При построении математической модели распространения тепла в стержне сделаем следующие предположения:
1) стержень сделан из однородного проводящего материала с плотностью ρ;
2) боковая поверхность стержня теплоизолирована, то есть тепло может распространяться только вдоль оси ОХ;
3) стержень тонкий — это значит, что температура во всех точках любого поперечного сечения стержня одна и та же.
Рассмотрим часть стержня на отрезке [х, х + ∆х] (см. рис. 6) и воспользуемся законом сохранения количества тепла:
Общее количество тепла на отрезке [х, х + ∆х] = полному количеству тепла, прошедшему через границы + полное количество тепла, образованного внутренними источниками.
Общее количество тепла, которое необходимо сообщить участку стержня, чтобы повысить его температуру на ∆U, вычисляется по формуле: ∆Q= CρS∆x∆U, где С — удельная теплоемкость материала ( = количеству тепла, которое нужно сообщить 1 кг вещества, чтобы поднять его температуру на 1°), S — площадь поперечного сечения.
Количество тепла, прошедшее через левый конец участка стержня за время ∆t (тепловой поток) вычисляется по формуле: Q1 = -kSUx(x, t)∆t, где k — коэффициент теплопроводности материала ( = количеству тепла, протекающего в секунду через стержень единичной длины и единичной площади поперечного сечения при разности температур на противоположных концах, равной 1°). В этой формуле особого пояснения требует знак минус. Дело в том, что поток считается положительным, если он направлен в сторону увеличения х, а это, в свою очередь, означает, что слева от точки х температура больше, чем справа, то есть Ux CpS∆x∆U = kSUx(x + ∆х, t) ∆t — kSUx(x, t)∆t.
Если это равенство поделить на S∆x∆t и устремить ∆х и ∆t к нулю, то будем иметь:
Отсюда уравнение теплопроводности имеет вид
Ut = a 2 Uxx,
где — коэффициент температуропроводности.
В случае, когда внутри стержня имеются источники тепла, непрерывно распределенные с плотностью q(x,t), получится неоднородное уравнение теплопроводности
Начальные условия и граничные условия.
Для уравнения теплопроводности задается только одно начальное условие U|t=0 = φ(х) (или в другой записи U(x,0) = φ(х)) и физически оно означает, что начальное распределение температуры стержня имеет вид φ(х). Для уравнений теплопроводности на плоскости или в пространстве начальное условие имеет такой же вид, только функция φ будет зависеть, соответственно, от двух или трех переменных.
Граничные условия в случае уравнения теплопроводности имеют такой же вид, как и для волнового уравнения, но физический смысл их уже иной. Условия первого рода (5) означают, что на концах стержня задана температура. Если она не изменяется со временем, то g1(t) ≡ Т1 и g2(t) ≡ Т2, где Т1 и Т2 — постоянные. Если концы поддерживаются все время при нулевой температуре, то Т1= Т2 = 0 и условия будут однородными. Граничные условия второго рода (6) определяют тепловой поток на концах стержня. В частности, если g1(t) = g2(t) = 0, то условия становятся однородными. Физически они означают, что через концы не происходит теплообмен с внешней средой (эти условия еще называют условиями теплоизоляции концов). Наконец, граничные условия третьего рода (7) соответствуют случаю, когда через концы стержня происходит теплообмен с окружающей средой по закону Ньютона (напомним, что при выводе уравнения теплопроводности мы считали боковую поверхность теплоизолированной). Правда, в случае уравнения теплопроводности условия (7) записываются немного по-другому:
Физический закон теплообмена со средой (закон Ньютона) состоит в том, что поток тепла через единицу поверхности в единицу времени пропорционален разности температур тела и окружающей среды. Таким образом, для левого конца стержня он равен Здесь h1 > 0 — коэффициент теплообмена с окружающей средой, g1(t) — температура окружающей среды на левом конце. Знак минус поставлен в формуле по той же причине, что и при выводе уравнения теплопроводности. С другой стороны, в силу теплопроводности материала поток тепла через этот же конец равен Применив закон сохранения количества тепла, получим:
Аналогично получается условие (14) на правом конце стержня, только постоянная λ2 может быть другой, так как, вообще говоря, среды, окружающие левый и правый конец, бывают разные.
Граничные условия (14) являются более общими по сравнению с условиями первого и второго рода. Если предположить, что через какой-либо конец не происходит теплообмена со средой (то есть коэффициент теплообмена равен нулю), то получится условие второго рода. В другом случае предположим, что коэффициент теплообмена, например h1, очень большой.
Перепишем условие (14) при х = 0 в виде и устремим . В результате будем иметь условие первого рода:
Аналогично формулируются граничные условия и для большего числа переменных. Для задачи о распространении тепла в плоской пластине условие означает, что температура на ее краях поддерживается нулевой. Точно так же, условия и внешне очень похожи, но в первом случае оно означает, что рассматривается плоская пластина и края ее теплоизолированы, а во втором случае оно означает, что рассматривается задача о распространении тепла в теле и поверхность его теплоизолирована.
Решение первой начально-краевой задачи для уравнения теплопроводности.
Рассмотрим однородную первую начально-краевую задачу для уравнения теплопроводности:
Найти решение уравнения
удолетворяющее граничным условиям
и начальному условию
Решим эту задачу методом Фурье.
Шаг 1. Будем искать решения уравнения (15) в виде U(x,t) = X(x)T(t).
Найдем частные производные:
Подставим эти производные в уравнение и разделим переменные:
По основной лемме получим
Теперь можно решить каждое из этих обыкновенных дифференциальных уравнений. Обратим внимание на то, что используя граничные условия (16), можно искать не общее решение уравнения б), а частные решения, удолетворяющие соответствующим граничным условиям:
Шаг 2. Решим задачу Штурма-Лиувилля
Эта задача совпадает с задачей Штурма-Лиувилля, рассмотренной в лекции 3. Напомним, что собственные значения и собственные функции этой задачи существуют только при λ>0.
Собственные значения равны
Собственные функции равны (См. решение задачи)
Шаг 3. Подставим собственные значения в уравнение а) и решим его:
Шаг 4. Выпишем частные решения уравнения (15):
В силу линейности и однородности уравнения (15) их линейная комбинация
Шаг 5. Определим коэффициенты An в (19), используя начальное условие (17):
Приходим к тому, что начальная функция φ(x) разлагается в ряд Фурье по собственным функциям задачи Штурма-Лиувилля. По теореме Стеклова такое разложение возможно для функций, удовлетворяющих граничным условиям и имеющих непрерывные производные второго порядка. Коэффициенты Фурье находятся по формулам
Вычислив эти коэффициенты для конкретной начальной функции φ(x) и подставив их значения в формулу (19), мы тем самым получим решение задачи (15), (16), (17).
Замечание. Используя формулу (19), можно также, как в лекции 3, получить решение первой начально-краевой задачи для уравнения Ut = a 2 Uxx. Оно будет иметь вид
где
Видео:Интуитивное понимание формулы теплопроводности (часть 11) | Термодинамика | ФизикаСкачать
Вопрос 31. Теплопроводность. Закон Фурье. Коэффициент теплопроводности.
Теплопроводность — процесс передачи теплоты путем непосредственного соприкосновения тел, имеющих различную температуру. При этом процесс теплообмена происходит за счет передачи энергии микродвижения одних частиц другим.
Тепловой поток , .
Закон Фурье: тепловой поток пропорционален градиенту температуры и площади, то есть .
Плотность теплового потока , .
Коэффициент теплопроводности — количество теплоты, которое проходит в единицу времени через единицу поверхности через единичную толщину стенки при перепаде температуры в один градус, .
_____________________________________________________________________
Вопрос 32. Дифференциальное уравнение теплопроводности. Условия однозначности.
Условности:
1. Теплофизические свойства системы: , , .
2. Микрочастицы тела неподвижны.
3. Внутренние источники теплоты распределены в теле равномерно.
, где – коэффициент температуропроводности, характеризующий скорость изменения температуры в любой точке тела, [ ]
– теплоемкость тела; – плотность тела; – объемная плотность тепловыделения, [вm/м 3 ]; – температура; – оператор Лапласа.
(для полярных координат , , ),
Условия однозначности – математическое описание частных особенностей рассматриваемого процесса.
Решая уравнение , получим общее решение, которое в совокупности с условиями однозначности даст нам частные решения.
Условия однозначности:
1. Геометрические условия (характеризуют форму, размеры и положение тела в пространстве):
a. Форма тела (плоское, цилиндрическое сферическое тело)
b. Ограниченное тело.
c. Неограниченное тело.
2. Физические условия (определяют физические свойства тела и среды)
a. Характер изменения физических параметров:
i. Характер изменения .
ii. Характер изменения .
iii. Характер изменения .
iv. Характер изменения .
3. Временные условия (дают представление о распределении температуры в исследуемом теле в начальный момент времени):
a. :
i. .
ii. .
b. .
4. Граничные условия (определяют особенности взаимодействия на границе изучаемого тела с окружающими телами (средой)):
a. Граничные условия первого рода – закон изменения температуры на границе тела:
i. .
ii. .
b. Граничные условия второго рода – закон изменения температурного потока в стенке тела:
i. .
ii. .
c. Граничные условия третьего рода:
i. Закон изменения температуры окружающей среды.
ii. Закон, по которому идёт теплообмен тела с окружающей средой, .
d. Граничные условия четвёртого рода, .
________________________________________________________
Билет 33. Теплопроводность через однослойные и многослойные плоские стенки.
Теплопроводность – процесс передачи теплоты соприкасающимися, беспорядочно движущимися структурными частицами вещества
В основу теории теплопроводности положен закон Фурье – тепловой поток прямо пропорционален температурному градиенту и площади поверхности тела. Закон Фурье для плоской однослойной стенки
Плотность теплового потока – отношение теплового потока к площади поверхности теплопроводности. Для плоской стенки:
, где .
Коэффициент теплопроводности λ характеризует способность тел проводить теплоту.
Плотность теплового потока для стенки, состоящей из n слоёв:
,
где R – термическое сопротивление многослойной стенки
Многослойную стенку можно заменить эквивалентной однослойной, толщина которой равна толщине многослойной стенки
Тогда плотность теплового потока , где
_____________________________________________________________________
Вопрос 34. Теплопроводность через однослойные и многослойные цилиндрические стенки
Тепловой поток для цилиндрической однослойной стенки:
где Fm — расчётная поверхность теплопроводности,
где.
δ – толщина стенки, δ=r2 – r1
F1, F2 – площади внутренней и наружной поверхностей трубы, [м 2 ]
ψ – коэффициент, характеризующий отношение средней логарифмической FmL к средней геометрической
Линейная плотность теплового потока (тепловой поток, отнесённый к единице длины трубы) однослойной стенки определяется по формуле:
Тепловой поток для многослойной цилиндрической стенки:
Где
Fm – расчётная поверхность теплопроводности стенки;
λэ – эквивалентный коэффициент теплопроводности многослойной стенки
Линейная плотность теплового потока для многослойной стенки трубы
_____________________________________________________________________
Вопрос 35. Теплоотдача. Уравнение Ньютона. Коэффициент теплоотдачи.
Теплоотдача — конвективный теплообмен между жидкостью и поверхностью твёрдого тела (совместный перенос теплоты конвекцией и теплопроводностью).
Теплоотдачу рассчитывают по формуле Ньютона-Рихмана:
и плотность теплового потока
Коэффициент теплоотдачи зависит от: природы возникновения движения жидкости у поверхности теплообмена, режима движения жидкости, физических свойств жидкости, формы, размеров, положения в пространстве и состояния поверхности теплообмена.
____________________________________________________________________
Вопрос 36. Критериальные уравнения, физический смысл критериев подобия.Числа подобия, составленные только из заданных величин математического описания задачи, называются определяющими критериями подобия. Критерии подобия, содержащие альфа, называются определяемыми.
Число Нуссельта, или критерий теплоотдачи, характеризует соотношение тепловых потоков, передаваемых конвекцией и теплопроводностью по нормали через пристенный слой.
, где
— коэффициент теплоотдачи, [Вт/м^2*С]
l – определяющий линейный размер, [м]
— коэффициент теплопроводности жидкости, [Вт/м**С]
Число Рейнольдса – критерий гидродинамического подобия, характеризуется соотношением сил инерции и молекулярного трения (вязкости)
, где
w – средняя (линейная) скорость жидкости, определяется отношением объемного расхода к площади поперечного сечения потока, [м/с],
— кинематическая вязкость жидкости, [м^2/с]
По числовому значению Re судят о режиме течения жидкости:
Re =10^4 – развитый турбулентный
2320 2 К 4 ], ε – степень черноты наружной поверхности опытной трубы, F – площадь наружной поверхности опытной трубы.
Тепловой поток, передаваемый от опытной трубы в окружающую среду путем конвекции, равен
а опытное значение коэффициента теплоотдачи составляет
Определив при средней температуре пограничного слоя tm теплофизические свойства сухого воздуха λ; ν; β; Pr (находятся значения числа Грасгофа)
и комплекса (GrPr).
В зависимости от значения комплекса (GrPr) подбирается коэффициент C и показатель степени n в уравнении подобия конвективного теплообмена и определяются число Нуссельта
и расчетное значение коэффициента теплоотдачи
_____________________________________________________________________
Вопрос 38. Последовательность расчетов конвективного теплообмена в условиях вынужденной конвекции.
Рассчитаем конвективный теплообмен на примере лабораторной работы
Дано: напряжение U [В]
Динамический напор жидкости ΔH [кГ/м 2 ]
Температура стенки трубы t1 [°С] (10 измерений)
Температура жидкости на входе в трубу t11 [°C]
Температура жидкости на выходе из трубы t12 [°С]
Рассчитаем коэффициент теплоотдачи
Обработка опытных данных начинается с определения средней темпе-ратуры поверхности стенки трубы tс:
Средняя температура потока воды в трубе:
При средней температуре потока по таблице определяются теплофизические свойства воды: ρ; сp; λ; v.
Число Прандтля при средней температуре потока (10):
Скорость движения воды в трубе:
При движении жидкость нагревается на:
Количество теплоты в единицу времени, которое получает поток жид-кости от горячей поверхности стенки трубы:
Плотность теплового потока от стенки трубы к потоку жидкости:
Опытное значение среднего коэффициента теплоотдачи:
Число Рейнольдса (8) для потока жидкости в трубе:
В зависимости от полученного значения определяется выражение для поиска числу Нуссельта.
Теоретическое значение среднего коэффициента теплоотдачи вычисляется из определения критерия Нуссельта
_____________________________________________________________________
Видео:Метод Фурье для неоднородного уравнения теплопроводностиСкачать
Закон Фурье – основной закон теплопроводности.
В 1807 году французский ученый Фурье доказал экспериментально, что во всякой точке тела (вещества) в процессе теплопроводности присуща однозначная взаимосвязь между тепловым потоком и градиентом температуры:
,
где Q – тепловой поток, выражается в Вт;
grad(T) – градиент температурного поля (совокупности числовых значений температуры в разнообразных местах системы в выбранный момент времени), единицы измерения К/м;
S – площадь поверхности теплообмена, м 2 ;
Градиент температуры получится характеризовать в виде векторной суммы составляющих по осям декартовых координат:
,
где i, j, k – ортогональные между собой единичные векторы, нацеленные по координатным осям.
Значит, данный закон устанавливает величину теплового потока при переносе тепла посредством теплопроводности.
Закон Фурье для поверхностной плотности теплового потока принимает вид:
.
Знак « минус» обозначает, что векторы теплового потока и градиента температуры разнонаправленные. Следует понимать, что теплота передается в направлении спада температуры.
И все же не лишним будет указать, что закон Фурье не принимает в расчет инерционность процесса теплопроводности, иначе говоря, в представленной модели колебание температуры в любой точке мгновенно распространяется на всё тело. Закон Фурье некорректно применять для характеристики высокочастотных процессов таких как, к примеру, распространение ультразвука, ударной волны.
📺 Видео
Вывод уравнения теплопроводностиСкачать
8.1 Решение уравнения теплопроводности на отрезкеСкачать
Л1 - Теплопроводность. Закон Фурье.Скачать
Демидович №4450: вывод уравнения теплопроводностиСкачать
Уравнение в частных производных Уравнение теплопроводностиСкачать
Закон и уравнение теплопроводностиСкачать
8.2 Теплопроводность на отрезке. Сложные задачи.Скачать
Семинар по УМФ, метод Фурье для уравнения теплопроводности на отрезке, 27.04.2020Скачать
Уравнение колебаний струны. Метод разделения переменных. Метод ФурьеСкачать
Метод Фурье для уравнения теплопроводности (диффузии)Скачать
6-1. Уравнение теплопроводностиСкачать
Лекция №1.1 Явная и неявная схемы для уравнения теплопроводностиСкачать
ЛиНУрФ. Лекция. 05.11.2020Скачать
Передача тепла теплопроводностьюСкачать
Горицкий А. Ю. - Уравнения математической физики. Часть 2 - Уравнение теплопроводностиСкачать
Решение первой краевой задачи для неоднородного уравнения теплопроводности.Скачать
УМФ, 22.12, вывод уравнения колебаний струныСкачать