Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Видео:ФСР. Система однородных уравнений. Общее решениеСкачать

ФСР.  Система однородных уравнений.  Общее решение

Как найти нетривиальное и фундаментальное решение системы линейных однородных уравнений

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Пример 2 . Найти общее решение и фундаментальную систему решений системы Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений
Решение.

Задание . Исследовать и решить систему линейных уравнений.
Пример 4

Задание . Найти общее и частное решения каждой системы.
Решение. Выпишем основную матрицу системы:

5-29-4-1
1422-5
6211-2-6
x1x2x3x4x5

Приведем матрицу к треугольному виду. Будем работать только со строками, так как умножение строки матрицы на число, отличное от нуля, и прибавление к другой строке для системы означает умножение уравнения на это же число и сложение с другим уравнением, что не меняет решения системы.
Умножим 2-ую строку на (-5). Добавим 2-ую строку к 1-ой:

0-22-1-1424
1422-5
6211-2-6

Умножим 2-ую строку на (6). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

0-22-1-1424
022114-24
6211-2-6

В матрице B 1-ая и 2-ая строки пропорциональны, следовательно, одну из них, например 1-ю, можно вычеркнуть. Это равносильно вычеркиванию 1-го уравнения системы, так как оно является следствием 2-го.

022114-24
6211-2-6

Найдем ранг матрицы.

022114-24
6211-2-6
x1x2x3x4x5

Выделенный минор имеет наивысший порядок (из возможных миноров) и отличен от нуля (он равен произведению элементов, стоящих на обратной диагонали), следовательно rang(A) = 2.
Этот минор является базисным. В него вошли коэффициенты при неизвестных x1,x2, значит, неизвестные x1,x2 – зависимые (базисные), а x3,x4,x5 – свободные.
Преобразуем матрицу, оставляя слева только базисный минор.

02214-1-24
62-2-11-6
x1x2x4x3x5

Система с коэффициентами этой матрицы эквивалентна исходной системе и имеет вид:
22x2 = 14x4 — x3 — 24x5
6x1 + 2x2 = — 2x4 — 11x3 — 6x5
Методом исключения неизвестных находим нетривиальное решение:
Получили соотношения, выражающие зависимые переменные x1,x2 через свободные x3,x4,x5, то есть нашли общее решение:
x2 = 0.64x4 — 0.0455x3 — 1.09x5
x1 = — 0.55x4 — 1.82x3 — 0.64x5
Находим фундаментальную систему решений, которая состоит из (n-r) решений.
В нашем случае n=5, r=2, следовательно, фундаментальная система решений состоит из 3-х решений, причем эти решения должны быть линейно независимыми.
Чтобы строки были линейно независимыми, необходимо и достаточно, чтобы ранг матрицы, составленной из элементов строк, был равен количеству строк, то есть 3.
Достаточно придать свободным неизвестным x3,x4,x5 значения из строк определителя 3-го порядка, отличного от нуля, и подсчитать x1,x2.
Простейшим определителем, отличным от нуля, является единичная матрица.

100
010
001

Задача . Найти фундаментальный набор решений однородной системы линейных уравнений. Решение

Задача . Найти общее решение системы. Проанализировать его структуру (указать базис пространства решений однородной системы, установить размерность пространства). Решение Пример 3
Пример 4

Видео:15. Однородная система линейных уравнений / фундаментальная система решенийСкачать

15. Однородная система линейных уравнений / фундаментальная система решений

4.2.3 Системы линейных однородных уравнений

Рассмотрим систему вида

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, (1)

Где Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийили Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений.

Однородная система линейных уравнений (1) всегда совместна, так как Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений. Она заведомо имеет решение, состоящее из нулей Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, которое называется тривиальным.

В каких случаях существует нетривиальное решение?

Теорема. Для того чтобы система (1) имела нетривиальные решения, необходимо и достаточно, чтобы ранг ее матрицы был меньше числа неизвестных.

Действительно, в этом случае есть свободные неизвестные, которым можно придавать любые, в том числе и ненулевые, значения.

Выделим частный случай систем (1), когда Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений.

Теорема. Система (1) в случае Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийимеет нетривиальное решение тогда и только тогда, когда определитель этой системы равен нулю.

Системы линейных однородных уравнений обладают важным свойством, которое сформулируем в виде теоремы.

Теорема. Любая линейная комбинация решений системы (1) также является решением этой системы.

Возникает вопрос, можно ли подобрать такую совокупность решений системы (1), чтобы любое решение системы можно было бы найти как линейную комбинацию этих решений? Такая совокупность решений существует и носит название фундаментальной.

Определение. Совокупность решений системы линейных однородных уравнений (1) называется фундаментальной системой решений, если эта совокупность состоит из линейно независимых решений и любое решение системы (1) является линейной комбинацией этих решений.

Теорема. Если ранг Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийматрицы системы (1) меньше числа n неизвестных, то существует фундаментальная система решений, состоящая из Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийрешений.

Пример 22. Найти общее решение и какую-нибудь фундаментальную систему решений для системы

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Решение. Алгоритм решения такой же, как и для систем линейных неоднородных уравнений.

Оперируя только со строками, находим ранг матрицы, базисный минор; объявляем зависимые и свободные неизвестные и находим общее решение.

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Первая и вторая строки пропорциональны, одну из них вычеркнем:

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений.

Зависимые переменные – Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, свободные – Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений. Из первого уравнения Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийнаходим Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, тогда

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений; Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений.

Общее решение имеет вид:

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Находим фундаментальную систему решений, которая состоит из Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийрешений. В нашем случае Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, следовательно, фундаментальная система решений состоит из двух решений, причем эти решения должны быть линейно независимыми. Чтобы строки были линейно независимыми, необходимо и достаточно, чтобы ранг матрицы, составленной из элементов строк, был равен количеству строк, то есть 2. Достаточно придать свободным неизвестным Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийи Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийзначения из строк определителя второго порядка, отличного от нуля, и подсчитать Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений. Простейшим определителем, отличным от нуля, является Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений.

Таким образом, первое решение: Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, второе – Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений.

Эти два решения составляют фундаментальную систему решений. Заметим, что фундаментальная система не единственна (определителей, отличных от нуля, можно составить сколько угодно).

Пример 22. Найти общее решение и фундаментальную систему решений системы Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений,

Отсюда следует, что ранг матрицы равен 3 и равен числу неизвестных. Значит, система не имеет свободных неизвестных, а поэтому имеет единственное решение – тривиальное.

Для самостоятельного решения.

1. Доказать, что система Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийсовместна.

Найти ее общее и частное решения, приняв в качестве свободных неизвестных Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийи полагая Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений.

Ответ: Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений.

2. Образуют ли строки каждой из матриц Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийи Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, где Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, фундаментальную систему решений для системы

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Ответ: строки матрицы Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийне образуют фундаментальную систему решений, строки матрицы Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийобразуют.

3. Три прямые Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений, Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравненийобразуют треугольник. Охарактеризовать систему трех уравнений с точки зрения совместности и ранга матрицы коэффициентов.

Ответ выбрать из списка: 1) система совместна, Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений; 2) система несовместна, Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений; 3) совместна любая пара уравнений, Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений.

Видео:Фундаментальная система решений системы линейных уравнений ФСР СЛАУСкачать

Фундаментальная система решений системы линейных уравнений ФСР СЛАУ

Однородные системы линейных алгебраических уравнений. Фундаментальная система решений. Первая часть.

Видео:Фундаментальная система решений видео-урок!Скачать

Фундаментальная система решений видео-урок!

Однородные системы линейных алгебраических уравнений. Нулевое (тривиальное) решение.

Для начала стоит вспомнить, что такое однородные системы линейных алгебраических уравнений. В теме «Система линейных алгебраических уравнений. Основные термины. Матричная форма записи» вопрос классификации систем осуществлялся подробно, здесь же лишь вкратце напомню основные термины. Итак, система линейных алгебраических уравнений (СЛАУ) называется однородной, если все свободные члены этой системы равны нулю. Например, система $left < begin& 2x_1-3x_2-x_3-x_4=0;\ & -4x_1+5x_2+3x_4=0. end right.$ является однородной, так как все свободные члены этой системы (т.е. числа, стоящие в правых частях равенств) – нули.

Любая однородная СЛАУ имеет хотя бы одно решение – нулевое (его ещё называют тривиальное), в котором все переменные равны нулю. Подставим, например, $x_1=0$, $x_2=0$, $x_3=0$ и $x_4=0$ в записанную выше систему. Получим два верных равенства:

Однако следствие из теоремы Кронекера-Капелли однозначно указывает на то, что если СЛАУ имеет решение, то есть только два варианта. Либо это решение единственно (и тогда СЛАУ называют определённой), либо этих решений бесконечно много (такую СЛАУ именуют неопределённой). Возникает первый вопрос: как выяснить, сколько решений имеет заданная нам однородная СЛАУ? Одно (нулевое) или бесконечность?

Та однородная СЛАУ, которая рассмотрена выше, имеет не только нулевое решение. Подставим, например, $x_1=1$, $x_2=-1$, $x_3=2$ и $x_4=3$:

Мы получили два верных равенства, поэтому $x_1=1$, $x_2=-1$, $x_3=2$, $x_4=3$ – тоже является решением данной СЛАУ. Отсюда, кстати, следует вывод: так как наша СЛАУ имеет более чем одно решение, то эта СЛАУ является неопределенной, т.е. она имеет бесконечное количество решений.

Кстати сказать, чтобы не писать каждый раз выражения вроде «$x_1=1$, $x_2=-1$, $x_3=2$, $x_4=3$», пишут все значения переменных в матрицу-столбец: $left(begin 1 \ -1 \ 2 \ 3 end right)$. Эту матрицу тоже называют решением СЛАУ.

Теперь можно вернуться к вопросу о количестве решений однородной СЛАУ. Согласно следствию из теоремы Кронекера-Капелли, если $r=n$ ($n$ – количество переменных), то СЛАУ имеет единственное решение. Если же $r < n$, то СЛАУ имеет бесконечное количество решений.

Случай $r=n$ не интересен. Для однородных СЛАУ он означает, что система имеет только нулевое решение. А вот случай $r < n$ представляет особый интерес.

Этот случай уже был рассмотрен в теме «Базисные и свободные переменные. Общее и базисное решения СЛАУ». По сути, однородные СЛАУ – это всего лишь частный случай системы линейных уравнений, поэтому вся терминология (базисные, свободные переменные и т.д.) остаётся в силе.

Что такое базисные и свободные переменные? показатьскрыть

Прежде чем дать определение этим терминам, стоит вспомнить, что означает фраза «ранг матрицы равен $r$». Она означает, что есть хотя бы один минор $r$-го порядка, который не равен нулю. Напомню, что такой минор называется базисным. Базисных миноров может быть несколько. При этом все миноры, порядок которых выше $r$, равны нулю или не существуют. Теперь можно дать следующее определение:

Выбрать $r$ базисных переменных в общем случае можно различными способами. В примерах я покажу наиболее часто используемый способ выбора.

Видео:ФСР системы линейных уравнений. Алгоритм ГауссаСкачать

ФСР системы линейных уравнений. Алгоритм Гаусса

Фундаментальная система решений однородной СЛАУ.

С однородными СЛАУ связано дополнительное понятие – фундаментальная система решений. Дело в том, что если ранг матрицы системы однородной СЛАУ равен $r$, то такая СЛАУ имеет $n-r$ линейно независимых решений: $varphi_1$, $varphi_2$. $varphi_$.

Часто вместо словосочетания «фундаментальная система решений» используют аббревиатуру «ФСР». Если решения $varphi_1$, $varphi_2$. $varphi_$ образуют ФСР, и $X$ – матрица переменных данной СЛАУ, то общее решение СЛАУ можно представить в таком виде:

$$ X=C_1cdot varphi_1+C_2cdot varphi_2+ldots+C_cdot varphi_, $$

где $C_1$, $C_2$. $C_$ – произвольные постоянные.

Что значит «линейно независимые решения»? показатьскрыть

В данной ситуации под решением понимается матрица-столбец, в которой перечислены значения неизвестных.

Решения $varphi_1$, $varphi_2$, $ldots$, $varphi_n$ называются линейно зависимыми, если существуют такие константы $alpha_1,;alpha_2,;alpha_3,ldots,alpha_n$, что выполняется следующее равенство:

$$ alpha_1cdot varphi_1+alpha_2cdot varphi_2+ldots+alpha_ncdot varphi_n=O $$

при условии, что среди коэффициентов $alpha_i$ есть хотя бы один, не равный нулю.

Если же указанное выше равенство возможно лишь при условии $alpha_1=alpha_2=ldots=alpha_n=0$, то система решений называется линейно независимой.

Буква «$O$» в данном определении обозначает нулевую матрицу. Проще всего пояснить это определение на конкретном примере. Давайте рассмотрим ту СЛАУ, о которой шла речь в начале темы. Мы уже проверили, что $varphi_1=left(begin 1 \-1 \2 \3 endright)$ – решение данной СЛАУ. Точно так же можно показать, что $varphi_2=left(begin 16 \ 11 \ -4 \ 3 endright)$, $varphi_3=left(begin -5 \ -4 \ 2 \ 0 endright)$, $varphi_4=left(begin 7 \ 5 \ -2 \ 1endright)$ – решения данной системы.

Примем $alpha_1=-1$, $alpha_2=0$, $alpha_3=4$, $alpha_4=3$. Выясним, чему же равно выражение $alpha_1cdot varphi_1+alpha_2cdot varphi_2+alpha_3cdot varphi_3+alpha_4cdot varphi_4$:

$$ alpha_1cdot varphi_1+alpha_2cdot varphi_2+alpha_3cdot varphi_3+alpha_4cdot varphi_4= -1cdot left(begin 1 \-1 \2 \3 endright)+ 0cdot left(begin 16 \ 11 \ -4 \ 3 endright)+ 4cdot left(begin -5 \ -4 \ 2 \ 0 endright)+ 3cdot left(begin 7 \ 5 \ -2 \ 1endright)=\ =left(begin -1+0-20+21\ 1+0-16+15 \ -2+0+8-6 \ -3+0+0+3endright)= left(begin 0\ 0\ 0\0endright). $$

Итак, существуют такие значения констант $alpha_1$, $alpha_2$, $alpha_3$, $alpha_4$, не все одновременно равные нулю, что выполняется равенство $alpha_1cdot varphi_1+alpha_2cdot varphi_2+alpha_3cdot varphi_3+alpha_4cdot varphi_4=O$. Вывод: совокупность решений $varphi_1$, $varphi_2$, $varphi_3$, $varphi_4$ – линейно зависима.

Для сравнения: равенство $alpha_1cdot varphi_1+alpha_2cdot varphi_2=O$ возможно лишь при условии $alpha_1=alpha_2=0$ (я не буду это доказывать, поверьте на слово 🙂 ). Следовательно, система $varphi_1$, $varphi_2$ является линейно независимой.

Если система является неопределённой, указать фундаментальную систему решений.

Итак, мы имеем однородную СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая однородная система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:

$$ left( begin 3 & -6 & 9 & 13 & 0 \ -1 & 2 & 1 & 1 & 0 \ 1 & -2 & 2 & 3 & 0 end right) rightarrow left|begin & text\ & text\ & text endright| rightarrow \ rightarrowleft( begin 1 & -2 & 2 & 3 & 0\ -1 & 2 & 1 & 1 & 0 \ 3 & -6 & 9 & 13 & 0 end right) begin phantom \ II+I\ III-3cdot Iend rightarrow left( begin 1 & -2 & 2 & 3 & 0\ 0 & 0 & 3 & 4 & 0 \ 0 & 0 & 3 & 4 & 0 endright) begin phantom \ phantom\ III-IIend rightarrow \ rightarrowleft( begin 1 & -2 & 2 & 3 & 0\ 0 & 0 & 3 & 4 & 0 \ 0 & 0 & 0 & 0 & 0 endright). $$

Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $rang A=rangwidetilde = 2$.

Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).

Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на «ступеньках». Что это за «ступеньки» показано на рисунке:

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

На «ступеньках» стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.

В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.

Почему можно принять переменные $x_1$ и $x_3$ в качестве базисных? Для ответа на этот вопрос давайте вспомним, что ранг матрицы системы равен числу $r=2$. Это говорит о том, что все миноры данной матрицы, порядок которых выше 2, либо равны нулю, либо не существуют. Ненулевые миноры есть только среди миноров второго порядка. Выберем какой-либо ненулевой минор второго порядка. Мы можем выбирать его как в исходной матрице системы $A$, т.е. в матрице $left( begin 3 & -6 & 9 & 13 \ -1 & 2 & 1 & 1 \ 1 & -2 & 2 & 3 end right)$, так и в преобразованной матрице системы, т.е. в $left( begin 1 & -2 & 2 & 3 \ 0 & 0 & 3 & 4 \ 0 & 0 & 0 & 0 endright)$. Так как в преобразованной матрице системы побольше нулей, то будем работать именно с нею.

Итак, давайте выберем минор второго порядка, элементы которого находятся на пересечении строк №1 и №2, и столбцов №1 и №2:

$$ M_^=left| begin 1 & -2 \ 0 & 0 endright|=1cdot 0-(-2)cdot 0=0. $$

Вывод: выбранный нами минор второго порядка не является базисным, ибо он равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №2 (он соответствует переменной $x_2$), то пара переменных $x_1$ и $x_2$ не могут быть базисными переменными.

Осуществим вторую попытку, взяв минор второго порядка, элементы которого лежат на пересечении строк №1, №2 и столбцов №2 и №4:

$$ M_^=left| begin 2 & 3\ 3 & 4 endright|=2cdot 4-3cdot 3=-1. $$

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №2 (он соответствует переменной $x_2$) и столбца №4 (он соответствует переменной $x_4$), то пару переменных $x_2$ и $x_4$ можно принять в качестве базисных.

Сделаем и третью попытку, найдя значение минора, элементы которого расположены на пересечении строк №1, №2 и столбцов №1 и №3:

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №3 (он соответствует переменной $x_3$), то пару переменных $x_1$ и $x_3$ можно принять в качестве базисных.

Как видите, выбор базисных переменных не является однозначным. На самом деле количество вариантов выбора не превышает количество размещений из $n$ элементов по $r$, т.е. не больше чем $C_^$.

В рассматриваемом примере в качестве баисных были приняты переменные $x_1$ и $x_3$ – сугубо из соображений удобства дальнейшего решения. В чём это удобство состоит, будет видно чуток позже.

Базисные переменные выбраны: это $x_1$ и $x_3$. Количество свободных переменных, как и количество решений в ФСР, равно $n-r=2$. Свободными переменными будут $x_2$ и $x_4$. Нам нужно выразить базисные переменные через свободные.

Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $left( begin 1 & -2 & 2 & 3 & 0\ 0 & 0 & 3 & 4 & 0 \ 0 & 0 & 0 & 0 & 0 endright)$ от нулевой строки:

$$ left( begin 1 & -2 & 2 & 3 & 0\ 0 & 0 & 3 & 4 & 0 endright) $$

Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Почему меняются знаки? Что вообще значит это перенесение столбцов? показатьскрыть

Давайте обратимся к расширенной матрице системы, которая после преобразований имеет вид $left( begin 1 & -2 & 2 & 3 & 0\ 0 & 0 & 3 & 4 & 0 endright)$. Перейдём от матрицы к уравнениям. Первая строка соответствует уравнению $x_1-2x_2+2x_3+3x_4=0$, а вторая строка соответствует уравнению $3x_3+4x_4=0$. Теперь перенесём свободные переменные $x_2$ и $x_4$ в правые части уравнений. Естественно, что когда мы переносим выражение $4x_4$ в правую часть уравнения, то знак его изменится на противоположный, и в правой части появится $-4x_4$.

Если опять записать полученную систему в виде матрицы, то мы и получим матрицу с перенесёнными за черту столбцами.

А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:

$$ left( begin 1 & 2 & 2 & -3\ 0 & 3 & 0 & -4 endright) begin phantom \ II:3 end rightarrow left( begin 1 & 2 & 2 & -3\ 0 & 1 & 0 & -4/3 endright) begin I-2cdot II \ phantom end rightarrow \ rightarrow left(begin 1 & 0 & 2 & -1/3\ 0 & 1 & 0 & -4/3 endright). $$

Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Вспоминая, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, получим:

Нами найдено общее решение заданной однородной СЛАУ. Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=2x_2-fracx_4$ и $x_3=-fracx_4$ в левую часть первого уравнения, получим:

$$ 3x_1-6x_2+9x_3+13x_4=3cdot left(2x_2-fracx_4right)-6x_2+9cdot left(-fracx_4right)+13x_4=0. $$

Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.

Теперь найдем фундаментальную систему решений. ФСР будет содержать $n-r=2$ решения. Для нахождения ФСР составим таблицу. В первой строке таблицы будут перечислены переменные: сначала базисные $x_1$, $x_3$, а затем свободные $x_2$ и $x_4$. Всего в таблице будут три строки. Так как у нас 2 свободные переменные, то под свободными переменными запишем единичную матрицу второго порядка, т.е. $left(begin 1 & 0 \0 & 1endright)$. Таблица будет выглядеть так:

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Теперь будем заполнять свободные ячейки. Начнём со второй строки. Мы знаем, что $x_1=2x_2-fracx_4$ и $x_3=-fracx_4$. Если $x_2=1$, $x_4=0$, то:

Найденные значения $x_1=2$ и $x_3=0$ запишем в соответствующие пустые ячейки второй строки:

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Заполним и третью строку. Если $x_2=0$, $x_4=1$, то:

Найденные значения $x_1=-frac$ и $x_3=-frac$ запишем в соответствующие пустые ячейки третьей строки. Таким образом таблица будет заполнена полностью:

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Из второй и третьей строки таблицы мы и запишем ФСР. Матрица неизвестных для нашей системы такова: $X=left(begin x_1 \x_2 \x_3 \x_4 endright)$. В том же порядке, в котором в матрице $X$ перечислены переменные, записываем значения переменных из таблицы в две матрицы:

$$ varphi_1=left(begin 2 \1 \0 \0 endright);; varphi_2=left(begin -1/3 \0 \ -4/3 \1 endright). $$

Совокупность $varphi_1=left(begin 2 \1 \0 \0 endright)$, $varphi_2=left(begin -1/3 \0 \ -4/3 \1 endright)$ и есть ФСР данной системы. Общее решение можно записать теперь так: $X=C_1cdot varphi_1+C_2cdot varphi_2$. Или в развёрнутом виде:

$$ X=C_1cdotleft(begin 2 \1 \0 \0 endright)+C_2cdotleft(begin -1/3 \0 \ -4/3 \1 endright), $$

где $C_1$ и $C_2$ – произвольные постоянные.

Ответ: Общее решение: $left <begin& x_1=2x_2-fracx_4;\ & x_2in R;\ & x_3=-fracx_4;\ & x_4 in R. endright.$. Или так: $X=C_1cdotleft(begin 2 \1 \0 \0 endright)+C_2cdotleft(begin -1/3 \0 \ -4/3 \1 endright)$, где $C_1$ и $C_2$ – произвольные константы. Фундаментальная система решений: $varphi_1=left(begin 2 \1 \0 \0 endright)$, $varphi_2=left(begin -1/3 \0 \ -4/3 \1 endright)$.

Записать ФСР однородной СЛАУ

зная общее решение. Записать общее решение с помощью ФСР.

Общее решение уже было получено в теме «метод Крамера» (пример №4). Это решение таково:

Опираясь на предыдущий пример №1, попробуйте составить ФСР самостоятельно, а потом сверить с ответом.

Ранг матрицы системы $r=3$ (поэтому у нас три базисных переменных), количество переменных $n=5$. Количество свободных переменных и количество решений ФСР равно $n-r=2$.

Так же, как и в предыдущем примере, составим ФСР. При составлении учтём, что $x_1$, $x_2$, $x_3$ – базисные переменные, а $x_4$, $x_5$ – свободные переменные.

Выяснить образуют ли строки каждой из матриц фундаментальную систему решений для системы уравнений

Совокупность $varphi_1=left(begin -17/19 \-15/19 \20/19 \1\0 endright)$, $varphi_2=left(begin 144/19 \ 41/19 \ -4/19\0\1 endright)$ и есть ФСР данной системы. Общее решение можно записать теперь так: $X=C_1cdot varphi_1+C_2cdot varphi_2$. Или в развёрнутом виде:

$$ X=C_1cdotleft(begin -17/19 \-15/19 \20/19 \1\0 endright)+C_2cdotleft(begin 144/19 \ 41/19 \ -4/19\0\1 endright), $$

где $C_1$ и $C_2$ – произвольные постоянные.

Ответ: Фундаментальная система решений: $varphi_1=left(begin -17/19 \-15/19 \20/19 \1\0 endright)$, $varphi_2=left(begin 144/19 \ 41/19 \ -4/19\0\1 endright)$. Общее решение: $X=C_1cdotleft(begin -17/19 \-15/19 \20/19 \1\0 endright)+C_2cdotleft(begin 144/19 \ 41/19 \ -4/19\0\1 endright)$, где $C_1$ и $C_2$ – произвольные константы.

Продолжение этой темы рассмотрим во второй части, где разберём ещё один пример с нахождением общего решения и ФСР.

🎦 Видео

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

Фундаментальная система решений для однородной системы линейных уравненийСкачать

Фундаментальная система решений для однородной системы линейных уравнений

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.Скачать

Математика без Ху!ни. Метод Гаусса. Совместность системы. Ранг матрицы.

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать

Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvy

Математика без Ху!ни. Метод Гаусса.Скачать

Математика без Ху!ни. Метод Гаусса.

Неоднородная система линейных уравненийСкачать

Неоднородная система линейных уравнений

Матричный метод решения систем уравненийСкачать

Матричный метод решения систем уравнений

Система линейных уравнений. Общее решение. Метод ГауссаСкачать

Система линейных уравнений.  Общее решение. Метод Гаусса

Решение системы уравнений методом Гаусса 4x4Скачать

Решение системы уравнений методом Гаусса 4x4

Неоднородные системы линейных уравненийСкачать

Неоднородные системы линейных уравнений

Решение систем линейных уравнений с помощью матрицСкачать

Решение систем линейных уравнений с помощью матриц

Решение системы уравнений методом обратной матрицы - bezbotvyСкачать

Решение системы уравнений методом обратной матрицы - bezbotvy

СЛАУ: Фундаментальная система решений. Структура общего решения | Лекция 7 | ЛинАл | СтримСкачать

СЛАУ: Фундаментальная система решений. Структура общего решения | Лекция 7 | ЛинАл | Стрим

Общее, частное, базисное решение системы линейных уравнений Метод ГауссаСкачать

Общее, частное, базисное решение системы линейных уравнений Метод Гаусса
Поделиться или сохранить к себе: