Учебный элемент № 1.
Цель: закрепить понятие «следствие уравнения», навык выяснения, какое из уравнений является следствием другого.
Указания учителя: вспомните определение следствия уравнения. «Если все корни первого уравнения являются корнями второго, то второе уравнение называется следствием первого».
Пример: выяснить какое из уравнений (х – 5)(х – 3)=0 (1) и х – 5=0 (2) является следствием другого.
Решение: первое уравнение имеет корни х1=5 и х2=3, а второе – единственный корень х=5. Поэтому первое уравнение является следствием второго.
Задания самостоятельной работы (на 10 мин).
Выяснить, какое из двух данных уравнений является следствием другого.
1 вариант. | 2 вариант. |
х + 4 = 0 и (х – 1)(х + 4). (3 балла) | 2 – х = 0 и 4 – х 2 = 0. (3 балла) |
х 2 +3х – 10 = 0 и х – 2 = 0 (4 балла) | х 2 + х – 6 = 0 и х + 3 = 0.(4 балла) |
Записать какое – нибудь следствие уравнения.
3х = 4. (3 балла) | 5х = — 7. (3 балла) |
х 2 + 1 = 0. (3 балла) | = 0. (3 балла) |
Список правильных ответов и критерии оценивания ученик получает от учителя. Учащийся исправляет ошибки и проставляет число заработанных баллов в оценочный лист. Если он набрал 9 баллов или больше, то переходит к следующему учебному элементу. Если же набрано меньше 9 баллов, то следует прорешать задания другого варианта, аналогичные тем, в которых была допущена ошибка, и проставить набранные баллы в графу «корректирующие задания».
Учебный элемент № 2.
Цель: закрепить понятие «равносильные уравнения», навык определения равносильных уравнений.
Указания учителя: прочитайте внимательно данные ниже пояснения и выполните самостоятельную работу.
Уравнения, имеющие одно и то же множество корней называются, равносильными. Два уравнения, не имеющие корней, так же являются равносильными. Любое из двух равносильных уравнений является следствием другого.
Пример: | 3х – 3 = 0 | х – 1 = 0. |
3(х – 1)=0 | х2 = 1. | |
х – 1 = 0. | х1 = 1 |
Большинство уравнений решаются с помощью перехода от данного уравнения к равносильному. Так решаются уравнения первой степени с одним неизвестным, квадратные уравнения, показательные уравнения. Уравнение заменяется ему равносильным при следующих преобразованиях:
- любой член уравнения можно переносить из одной части в другую, изменив его знак на противоположный;
- обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю.
При делении обеих частей уравнения на выражение, содержащее неизвестное, может произойти потеря корня!
В первом случае произошла потеря корня. Преобразования, которые приводят к потере корней, при решении уравнений производить нельзя!
Задания самостоятельной работы (на 10 мин).
Объяснить, почему данные уравнения равносильны.
1 вариант. | 2 вариант. |
3х = 6 и 3х + 2 = 8. (3 балла) | 2х = 15 и 7х = 45. (3 балла) |
18х 2 – х = 3 и 18х 2 = 3 + х. (3 балла) | 7х 2 – 5 = 2х и 7х 2 – 2х = 5. (3 балла) |
5х = 20 и 10(х –4) = 0. (3 балла) | 10х = 3 и = 0. (3 балла) |
Выяснить, равносильны ли уравнения.
15х = 3 и 5х – 1 = 0. (3 балла) | х 2 = 4 и (х – 2)(х + 2) = 0. (3 балла) |
2 х+1 = 4 и х – 1 = 0. (4 балла) | 3 х – 7 = 2 и 3х = 6. (4 балла) |
Проверьте и оцените свою работу, правильные ответы возьмите у учителя. Исправьте ошибки, если они есть, проставьте количество в оценочные листы.
Если вы набрали 12 баллов, то переходите к следующему этапу, если же меньше, то решайте задание другого варианта, аналогичное тому, в котором ошиблись.
Учебный элемент № 3.
Цель: закрепить навык решения простейших логарифмических уравнений.
Указания учителя: внимательно прочитайте данные ниже пояснения и выполните задания.
Простейшее логарифмическое уравнение имеет вид:logaf(x) =logag(x), где, а>0,a1. Имеются два основных метода решения логарифмических уравнений:
- преобразовать логарифмическое уравнение к видуlogaf(x) =logag(x) и воспользоваться теоремой: «Еслиlogaf(x) =logag(x), где, а>0,a1,f(x)>0,g(x)>0, тоf(x) =g(x)». Из найденных корней отобрать те, которые удовлетворяют неравенствамf(x)>0 иg(x)>0; остальные корни уравненияf(x) =g(x) являются посторонними для уравненияlogaf(x) =logag(x);
- метод введения новой переменной.
ОДЗ:
применив свойство суммы логарифмов, заменим данное уравнение его следствием:
по теореме обратной теореме Виета находим корни:
х2 = -5. ОДЗ (при х = -5 левая часть уравнения теряет смысл.) х =1 является корнем исходного уравнения, а х = -5 – посторонний корень.
Ответ: х = 1.
Задания самостоятельной работы (на 20 мин).
Решите уравнение.
1 вариант. | 2 вариант. |
log2 x = 3. (2 балла) | log3 x = 2. (2 балла) |
log4 x = . (2 балла) | log25 x = . (2 балла) |
ln(x – 3) = ln 2. (3 балла) | lg(1 – 5x) = lg 1. (3 балла) |
lg(x + ) + lg(x — ) = 0. (4 балла) | lg(x – 1) + lg(x + 1) = 0. (4 балла) |
log2 (x – 2) + log2 (x – 3) = 1. (4 балла) | log3 (5 – x) + log3 ( -1 – x) = 3. (4 балла) |
lg(x 2 – 9) – lg(x – 3) = 0. (4 балла) | log5 (x 2 – 4) – log5 (x – 2) = 0. (4 балла) |
log6 (x – 1) – log6 (2x – 11) = log6 2. (4 балла) | ln(3x –1) – ln(x + 5) = ln 5. (4 балла) |
Если набрано 17 баллов, то переходите к следующему элементу. Если меньше, то прорешайте соответствующее задание другого варианта.
Учебный элемент № 4.
Цель: уметь применять полученные знания при решении задач.
Указания учителя: вы прошли 1 уровень усвоения материала. Теперь вам самостоятельно придется выбрать метод решения уравнений. Вспомните свойства логарифмов, основное логарифмическое тождество, формулу перехода от логарифма по одному основанию к логарифму по другому основанию. Для этого прочитайте текст учебника А.Н Колмогорова и др. «Алгебра и начала математического анализа, 10 – 11 классы» на стр. 233 – 235. Выполните письменно самостоятельную работу.
Задания самостоятельной работы (на 20 мин).
Решите уравнение.
1 вариант. | 2 вариант. |
log7 (2x 2 – 7x + 6) – log7 (x – 2) = log7 x. (5 б) | log11 (2x 2 –9x + 5) – log11 x = log11 (x – 3) (5 б) |
lg=lg x (5 баллов) | lg=lg x. (5 баллов) |
log13 log3 log2 (x 2 + 2x) = 0. (5 баллов) | log0,8 log2 log3 (x 2 + 3x – 1) = 0. (5 баллов) |
2log2 x = 3log3 x. (5 баллов) | 3log4 x = 2log3 x. (5 баллов) |
Проверьте и оцените свою работу, правильные ответы возьмите у учителя. Исправьте ошибки, если они есть. Проставьте баллы в оценочные листы.
Если набрано 15 баллов или больше, то переходите к следующему учебному элементу, если меньше, то решайте задания другого варианта, аналогичные тем, в которых была допущена ошибка.
Учебный элемент № 5.
Цель: творчески применять полученные знания в новых условиях.
Указания учителя: молодцы! Вы освоили решение уравнений 2 уровня сложности. Целью дальнейшей вашей работы является применение своих знаний и умений в более сложных ситуациях.
Задания для самостоятельной работы.
(Они даются в одном варианте и не ограничиваются временными рамками, так как их решают далеко не все учащиеся. А время, отводимое на эту работу, определяется ситуацией на уроке.)
- lg(x2+ x – 5) = lg 5x + lg. (6 баллов).
- log2(x + 1) + 2 log4(x + 5) = 8 + log0,58.(7баллов).
- log3x + logx – logx = 6.(8баллов).
- (7баллов).
5. (6 баллов).
Проверьте и оцените свои работы. Исправьте ошибки, если они есть, подсчитайте количество баллов. Проставьте количество баллов в оценочный лист. Оцените свои работы.
Наиболее доходной отраслью сельского хозяйства является неуплата налогов. Михал Огурек
ещё >>
Видео:Алгебра 10 класс (Урок№19 - Равносильные уравнения и неравенства.)Скачать
1. Понятие уравнения и его корней
Равенство с переменной называется уравнением. В общем виде уравнение с одной переменной x записывают так: f (я) = g (я).
Под этой краткой записью понимают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны.
2х = —1 — линейное уравнение; х 2 — 3х + 2 = 0 — квадратное уравнение; чJx + 2 = x — иррациональное уравнение (содержит переменную под знаком корня).
Корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство.
Решить уравнение — значит найти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.
x = 2 — корень уравнения /x + 2 = x, так как при x = 2 получаем верное равенство: -Д = 2, то есть 2 = 2.
2. Область допустимых значений (ОДЗ)
Областью допустимых значений (или областью определения) уравнения называется общая область определения для функций f (x) и g (x), стоящих в левой и правой частях уравнения.
Для уравнения л/x + 2 = x ОДЗ: x + 2 1 0, то есть x 1 —2, так как область определения функции f (x) = yj x + 2 определяется условием: x + 2 1 0, а область определения функции g (x) = x — множество всех действительных чисел.
Если каждый корень первого уравнения является корнем второго, то второе уравнение называется следствием первого уравнения.
Если из правильности первого равенства следует правильность каждого последующего, то получаем уравнения-следствия.
При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому при использовании уравнений-следствий проверка полученных корней подстановкой их в исходное уравнение является составной частью решения (см. пункт 5 этой таблицы).
► Возведем обе части уравнения в квадрат:
(x + 2) = x 2 , x + 2 = x 2 , x 2 — x — 2 = 0, x1 = 2, x2 = —1. Проверка. x = 2 — корень (см. выше); x = —1 — посторонний корень (при х = —1 получаем неверное равенство 1 = —1). Ответ: 2. 2 = х областью допустимых значений являются все действительные числа. Это можно записать, например, так. ОДЗ: R, поскольку функции f (x) = x 2 и g (x) = x имеют области определения R.
Понятно, что каждый корень данного уравнения принадлежит как области определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.
Например, в уравнении л/x — 2 + /1 — x = x функция g (x) = x определена при всех действительных значениях x, а функция f (x) = л/x — 2 + VT — x ко при условии, что под знаком квадратного корня будут стоять неотрицательные выражения. Следовательно, ОДЗ этого уравнения задается систе-
мой -! из которой получаем систему -! не имеющую решений.
[1 — x 10, [x 2 — 1 = 0. Но тогда верно, что (х — 1)(х + 1) = 0. Последнее уравнение имеет два корня: х = 1 и х = —1. Подставляя их в заданное уравнение, видим, что только корень х = 1 удовлетворяет исходному уравнению. Почему это случилось?
Это происходит поэтому, что, используя уравнения-следствия, мы гарантируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не является корнем первого уравнения. Для первого уравнения этот корень является посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторонних корней рассмотрены в таблице 7 на с. 54.) Таким образом, чтобы правильно применять уравнения-следствия для решения уравнений, необходимо помнить еще один о р и е н т и р: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстановкой корней в исходное уравнение является составной частью решения.
Схема применения этих ориентиров дана в таблице 6. В пункте 3 этой таблицы приведено решение уравнения
Замечание. Переход от данного уравнения к уравнению-следствию можно обозначить специальным значком ^, но его использование для записи решения не является обязательным. Вместе с тем, если этот значок записан, то это свидетельствует о том, что мы воспользовались уравнениями- следствиями, и поэтому обязательно в запись решения необходимо включить проверку полученных корней.
С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, которые не имели корней. Формально будем считать, что и в этом случае уравнения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом 0).
В курсе алгебры и начал математического анализа мы будем рассматривать более общее понятие равносильности, а именно: равносильность на определенном множестве.
Два уравнения называются равносильными на некотором множе-
стве, если на этом множестве они имеют одни и те же корни, то
есть каждый корень первого уравнения является корнем второго
и, наоборот, каждый корень второго уравнения является корнем
первого.
Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения х + 3 = 0 и 2х + 6 = 0 — равносильные, поскольку оба имеют одинаковый корень х = —3 и других корней не имеют, таким образом, каждое из них имеет те же решения, что и второе.
При рассмотрении равносильности уравнений на множестве, которое отличается от множества всех действительных чисел, ответ на вопрос «Равносильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рассмотреть уравнения:
то, как было показано выше, уравнение (3) имеет единственный корень х = 1, а уравнение (4) — два корня: х = 1 и х = —1. Таким образом, на множестве всех действительных чисел эти уравнения не являются равносильными, поскольку у уравнения (4) есть корень х = —1, которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равно
сильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень х = 1 и уравнение (4) также имеет единственный положительный корень х = 1. Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.
Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем случае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее
все равносильные преобразования уравнений (а также неравенств и систем уравнений и неравенств) мы будем выполнять на ОДЗ исходного уравнения (неравенства или системы). Отметим, что в том случае, когда ОДЗ заданного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.
Например, для уравнения Ix + 2 = x ОДЗ задается неравенством х + 2 1 0. Когда мы переходим к уравнению х + 2 = х 2 , то для всех его корней это уравнение является верным равенством. Тогда выражение х 2 , стоящее в правой части этого равенства, всегда неотрицательно (х 2 1 0), таким образом, и равное ему выражение х + 2 также будет неотрицательным: х + 2 1 0. Но это и означает, что ОДЗ данного уравнения (х + 2 1 0) учтено автоматически для всех корней второго уравнения и поэтому при переходе от уравнения yjx + 2 = x к уравнению х + 2 = х 2 ОДЗ заданного уравнения можно не записывать в решение.
Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий.
Как указывалось выше, выполняя равносильные преобразования уравнений, необходимо учесть ОДЗ данного уравнения — это и есть первый о р и — ентир для выполнения равносильных преобразований уравнений.
По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантировать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 49).
Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и гарантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из определения равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при
выполнении равносильных преобразований мы должны гарантировать сохранение правильности равенства на каждом шаге решения не только при прямых, но и при обратных преобразованиях — это и является вторым о р и — ен т и р ом для решения уравнений с помощью равносильных преобразований. (Соответствующие ориентиры схематически представлены в пункте 5 табл. 6.)
Например, чтобы решить с помощью равносильных преобразований урав-
——- = 0, достаточно учесть его ОДЗ: х + 1 Ф 0 и условие равенства
дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внимание на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.
Запись решения в этом случае может быть такой:
= 0. ► ОДЗ: х + 1 Ф 0. Тогда х 2 —1 = 0. Отсюда х = 1 (удовлетворяет
условию ОДЗ) или х = —1 (не удовлетворяет условию ОДЗ). Ответ: 1. 2 + л/ x — 2 = 6x + >/ x — 2. Перенесем из правой части уравнения в левую слагаемое tx — 2 с противоположным знаком и приведем подобные члены.
Получим х 2 — 6х = 0, х1 = 0, х2 = 6
к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения;
Приведение обеих частей уравнения к общему знаменателю (при сокращении знаменателя)
4 + 7 = 4 x + 2 x + 3 x 2 + 5x + 6 Умножим обе части уравнения на общий знаменатель всех дробей (х + 2)(х + 3).
4 (х + 3) + 7 (х + 2) = 4,
Возведение обеих частей иррационального уравнения в квадрат
yj2x +1 =Vx. 2х + 1 = х,
б) выполнение преобразований, при которых происходит неявное умножение на нуль;
Умножение обеих частей уравнения на выражение с переменной
х 2 + х + 1 = 0. Умножим обе части уравнения на х —1.
(х — 1)(х 2 + х + 1) = 0. Получим х 3 — 1 = 0, х = 1
Как получить правильное (или полное) решение
Пример правильного (или полного) решения
при решении уравнения
х1 = 0 не является корнем заданного уравнения
Выполнить проверку подстановкой корней в заданное уравнение
x 2 + V x — 2 = 6x + >/ x — 2.
► х 2 — 6х = 0, х1 = 0, х2 = 6. Проверка показывает, что х1 = 0 — посторонний корень, х2 = 6 — корень.
Ответ: 6. x + 2 x + 3 x 2 + 5x + 6
► 4 (x + 3) + 7 (x + 2) = 4;
11x = —22, x = —2. Проверка показывает, что х = -2 — посторонний корень. Ответ: корней нет. 2 + х + 1 = 0.
► D = —3 2 = (2х + 1) 2 . Получим 3х 2 + 6х = 0, х1 = 0, х2 = —2
2. Потеря корней
Явное или неявное сужение ОДЗ заданного уравнения, в частности выполнение преобразований, в ходе которых происходит неявное деление на нуль
1. Деление обеих частей уравнения на выражение с переменной
Поделив обе части уравнения на х, получим
2. Сложение, вычитание, умножение или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ заданного уравнения
Если к обеим частям уравнения прибавить [x, то получим уравнение
x 2 + yfx = 1 + yfx, у которого только один корень х = 1
Видео:Равносильность уравнений. Уравнение – следствие | Алгебра 11 класс #24 | ИнфоурокСкачать
Равносильные уравнения, преобразование уравнений
Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.
Видео:11 класс, 26 урок, Равносильность уравненийСкачать
Понятие равносильных уравнений
Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.
Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.
Уравнение f ( x ) = g ( x ) считается равносильным уравнению r ( x ) = s ( x ) , если у них одинаковые корни или у них обоих нет корней.
Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.
Если уравнение f ( x ) = g ( x ) имеет то же множество корней, что и уравнение p ( x ) = h ( x ) , то они считаются равносильными по отношению друг к другу.
Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.
Приведем несколько примеров таких уравнений.
Например, равносильными будут 4 · x = 8 , 2 · x = 4 и x = 2 , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x · 0 = 0 и 2 + x = x + 2 , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x = x + 5 и x 4 = − 1 , каждое из которых не имеет ни одного решения.
Для наглядности рассмотрим несколько примеров неравносильных уравнений.
К примеру, таковыми будут x = 2 и x 2 = 4 , поскольку их корни отличаются. То же относится и к уравнениям x x = 1 и x 2 + 5 x 2 + 5 , потому что во втором решением может быть любое число, а во втором корнем не может быть 0 .
Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.
Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x 2 + y 2 + z 2 = 0 и 5 · x 2 + x 2 · y 4 · z 8 = 0 включают в себя по три переменных и имеют только одно решение, равное 0 , во всех трех случаях. А пара уравнений x + y = 5 и x · y = 1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.
Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Понятие уравнений-следствий
Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.
Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.
📽️ Видео
Уравнение следствиеСкачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
§19 Логарифмические уравненияСкачать
Линейное уравнение с двумя переменными. 7 класс.Скачать
Отношение двух чисел. 6 класс.Скачать
11 класс, 28 урок, Равносильность неравенствСкачать
Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать
СЛЕДСТВИЕ ВЫЯСНЯЕТ, ЧТО ОН БЫЛ НЕОБЩИТЕЛЬНЫМ ЧЕЛОВЕКОМ, В КВАРТИРУ НИКОГО НЕ ПУСКАЛ, НО... | ВЕЩДОКСкачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Признаки равенства треугольников. 7 класс.Скачать
Равносильные уравнения и неравенства. 10 класс. Алгебра.Скачать
МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
Алгебра 11 класс (Урок№50 - Системы уравнений. Методы решения систем уравнений.)Скачать
Алгебра 10 класс 7 неделя Равносильные уравнения и неравенстваСкачать
Алгебра 7 класс. Системы уравнения как модели реальных ситуацийСкачать
AI Lecture 9 / part 3 - PyMc3Скачать