрогенизации и при получении муравьиной кислоты. Особенно эффективным является применение цезия как промотора при каталитическом получении аммиака, синтезе бутадиена. В ряде катализаторов оказалось эффективным применение цезия совместно с рубидием (оба металла значительно увеличивают каталитическую активность друг друга), в частности, используется рутений-цезий-углеродный катализатор. Цезий промотирует действие серебряного катализатора и повышает его селективность при эпоксидировании этилена.

Химические источники тока

На основе цезия создан и применяется высокоэффективный твёрдый электролит для топливных элементов (в том числе автомобильных), и аккумуляторов чрезвычайно высокой энергоёмкости — цезий-бета-глинозём (алюминат цезия).

Радиационная техника

Гамма-излучение цезия-137 используется в гамма-дефектоскопии, измерительной технике и при стерилизации пищевых продуктов (консервы, туши птиц и животных, мяса), а также для стерилизации медицинских препаратов и лекарств, в радиотерапии для лечения злокачественных опухолей. Также цезий-137 используется в производстве радиоизотопных источников тока, где он применяется в виде хлорида цезия (плотность 3,9 г/см³ , энерговыделение около 1,27 Вт/см³ ). Цезий-137 используется в датчиках предельных уровней сыпучих веществ в непрозрачных бункерах.

Медицина

На основе соединений цезия созданы эффективные лекарственные препараты для лечения язвенных заболеваний, дифтерии, шоков, шизофрении. Его соли, подобно препаратам лития, способны проявлять нормотимический эффект.

Применение цезия в энергетике

Значительной сферой применения металлического цезия являются новейшие и стремительно развивающиеся работы и производство энергетических агрегатов. Цезиевая плазма является важнейшей и неотъемлемой компонентой МГД-генераторов с повышенным КПД до 65—70 %.

Ввиду того, что цезий имеет большую теплоёмкость, теплопроводность и ряд собственных сплавов с очень низкой температурой плавления (цезий 94,5 % и натрий 5,5 %) −30 °C, то используется в качестве теплоносителя в атомных реакторах и высокотемпературных турбоэнергетических установках, а сплав состава натрий 12 %, калий 47 %, цезий 41 % обладает рекордно низкой температурой плавления −78 °C среди сплавов.

Прочие области применения цезия

Фторид цезия применяют для пьезоэлектрической керамики, специальных стёкол. Хлорид цезия — электролит в топливных элементах, флюс при сварке молибдена. Атомные переходы в пара́х цезия используются как эталон частоты в атомных часах.

Видео:Щелочные металлы - САМЫЕ ОПАСНЫЕ и Активные Элементы!Скачать

Щелочные металлы - САМЫЕ ОПАСНЫЕ и Активные Элементы!

Биологическая роль

Хлорид рубидия и хлорид цезия участвуют в газовом обмене, активируя деятельность окислительных ферментов, соли этих элементов повышают устойчивость организма к гипоксии.

Цезий в живых организмах

Цезий в живых организмах — постоянный химический микроэлемент организма растений и животных. Морские водоросли, например, содержат от 0,01-0,1 мкг цезия в 1 г сухого вещества, наземные растения — 0,05—0,2 мкг/г . Животные получают цезий с водой и пищей. В организме членистоногих около 0,067—0,503 мкг/г цезия, пресмыкающихся — 0,04 мкг/г , млекопитающих — 0,05 мкг/г . Главное депо цезия в организме млекопитающих — мышцы, сердце, печень; в крови — до 2,8 мкг/л . Цезий относительно малотоксичен; его биологическая роль в организме растений и животных окончательно не раскрыта.

Цезий-137 — радиоактивный изотоп цезия, испускающий бета-излучение и гамма-кванты, и один из главных компонентов техногенного радиоактивного загрязнения биосферы. Продукт деления урана-235, урана-238, плутония-239 и других делящихся изотопов. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления Cs-137 наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников. В организме животных Cs-137 накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и североамериканских водоплавающих птиц. Накапливается в грибах, ряд которых (маслята, моховики, свинушка, горькушка, польский гриб) считается «аккумуляторами» радиоцезия.

123456789101112131415161718
1HHe
2LiBeBCNOFNe
3NaMgAlSiPSClAr
4KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr
5RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe
6CsBaLaCePrNdPmSmEuGdTbDyHoErTmYbLuHfTaWReOsIrPtAuHgTlPbBiPoAtRn
7FrRaAcThPaUNpPuAmCmBkCfEsFmMdNoLrRfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
8UueUbnUbuUbbUbtUbqUbpUbhUbs

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu,
Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2,
W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Литий
Li
Атомный номер: 3
Атомная масса: 6,941
Темп. плавления: 453,85 К
Темп. кипения: 1615 К
Плотность: 0,534 г/см³
Электроотрицательность: 0,98

Натрий
Na
Атомный номер: 11
Атомная масса: 22,98976928
Темп. плавления: 371,15 К
Темп. кипения: 1156 К
Плотность: 0,97 г/см³
Электроотрицательность: 0,96

Калий
K
Атомный номер: 19
Атомная масса: 39,0983
Темп. плавления: 336,58 К
Темп. кипения: 1032 К
Плотность: 0,86 г/см³
Электроотрицательность: 0,82

Рубидий
Rb
Атомный номер: 37
Атомная масса: 85,4678
Темп. плавления: 312,79 К
Темп. кипения: 961 К
Плотность: 1,53 г/см³
Электроотрицательность: 0,82

Цезий
Cs
Атомный номер: 55
Атомная масса: 132,9054519
Темп. плавления: 301,59 К
Темп. кипения: 944 К
Плотность: 1,93 г/см³
Электроотрицательность: 0,79

Франций
Fr
Атомный номер: 87
Атомная масса: (223)
Темп. плавления:

300 К
Темп. кипения:

950 К
Плотность: 1,87 г/см³
Электроотрицательность: 0,7

📹 Видео

Реакции ионного обмена. 9 класс.Скачать

Реакции ионного обмена. 9 класс.

Химические уравнения - Как составлять уравнения реакций // Составление Уравнений Химических РеакцийСкачать

Химические уравнения - Как составлять уравнения реакций // Составление Уравнений Химических Реакций

Физические и химические свойства водыСкачать

Физические и химические свойства воды

Реакции ионного обмена. 9 класс.Скачать

Реакции ионного обмена. 9 класс.
Поделиться или сохранить к себе: